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1. Introduction. Let N be an integer and A = {ai,...,an}, a1 <
... < ap, be a set of N integers. A well-known conjecture of Graham [5]
states that there exist a;,a; € A with a;/(a;,a;) > N.

If we let M = lem[aq,...,an]| and put A* = {M/ay,...,M/ay} then it
is an easily verified observation of Winterle [11] that

M/CLZ‘ a;

(M/ai, M/a;) — (ai,a;)
We call A* the reciprocal set of A. It is clear from the above remark that the
set {1,..., N} and its reciprocal set form extremal examples to the above
conjecture. For the case N = 4 we have a third extremal set {2,3,4,6}.

Thus a stronger version of Graham’s conjecture is that if A = {aq,...,
an} is such that (a1,...,an) = 1 and for all ¢, j, a;/(a;,a;) < N then either
one of A and A* is the set {1,...,N} or N =4 and A = {2,3,4,6}.

The conjecture in its weaker form was proved in a variety of special cases.
For example Winterle [11] showed the conjecture in the case where a; is a
prime. Vélez [10] established the conjecture for N = p + 1 (p a prime) and
also gave a proof (due to Szemerédi) for N = p. Boyle [1] extended these
results to establish the conjecture when N = p,p + 1,p + 2,p + 3, p?. For a
more complete account of the history of the problem (until 1980) see pages
78 and 79 of Erdds and Graham [4]. Significant progress was made towards
the conjecture in its weaker form by Szegedy [9] and Zaharescu [12], who
independently established it for all large N. In a later paper, Cobeli, Vajaitu
and Zaharescu [3] established the weaker Graham conjecture for all N > 1070
under the assumption of the Riemann Hypothesis. They also commented
that their method could be pushed to yield N > 105 but would not yield
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N > 10°°. Recently, F. Y. Cheng and C. Pomerance [2] have shown the
stronger Graham conjecture when N > 10%°%%0 The purpose of this paper
is to establish Graham’s conjecture, in its stronger form, unconditionally.
Since the conjecture is trivial for NV < 4 we restrict our attention to N > 5.

THEOREM 1.1. Let N > 5 be an integer and A = {ay,...,an}, where
a1 < ... <ayn and (ai,...,an) = 1, be a set of N integers. Then there
exist a;,a; € A with

a;/(ai,aj) > N.
The inequality is strict if both A and A* are different from {1,...,N}.

Let p be a prime “close” to 2N and « an integer in [(p + 1)/2, N]. The
starting point of our investigations is the function

rp(a) = |{d: ad,(p — a)d € A}|.

This function is tacitly present in the work of both Szegedy and Zaharescu.
The motivation for considering r,(c) lies in the fact that if either A or A*
is {1,..., N} then r,(a) =1 for all a. On the other hand, if A is a set not
satisfying Graham’s conjecture and neither A nor A* is {1,..., N} then
one can find a p and an « with r,(a) # 1. Thus there is the hope that
producing a’s with r,(«) # 1 would lead to a contradiction and thereby
prove the conjecture. Indeed, for a set A not satisfying the weaker Graham
conjecture, Zaharescu shows the existence of o with r,(a) > 2. Then he
exhibits “lots” of 3’s such that (o,p — ) = (p — o, ) = 1 and 1,(5) > 1.
This leads to a contradiction provided p is close enough to 2N. Here he
utilises a well-known result of Huxley that for every € > 0 and large x there
is a prime in the interval (x,z +27/'2). While Szegedy exhibits lots of a’s
with 7,(a) > 2, he too requires results of the type

m(z 4+ 22 — 7(z) > 2%/ log .

By the nature of these tools the bound on N is extremely weak. Indeed one
needs N > 6106, say, to ensure the validity of the results of Szegedy and
Zaharescu. Since the Riemann Hypothesis implies the existence of primes
in intervals as short as (z,z 4 cz'/?log z) for a reasonably small constant c,
Cobeli, Vajaitu and Zaharescu were able to refine Zaharescu’s argument to
establish the weaker conjecture (conditionally) for N > 107°.

From computer calculations on gaps between prime numbers (see [7]), we
will establish (in §3) Theorem 1.1 for all N < 2.22-10'2. If N > 2.22-10'2,
we consider the quantity

Q= > Y. (@) -1,

pE[2N—2G(N),2N—G(N)] a€[(p+1)/2,N]
rp(a)>2
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where G(NN) will be fixed later (in §6). In Section 4 we will derive a lower
bound for ). This is achieved by exhibiting many « for which r,(a) = 0. We
then bound r,(c) in terms of a more tractable function kp(n) (see Lemma
2.5). Applying the Montgomery—Vaughan version of the Brun—Titchmarsh
theorem (see [6]) we obtain (in §5) an upper bound for Q. The upper and
lower bounds are shown to yield a contradiction if (roughly) there are “lots”
of primes in intervals of the form (z,z + G(z)). If N < €299 then we will
choose G(N) =< N/log N and for larger N, G(N) = N/log® N. The results
of Rosser and Schoenfeld [8] are now sufficient for our purposes.

A modification of our arguments can be used to establish the more gen-
eral result: if A and B are two N element sets then there exists a € A
and b € B with max(a/(a,b),b/(a,b)) > N. The inequality is strict unless
A=B={1,...,N}or A =B = {1,...,N}*. This may be proved by
considering the function

Tp(a) ={d:ad e A, (p—a)d € B}.

The proof of Theorem 1.1 goes through mutatis mutandis.

Our methods will also show that there exists a positive constant ¢ such
that if neither A nor A* is contained in [1, N + ¢N/(log N loglog N)| then
there exist a;,a; € A with

a; cN
>N+ —————.
(ai,aj) log N loglog N
We are grateful to the referee for his valuable comments which have
improved our exposition. The referee also drew our attention to [2] and cor-

rected an oversight in Lemma 4.2. One of us (K. S.) is grateful to Professor
T. D. Wooley for his help and encouragement.

2. Preliminary lemmata. Throughout this paper bold-face, upper-
case letters (e.g. U) will denote sets of integers. For a set U the cardinality
of U will be denoted by |U|. The expression (a,b) can mean either ged(a, b)
or an element of N2 or the open interval (a,b). The intended meaning will
usually be clear from the context. In cases of possible ambiguity we have
indicated our meaning explicitly. The same holds for the symbols [a, b].

In the sequel A = {aq,...,an} is a set of N integers with (ay,...,an)
=1, a1 < ... <an, and for all 4, j, a;/(a;,a;) < N. Further, we also
assume that neither A nor A* is the set {1,...,N}. G(N) will denote a
function (to be chosen later) satisfying 0 < G(N) < (1 — 1/v/2)N. Let P
denote the set of primes in the interval 2N — 2G(N),2N — G(N)]. Let p
denote a generic prime in 2N — 2G(N),2N]. Let J, = {(p+1)/2,...,N}
and for a € J,, define

rp(a) =|{d: ad,(p — a)d € A}|.
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LEMMA 2.1. With notations as above,

> rpla) > 13,1,

aed,
Thus
Y. (pl)-1= > 1L
acd, acd,
rp(a)>1 rp(0)=0
Proof. Since p > N and (ay,...,an) = 1, we see that p cannot divide

any element of A. Further if i # j then a; # a; (mod p) since otherwise we
would have

rnax(( @i 4 >2|ai_aj’2p>N.

ai, ;) (ai, a;) (@i, a5)
The numbers a? (i = 1,...,N) lie in at most (p — 1)/2 residue classes
mod p and no residue class contains more than two values of a?. Hence

N . p—1
{(i,4) :i < j, ai = a; (mod p)}| ZN_T: |Jpl.

By our previous remark this implies that

{(i,5) i <J, ai = —a; (mod p)}| = [J,].
If i < j and a; = —a; (mod p) then for some £,
oN > Gt oy
(ai’ aj)
Since p > N it follows that k¥ = 1 and so a; + a; = p(a;,a;). Writing
a; = (p — a)(ai,aj), a; = ala;,a;) we see that since a; < aj, a is in J,.
Thus this would be a contributor to ) 3,7p (a). The proof follows at once.

LEMMA 2.2. If ¢ > N/2 is prime then qta; for any a; € A.

Proof. This is essentially Theorem 1 of Boyle [1]. While Boyle is
concerned with only the weaker conjecture of Graham, his proof requires
only the obvious modification of replacing N —1’s by N’s to yield the lemma.
An almost identical proof may also be found in Szegedy [9].

From Lemmata 2.1 and 2.2 we see that

Yoolrpla)=1 = D 1= > 14+ Y1

aed, aed, aed, aed,
rp(a)>1 rp(a)=0 « prime p—a prime

=7n(N)—7n(p—N—-1).

So if there are primes in [p — N, N] then we are assured of the existence of
a € J, with r,(a) > 2.
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Suppose a € J,, and r,(a) > 2. Thus there exist integers dy,ds, A with
(dl,dQ) = 1, d1 ?é d2 such that

adi A, (p— a)di1 A, ads A, (p — a)da A € A.
The next two lemmata shed some light on this situation.
LEMMA 2.3. We may write
d;=X;Y; (i=1,2),
where X; = (d;, o) and Y; = (d;,p — «). Further,

X; Xy N
max| ——, 5 —
X2’X1 (6

Yi Y5 < N
max\| —/—, —
2'Y1) T p—a’

IN

and similarly

whence
(d1 d2> < N2
max| —,— | < ——.
do’ dy alp — )
Consequently,
N—-—«o .
InlIl(Xl,XQ) Z ‘Xl — XQ’
«
and
N _
TEOTP i, Ye) > Vi — Yal.
p—

Finally, it is not possible to have X1 = Xo =Y; =Y, = 1.
Proof. Clearly X;Y;|d;. Suppose d; = X;Y;Z;. Now

adi A B adq B adq
(adr A, (p — a)d2 A) (ady, (p — a)ds) (a,do)(p — a,dy)
_ aX1Z1 S N,

2

Similarly aX»75/X; < N whence o?Z,Z5 < N2. Since a > p/2 > N/V/2
this implies Z; = Z3 = 1. This proves our first assertion; the remaining
statements follow similarly or are trivial.

LEMMA 2.4. Let rp(a) = s > 2 and let ad; A, (p—a)d;A (i =1,...,s) be
elements of A with (dy,...,ds) =1. Then for all1 <i<s, d;|a(p — ).

Proof. The case s = 2 is a consequence of Lemma 2.3. Suppose ¢’ || d;
where ¢ is a prime and ¢ > 1. There exists 1 < j < s with (d;,q) = 1. We
argue with the elements

adfAB, (p—a)d;AB, oadiAB, (p—a)diAB,
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where B = (d;,d;) and d} = d;/B, d; = d;/B. The proof of Lemma 2.3
shows d} | a(p—a). Clearly ¢" || d} as (B,q) = (d;,q) = 1. Hence ¢* | a(p—a).
Since this holds for all d; and all primes ¢ the lemma is proved.
Define the set S C N? by
S = {(d1,d2) : ged(dy,d2) =1, Ip € 2N —2G(N),2N — G(N)],ac € J,,
such that for some integer A, ad;A, (p — a)d;A € A (i=1,2)}.
Let D be the least integer with the property
SN[t D)?=S.
Let (dy,d2) € S and p, «, A have their natural meanings. Suppose d; < ds.
Then, by Lemma 2.3, dy < d;N?/(a(p — «)). Also dids | a(p — ). So
didaN?

d2
‘Talp-a)

< N2,

IN

It follows that D < N.
For n € [N —2G(N), N], let

]CD(TL) = |{()\,X1,X2) n=AX1Xo, 1< X1 <Xo<D, XQ/Xl < N/n}|

We will now obtain a bound for r,(a) in terms of kp(«) and kp(p — ).
This will enable us later to obtain upper bounds for the average value of

rp(a).

LEMMA 2.5. With the above notations, for all primes p € 2N —2G(N),

2N — G(N)] and o € Jp,
rp(a) < (kp(a) +1)(kp(p — a) +1).

Proof. Suppose r,(a) = s and that ad;A, (p — a)d;A (i = 1,...,s)
are elements of A with (dy,...,ds) = 1. From Lemma 2.4 we may write
d; = u;v;, where u; = (d;, @) and v; = (d;,p — ). We split the s integers
d; into k sets T; (j = 1,...,k) such that if d;, d,,, € T} then u; = u,, and if
d €T, dp, € Ty (j < w) then u; < up,. It is of course permissible for the
T}’s to be singletons.

Consider a generic set T;. Suppose T; = {dj1,...,d;,}, where d;; <
oo <djg. If 2 <y <z, we may write

Vi1 Uy
U1, V) (Vj1, Vjy)
for some integer pi. Appealing to Lemma 2.3 we see that vj, /vj1 < N/(p—«)
and we also know that v, /(v;1,v,) < D so that the above would be one
of the solutions counted in kp(p — ). Thus 2 — 1 < kp(p — ) or |T;| <
kp(p — ) + 1.

It remains to show that the number k of sets T} is less than kp(«) + 1.
For this, we choose a representative from each set 7). Since now the “u

p—a=p
(
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values” are distinct the earlier argument gives us solutions to a = A X7 Xs.
The proof follows at once.

We now state a version of the Brun-Titchmarsh theorem (due to Mont-
gomery and Vaughan) which will be used in Section 5.

LEMMA 2.6. Let x,y be positive real numbers and let k, | be coprime
integers. Let m(x;k,l) be the number of primes p < z with p =1 (mod k).
Then, if y > k,

) %
m(x+y; k1) —w(x; k1) < ¢ (k) log(y/k)

Proof. This is Theorem 2 of Montgomery and Vaughan [6].

Finally, we recall some elementary inequalities which will prove useful
later.

LEMMA 2.7. Let 2 <y < x be real numbers. Then

and

1<n<z
Let A(n) denote, as usual, the von Mangoldt function and let ¥(t) =
> o<t Aln). If t > 100, then

t

<11 <11 .
P(t) <11t and =w(t) < o1

Finally, +f y > 1000,

1 ¢odt dt
- = ftﬁft:bg[w].
y<n<z n y<n<z n—1 [y [y]
Similarly,
L 1 "t e(l2] + 1)
=1 —>1 B | ATy
)IEEIEED SIEEIEES'S ftog(z)
n<z 2<n<z 2<n<z n

The inequalities for ¢(t) and 7(t) follow from Theorem 6 of Rosser and
Schoenfeld [8].
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From the definition of the von Mangoldt function, we see that logn =

de A(d). Now
log([z Z logn = Z ZA Z A(d) [[‘Z]] < [x]z/lild)

z] dn d<[z] dsz
Also,
log(lz]) = Y logn> Y f logtdt = [x]log[z] — [z] + 1
2<n<|z] 2<n<z] n
and so
ZM Z]og[:c]—l-l—iZlng_l'
o n [z]
Next,
n| = n
n<[y] n<[yl
Again
n+1
log Z logn < Z f logtdt = ” log[y + 1] - [y]
n<fy] n
and so
A 1
Zﬂ <Y ey 1= WP ey 010,
n Y Yy Yy

ny
since y > 1000 and 9 (y) < 1.1y. Thus

A
3 AW S 10e® 112,
n y

y<n<xz
Observe that

ALy e,y g, Ly e

y<n<z y<p<z p,m>2 y<p<x p,m>2
y<p" <z p™>100

An easy calculation shows that

S BP0,

p,m=>2
p™>1000

Thus

1
logz Y =~ >log® —112-0.08=log> —12.
y<p<w Y y
The proof follows at once.
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LEMMA 2.8. Let 1|6 and x, y be real numbers with 1000 <y < z. Let

e pn)?
C_;neb(n) =1.94...

Let h(1) =1 and for 1 > 1 let h(l) = TT,,(p — 1)?/ (> —p +1). Then

V)

and

1 (z —y + ¢(1) log(ex/1))
> ) < Ch(l) ; .

Proof. Observe that n/¢(n) =3y, u(d)?/¢(d) and so, using Lemma
2.7,

Ly Iy P sl
2 ¢(n) 2 nzqﬁ(d) 2 n

n<z n<x d|n d<z ¢(d) n<z,d|n
(n,0l)=1 (n,)=1 (d,))=1 (n,)=1
-1
S f1(d)? 1 f1(d)? Sy 1
d<z ¢(d) n<z/d n d<z d(b(d) k<z/dl r=1 k4
(d,1)=1 (n,)=1 (d,)=1 rl)=1
w(d? o) ex _ o) er ~—~ pld)?
< ¥ B 0g 2 < Bl 1og
= do(d) l [ l l = do(d)
(d,l)=1 (d,l)=1
(1) e 1 -t
log— |C 1
=7 (e )L+ 55—
pll
coTr p=D* | e
- p?P—p+1 l
pll
Similarly, using the result just proved,
1 w(d)? 1
> S X > a
y<n<z (;S(n) d<z d¢(d) y/d<n<z/d "
(n,1)=1 (d,l)=1 (n,l)=1
p(d)?® d
< > S D
d<z d¢(d) y y/d<n<z/d

(d,h)=1 (n,1)=1
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pld? d(o) z-y
P> w1 o)
(d,1)=1

LD poy s pd? 6 ]
Sy Zde(d) Ty = 4(d)
(d D=1 (d, ) 1

(z —y+ o) log(ex/l))
<CHp _p+1- ; .

3. Graham’s conjecture for N < 2.22-10!?

LEMMA 3.1. If N > 10 and 2N > p > 2N — 2¢/N then rp(a) < 2 for
all o € Jp.

Proof. Suppose rp(a) > 3. Then there exist di,ds,ds, A with d; < dy
< ds and (di,ds,ds) = 1 such that ad; A, (p — a)d;A € A. By Lemma 2.4
we may write d; = X,;Y;, where X; = (d;, o), Y; = (d;, p — «).
By Lemma 2.3,
N_amin< X1 X2 > S ‘Xl—ng
N (X1,X2)" (X1,X2)) = (X1,X2)

Since X1 and X2 divide (e XlXQ/(Xl,X2)2 ‘ « and so X1X2/<X1,X2>2 S
a < N. Thus

X, Xo |P_(N-aP XX, _(N-a)P
(X1,X2) (X1, X2)| = N?Z (X1, X2)2 — N .
It follows that
X3 Xo
= = 1
(—X17—X2) (XlaXQ)
and similarly that
X4 X3 _1

(X1,X3) (X1, Xs)
Hence (X1, X5) = (X1, X3) = ((X1,X2), (X1, X3)) = (X1, X3, X3) =1 and
so X1 =X9=X3=1.
Since d; < do < d3 we must have Y7 < Y5 < Y3. By Lemma 2.3,
N+a-—p < Y Y >>Y2—Y1
p—« (Y1,Y2)” (Y1,Y2) ) = (Y1,Y2)’

Since Y; and Ys divide p — a, Y1Y2/(Y1,Y2)? |p — a and so Y1Ys/(Y1, Ys)?
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<p—a. Hence
1Yo
—a> o
P = v)?
(p—a)(Yo — Y1) <Y2—Y1 (p—a)(Yo — Y1) >
T (N+a-p)(11,Y2)\(Y1,Y2)  (N+a-—p)(1,Y3)
(P-a)NY2—Y1)? p-a (Y2—-Y1)?
- (N + « —p)2(Y1,Y2)2 4 (Y17Y2)2
and so Y2 = Y] + (Y1,Y3). Arguing similarly we obtain
Ys =Y+ (Y1,Y3), Y3=Yo+ (Y2, Y3)

so that (Y7,Y3) = (Y1, Y2) + (Y2,Y3). Further (again from Lemma 2.3),

Y: > <Y1,y3)]\f+70f_p,
Ys =Y+ (Y1,Y3) > (Yl,Y?))L
N+a-p
and
Yo = Yi — (Yo, V) > (Y1, Vs)— 0 — (Vs Y3).
N+a-—p

Since Y7, Yo, Y3 are divisors of p — « we see, by using the above inequalities,
that

Y1Y2Y3
p—a>lem[Yr,Ys, V3] = V1.7 (1. Y3) (V2. 73)
s _Pp-a ( (Y1,Y5)N B ) N ' (Y1,Y3)
" N—p+a\(Ys,Y3)(N —p+a) N-p+a (Y1,Ys)
Consequently,

4> (N—p+a)® ( (Y1, Y3) N B )(YhY?,)
- N (2, Y3)(N —p+a) (Y1,Y2)
If we put x = (Y2,Y3)/(Ys,Y1) € (0,1) then we must have 4(1 — z) >

(VN /(22)) —1 or 2z(5—4x) > v/N. This is false since 2z(5 —4x) < 25/8 <
V10.

LEMMA 3.2. Theorem 1.1 holds in the range 7000 < N < 2.22-10'2.

Proof. An inspection of the table on page 85 of [7] reveals the existence
of a prime in the interval (z,z + /z/(1 + v/2)) for 6900 < x < 4.44 - 102,
Thus for our range of N we can find p in [2N — v/N,2N — VN /(1 + \/2)]
with m(N) — m(p — N) > 1. Thus from Section 2 there exists o € J,, with
rp(a) > 2.

From Lemma 2.3 it follows that either X; X5 > a?/(N — «)? or V7Y, >
(p—a)?/(N+a—p)?, where X;,Y; have their usual meanings. Since X1 X3 |«
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and 1Y | (p—a) we must have either & < (N —a)? or p—a < (N+a—p)?.
Neither of the above can hold. This completes the proof.

LEMMA 3.3. If for any 7 = 0,1,2 or 3 there exists a prime p in [2N —
(j+1)N,2N — \/jN] such that 7(N) —w(p — N —1) > r + 1, where
r={n:n=AYY +1),1<A<j51<Y,p—N<n<(p+1)/2},
then Theorem 1.1 holds for this value of N. Consequently, Theorem 1.1 is
valid in the range 10 < N < 7000 with the possible exceptions N = 27, 65.

Proof. Suppose p € 2N — +/(j +1)N,2N —/jN| and « € J,, is such
that 7,(«) > 2. Then arguing as in Lemma 3.2 we see that p—a = AY (Y +1)
for some 1 < XA < j and Y an integer. Thus the number of integers o with
rp(a) > 2 is at most r. On the other hand, from Lemmata 2.1 and 2.2,

> ple) =) za(N)—m(p—N-1)=r+1.

aed,
rp(a) 22
By Lemma 3.1,
Y (ple)-1= > 1
aed, aedy,
rp(a) 22 rp(a)=2

This is a contradiction. An easy computer calculation verifies the truth of
our second assertion.

LEMMA 3.4. Theorem 1.1 holds for N =5, 6, 7, 8 and 9.

Proof. By Lemma 2.2 we may assume that all elements of A are
composed of the primes 2 and 3. If 273 € A then since there exists
a € A with (a,2) = 1 it follows that 0 < j < log N/log2 and similarly
0 <k <logN/log3.

Thus if N =5,6 or 7 then A C {1,2,3,4,6,12}. Clearly at most one of
1 and 12 can be in A. This establishes the cases N = 6,7. If N =5 then
observe that 1 € A implies 6,12 ¢ A and 12 € A implies 1,2 ¢ A. Thus
neither 1 nor 12 can be in A, which is also a contradiction.

If N =8 then A C{1,2,3,4,6,8,12,24}. Since at most one of 1 and 24
can be in A, Theorem 1.1 holds in this case.

Finally, if N =9 then A C {1,2,3,4,6,8,9,12,18,24,36,72} = D, say.
Let j denote the least element of A. Clearly, no integer exceeding 105 can
be in A. Thus the set

{1,...,j—1}U(Dn{n:neN, n>10j})

is disjoint from A. If j < 4, it is easily verified that j—1+|DN{n > 10j}| > 4
and so |A| < |D| —4 < 8, which is a contradiction. Thus j > 5 and once
again |A| < |D| — 4 < 8, which is impossible. The lemma follows.
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LEMMA 3.5. Theorem 1.1 holds for the cases N = 27, 65.

Proof. Suppose N = 27. We argue with the prime p = 43. Suppose
a € [22,27] is such that r,(«) > 2. Then we have elements ad; A, (p—a)d; A,
. = 1,2 (dl,dg) =1,dy < dy. We may write d; = X;Y;, where X; =
(di,a) and Y; = (d;,p — «). It may easily be verified from the inequality
min(X1, X2) > a|X1 — Xo|/(N — a) that X; = X5 = 1. The corresponding
inequality for Y; shows that Yo = Y7 4+ 1 and that (p —a)/(Y1(Y1 +1)) < 4.
Thus the only possibilities for a are 23 and 25. It can be easily verified that
rp(a) < 2 for these values of a. On the other hand,

> (rpla) = 1) = w(27) — w(15) = 3.

rp(a)>2

A contradiction ensues.

Suppose N = 65. We argue with p = 113. Suppose « € [57,65] is
such that r,(«) > 2. The preceding arguments would show that the only
possibilities are o = 57, 65. In both these cases it is easily seen that r,(a) <
2. However,

> (rpla) —1) = (65) — m(48) = 3.
Tp(a)>2
This contradiction completes the proof.

Lemmata 3.2 through 3.5 prove Theorem 1.1 for all 5 < N < 2.22-10'2.
Henceforth we will assume that N > 2.22 - 10'2.

4. Lower bounds for the average value of r,(«)— 1. In this section
we are interested in obtaining lower bounds for the sum

> Y (rpla) = 1).

pE[2N—2G(N)2N—G(N)] a€J,
rp(a)>2

From Lemma 2.1 we know that this is

S D o

pE[2N—2G(N)2N—-G(N)] a€l,
rp(a)=0

Further, from Lemma 2.2 we concluded that if a(p — «) contains a prime
factor > N/2 then r,(a) = 0. We now extend Lemma 2.2 to show that
rp(a) = 0 if a(p — @) contains a prime factor > (N + G(N))/D'/? (recall
that D was defined in the paragraph following Lemma 2.4). We also recall
that D < N.

Throughout the rest of the paper G(N) will satisfy the bound (5V)2/3 <
G(N) < N/1000. Our choice of G(N) (in §6) will be consistent with this
assumption.
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LEMMA 4.1. Suppose P is not empty. There is a prime p € P and
an integer o € J,, such that each prime q dividing an element of A, with
q not dividing a(p — a), satisfies ¢ < (N + G(N))/D/3. Consequently,
with the possible exception of at most two primes, no prime q greater than
(N + G(N))/D'Y3 can divide an element of A.

Proof. From the definition of D, there exist integers d; < do = D with
(dy,d2) =1, a prime p in P, an integer o € J,, and an integer A with
ad;A,(p—a)d;Ac A (i=1,2).
From Lemma 2.3 we may write d; = X;Y;, where X; = («,d;) and Y; =
(p — a, d;). We also know that dyds | a(p — «) and dy > a(p — a)D/N?2.
Let gfa(p — @) be a prime > N(1 + G(N)/N)/D'/3. We will first
establish that ¢ A. Then, arguing with the reciprocal set A* we will obtain
the lemma.

Suppose ¢q| A. Clearly there exists a € A with ¢ta. Put G = (a, A) and
let

a a a a
Bi=(=,X B,=(=,X By = | =,Y; B,=|=,Y .
1 <G7 1>7 2 <G7 2>7 3 <G7 1)7 4 <G7 2>
Let B =[], B;. Finally, let
a « a p—a
F=——,— F3=(—
! (BG’X2>’ ’ (BG’ Y, )
a « a p—a
F=—,— Fi=—,—
2 (BG7X1>) 4 (BGv le )
and put F' =[], F;.
Observe that GBlem[F}, Fy, F3, Fy]| a and so

a Z GB lcm[Fl, Fg, F3, F4] = BG[Fl, FQHFg, F4]

B BGF S BGFX1XoY1Ys  BGFdydy
(F1, F2)(F3, Fy) = a(p—a) alp—a)
Note that N > ad1A/(a,ad; A) and N > a/(a,ad;A). So
a adiA
(a,adr A) > max(N, ]\1[ )
Now, since («, By) =1,
a a a «
AH=ac2 — GB1Bs[ =~ a) =GB B3 By | —., >
(a,ady A) G<G,ad1> GB, 3<G313370é> GB1B; 2<BG’X2>

— GB,ByBsF,.
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Similarly,
do A
a —a)diA
GB1B3ByF3 = (a,(p — a)d14) > maX<N, (pN)l)
and
GB2B3ByFy = (a,(p — a)d2A) > max(Xr, (p—;)dy‘l)'

Taking the product of these four inequalities, we obtain

G () L AL
- N )

N4
Lo (alp—)didy)*/248
- N N3
S GBF(a(p — a))Y/?(d1dy)?/? A3

N4
Hence G2A™3B?(dyd2)™2 > (a(p — @) /?(d1da)/?N—*. Since q| A but
q1G, G/A < g '. Also B < dyds. Thus

g > (a(p - @)/ (dids) PN,

Since dy = D and d; > a(p — a)d2/N? = a(p — a)D/N? by Lemma 2.3, we

see that
_ D?a(p — «
™ 2 (alp - )2 o=

1/2
NE ) N*=a(p—a)DN®

> N(p— N)DN~® > (N —2G(N))DN~*.
So
N4 GN)\ !
3 < < 3 -1 i —
T Tel 1)) B G 2N>
whence

G(N)
N

since G(N)/N < 1073. This is a contradiction.

Suppose q|a € A. Let M =lcmlay,...,an]. Then ¢| M. Also adi A| M
and adeA|M and so adideA|M and similarly (p — a)didsA| M. So
a(p — a)dyda A | M. Thus the elements of A* corresponding to ad; A, ads A,
(p— a)di A, (p — a)daA are of the form (p — a)da A*, (p — a)d1 A*, ada A™,
ady A* (respectively), where ¢ | A*. Our earlier argument again yields a con-
tradiction. This completes the proof of our first assertion.

1/3
¢ < NDY/3 <1 —2 ) < (N4 G(N))D™Y3,
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Since D < N, (N + G(N))/D'3 > N?/3 and so a(p — a) (< N?) can
have at most two prime divisors greater than (N + G(N))/D'/3. Clearly
these are the only possible exceptional primes which might divide elements
of A. The second assertion follows.

Let 6 be such that
0G(N)
log N

(i) (2N — G(N)) —n(2N — 2G(N)) >
and, for any y > G(N), if N/G(N) > r > 1, then

o))

We assume that G(N) is such that 6 exceeds 1/4: this assumption will be
vindicated by our choice of G(IV) in Section 6.

LEMMA 4.2. Let p be any element of P and suppose
D < ((N+G(N))/G(N))*.

Then
6(2N — p) 3
— > — -7 . .
aeEJ (rp(a) —1) > 6log NV log(0.94(e/2)° D)
Tp(a)§2

If D> ((N+G(N))/G(N))3, then

1 2N —p . ((0.94¢)’ (N +G(N)\'™" |5
> > 1 DY/3),
= (rpl) = 1) = 2 logN 0g( e2:320 G(N)

Tp(a)§2

Consequently,

6 PilogD
rpla) —1) > = —————,
%j)a;p(p() )25 g

Tp () >2
where Py =3 p(2N —p).

Proof. From Lemma 2.1 we see that

Y. D (me-n=) > L

P a€ed, P a€ed,
rp(0)>2 rp(a)=0
From Lemma 4.1, r,(a) = 0 if o contains a prime factor greater than (N +
G(N))/D/3 (unless the prime divisor happened to be one of the two possible
exceptions). Further, since D < N, (N +G(N))/D3 > N?/3 and so a can
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have at most one prime divisor greater than (N + G(N))/D'/3. Thus

G(N)D'/3
1> _o( MU .
2 1= > > 2( N1
a€ldy ¢>(N+G(N))/D'/3 a€dy
rp()=0 gla

The second term in the right hand side is a consequence of the two possi-
ble exceptional primes which, clearly, can divide at most 1 + G(N)D'/3/N
elements of J,,.

Also by Lemma 4.1, 7p(a) = 0 if p — a contains a prime factor greater
than (N + G(NV))/D'/3 (again with two possible exceptional primes). Ar-
guing as above we see that

G(N)D/3
1> -2 —2LF— +1).
> 12 ) 2 ( N
a€gd, ¢>(N+G(N))/D/3 a€Jy
rp()=0 glp—o

From these two inequalities we deduce that

1 G(N)D'/?
Yoy Yy ()
aedy ¢>(N+G(N))/D1/3 a€[p—N,N]

p () =0 qla

Since D < N, N > 10'2 and G(N) > (5N)?/3 we see that
G(N)D'/? G(N) (2logN = 2logN
2l ——+1) <
N logN \ N2/3 ~ (5N)2/3

_GO) 24log10 (| 1Y | ,G(V)
log N 108 52/3 log N

Suppose D < (N + G(N))3/G(N)3. If a € [p— N, N] has a prime
divisor larger than (N + G(N))/D'/3, then we may write a = gr, where
r < DY3a/(N + G(N)) and ¢ is prime. Thus

2 >, 1z 2. >, !

q>(N+G(N))/D/3 aE[pTNJV] r<D'/3(N—=2G(N))/(N+G(N)) (p=N)/r<q<N/r
qla
N p—N
> [
= 2 G)-(5)
r<0.99D1/3

Since N — (p — N) =2N —p > G(N), we see that

€)==
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Hence, using Lemma 2.7 and since 6 > 1/4,

1 02N —p) 1 G(N)D'/3
> . 5 - P S
Z = 2 log N Z r 2( N 1

acdy r<0.99D1/3
rp(a)=0
0(2N —p) 3 _¢G(N)
> g 108(0:95(e/2)° D) — 10702
0(2N —p) 3 —6
0(2N —p) 3

We now turn to the case D > (N + G(N))?/G(N)3. Clearly,

2 2. 1

¢>(N+G(N))/D1/3 a&[p—N,N]

qla
- > Y vy > o
GV a€lp NN] - GN)20>(N-+G(N))/DY/? lp- NN
ql& q|lo

By the result just proved, the first sum on the right hand side is

9(2N — p) 0.95(e/2)3(N + G(N))3
= Glog N 10g< G(N)3 )

As for the second sum, using Lemma 2.7, we see that

2. 2. !

G(N)2¢>(N+G(N))/D/3 aG[PTNJV]
qla

- 2 <2Nq_p - 1)

G(N)>q>(N+G(N))/D/3

1
> (2N —p) > ~ — 7(G(N))
G(N)2g>(N+G(N))/D1/3
_ 1/3 _
> 2V —p log GN)D ™= _ 1. 2N—p _ 1.1 _GWV)
logG(N) = N+ G(N) log G(N) log G(N)
2N — 1/3
- P (1og GIN)D™™ .Y
log N N + G(N)

Since 0 > 1/4,
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2N—p10g<(0.95e)9<N+G(N)>9 G(N) )D1/3>

g
—
v
DN | =

5 " log N 2320 G(N) N +G(N
rp(a)=0 G(N
19-6 GWY)
log N
S L 2N —p) ((0040)° (N + GIN)\™™ s
2 logN e2:320 G(N)

Our last assertion is a trivial consequence of the above inequalities in
the range D < (N + G(N))3/G(N)3. In the range (N + G(N))?/G(N)?
D < (N + G(N))*/G(N)* we note that from the preceding paragraph it is
immediate that

Z > 6(2N — p) 10g<0.94(e/2)3(N + G(N))3>

3
oyl 6log N G(N)
O N logD _ 0 log D
2N —p) 3
5 0CN —p) 3logD 0,y loeD.
6log N 4 8 log N

summing over p our assertion follows in this case. Lastly, if D > (N +
G(N))*/G(N)* then, using N/G(N) > 1000 > %9,

_ 0 0—1
Z 1> 2N —p log (0.94e)” (N + G(N) D3
2log N e2-320 G(N)

aed,
rp(a)=0 s
_ 0
> 2N —p o (0.94e) Do/ N+ G(N)
2log N e2:320 G(N)
0 log D
> —(2N — ;

summing over p we obtain the desired conclusion. The proof is complete.

5. Upper bounds for the average value of r,(«) — 1. We recall
that, as stated in the preceding section, G(N) satisfies the bounds (5V)2/3 <
G(N) < N/1000.

From Lemma 2.5 we see that

> > (rple) = 1)

pE[2N—2G(N),2N—G(N)] a€ld,
rp(a)>2

<> Y (kp(@) + kp(p — @) + kp(@)kp(p — @)

p a€&d,

=5 Y kp@+ Y kp(@kn(p - ).

P a€[p—N,N] p a€eld,
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LEMMA 5.1. Let T = max(N,N?/D?). Let 1|6 and z € [N — 2G(N),
N — G(N)]. Then

> kp(a)
]

a€lz,N
1.01 / ¢(1)\° (N — z)2 3(N — z)?
S4<l> N <log AT +l>

(e,l)=1
N —x)? o(l 1.02(50 + 2)p()®  1.05(71 + 2)p(1)3

_l’_

In particular, for any p € P,

Z kp(a) < (2N — p)G(N) log<4OG;N)2>.

2N
a€[p—N,N]
Also,
1.01 G(N)?2  3G(N)? G(N)?
< : 1 Sl
2. ko)< e T les T H 051

a€[N—-G(N),N]
(a,6)=1

Proof. Clearly if « = N then kp(a) = 0. So we may suppose that
a < N. Observe that if @« = AX;X> is a solution counted in kp(«) then,
since X7 < X2 < X1N/a,
o

C X x> x2S
by A2 =2y

whence Xo < /N/A. Similarly,
« N
—=X1 X2 < X7—
A 142 =417,

whence X; > a/VNX > z/vV/NA. Since X;,Xs < D, clearly A
(N — 2G(N))/D?* > 0.99N/D?. Also, trivially, A > 1 and so A
0.99 max(N/D? 1) = 0.99T/N. Note that

N _ X, Xo— X3 1

A W i

a X3 + X, = X,
whence X7 > a/(N —«). Hence a > AX1(X; +1) > AaN/(N — a)? and so
A< (N —a)?/N < (N —=x)2?/N. Finally, Xo = a/(AX1) and so

VIV

x
Xo > X 1, — .
g_max( 1+’)\X1>
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Thus

> kpla)

a€lz,N]
(a,l)=1

S > > L

0.99T/N<A<4G(N)?/N 3 //NA<X; < N/A 1 max(X1+1,2/(AX1)<X2<y/N/X
(Ah=1 (X1,0)= (X2,0)=1

Suppose A > 1.01(N — )2 /(4N). We claim that there is at most one choice
for X; and X,. The interval [z/v/N), /N/)] can contain at most three
integers, say @ — 1, @ and a + 1. If X; and X, differ by more than 1 we
would obtain a contradiction to N/a > X5/X; > 14 (2/X1). Thus there
are at most two possibilities: X1 =a—1, Xo =a and X; =a, Xo =a+ 1.
Since A(a(a+1) —a(a—1)) = 2Xa > N —x at most one of these possibilities
can occur. Hence X; and X5 have at most one choice. Hence

P DD D

0.99T/N<A(N—-=z)2/N X,

(AXng,l) 1
3N —=)* ¢(l)
< .
< > > Z Lt = T+ o)
0.99T/N<A<(N—z)2/(4N) X1
()\Xng,l) 1
N x (1)
< 2 2 (Rl an )5 o)
0.99T /N < X1
A<(N—2)%/(aN) AX1,D)=1
n 3.1¢(1) (V- r)?
41 N '
Now,

£ (5]-x)

VT /A<X1<A/N/A—1

(X1.0)=1
C s (D))

Wa/v NIk B
K<[VN/(vN) BD=

(V7] )

k

<eo(5 -5 -3 6a 25 )
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_ ¢(l><x/ﬁ—\/a?+l>2_ ¢<Z><( N—xmﬂf

20\ W ~ A \(WN+yz
-S(V3 5w )
(V5] VR R (- ) )
(VA0 )
=S ( (- )
<5
= (G-

Using these estimates, we see that

3.1¢(l) (N —z)?
ae[;mkl)(a)_ 4 N

(e,l)=1

1.01 ¢(l))2<Nz ><Nm )
= 2 ( < +1)| ——= +31+2
0.99T /N<AL(N—z)?/(4N) 2 l 2VNA VN
\D)=1

+ 1.01(1)(5)2 <;V\/;V;; + l>>
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_ 3 1.01<¢(l))2<N—x+l><N_x
- 2
0.99T/N<A<(N—2)2/(4N) ! 2v/NX VN
(AD=1
Clearly,
3 1
A
0.99T/N<A<(N—z)2/(4N)
ND)=

) <o)+ > %

[4+0.99T /N<AL(N—2)?/N
D=1

< o(l) + >
LHOSOT/UNISKSIN-2)2/ IN)]

§¢(l)+¢§” >

+5l+2>.

23

: 1
D Wi

B=1
ﬂ?l):

[

k

140997/ (IN)] <k<[(N—z)2 /(4IN)]

< ¢§l) <log 3(N4; z)’ + l>.

Similarly, we deduce that

3 Lo+ 20 N2

0.99T/N<A<(N—x)?/(4N)

)

Since G(N)/\/N > 100 and ! < 6, we see that

> kpla)

aElz,N]
(a,l)=1

S B0 (N —2)* | 101 (¢51)> (N — z)? (log 3(N — z)?

- AN 4
N 1.01(Zl+2) <¢§l)) (N\/—Nx) (N — +l>
. 1.01(521 +2) ¢§l2)3 ((NZ;V%')Z " l>

< 10 <¢§z))3(N — )’ <10g 3N —2)? | l)

N 4T
+

AN l + 212 + 13

This proves our first assertion.

(N - z)? <3.1¢(z) 1.02(50 + 2)¢(1)>  1.05(71 +

2L
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The other two statements may be proved in much the same way. We
only need to make minor modifications to obtain the improved constants.
These changes are obvious when dealing with the sum aclp—nN,N] kD (@)
and since there is no need to split the various sums into blocks of length [ we
obtain better constants. For the final sum we argue a bit more carefully. If
X, and X5 are coprime to 6 then they must differ at least by 2. This gives
us the improved bound for A: A < G(N)?/(4N). Also if A > G(N)?/(25N),
the interval [(N —G(N))/V/NX, /N/)] has at most six integers and at most
two of these can be coprime to 6. Thus if A > G(N)?/(25N) then X; and
X5 have at most one choice. This additional information leads to the better
constant in this case.

LEMMA 5.2. Let « € [N — G(N), N] and put o/ = («,6). Then

> kp(p—a) < 2.01C’2h(a’)2G(JJ\>7) log(4log G(N))L(c/),

2N —2G(N)<p
p<min(2a,2N—G(N))

where
log(eN/(2a'G(N)))  log(TN/G(N)
log(3.9G(N)3/N?) log(4log G(N))

10¢(a’)N 'logQ(\/G(N)/lo)
G(N)3/210g99 log(4log G(N))

L(a!) =1+ 1.03¢(c’)

N 0.3 . 100 +1 N
log(4log G(N)) 8 o’G(N)
/N / 2N2
413 a +23 (')

G(N)3/2log(4log G(N)) G(N)3log(4log G(N))"

Proof. Suppose, first, that D < \/G(N)/10. If p — a = puY1Ys is a
solution counted in kp(p — ) then we must have Y7 and Y3 less than D and

N N
Y <Ys <Y, <Y, <Y, .
s s T SN (N —a © N —2G(V)

If the interval [Y7 + 1,Y1N/(p — «)] is to contain an integer then
YiN/(p—a)—Y; > 1 and so

p—a p—N _ N—-2G(N) _ 099N
Yi > > > > :
N-pta~=2N-p= 2G(N) = 2G(N)
Also, clearly, u = (p — a)/(Y1Y2) satisfies

9N — 2G(N) — 9N — G(N) - a
S s :
Y1Y2 Y1Y2
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Thus
> kplp—a)s ) > > )
p D>Y; YiN/(N—2G(N))>Ys (2N—G(N)—a)/(Y1Y2)>p
Y12049N/G(N) Ys>Y, ME(QN—QG(N)—O{)/(Y&YQ)

where the * in the third sum indicates that o + uY1Y5 is to be prime.

If (o, uY1) > 1 then the inner sum is 0. If («a,puY7) = 1 then, by the
Brun-Titchmarsh theorem (our Lemma 2.6), the inner sum is bounded
by

2G(N) GIN)\ ' 2G(N) 0.99G(N)\ !
qs(/m)(log m) §¢<u>¢<m<k’g V7 )

(since @(uY1) > ¢(p)p(Y1)). Hence, using Lemma 2.8,

1 0.99G(N)\ 1
Zp:;@(p_a) < 2G(N) ; <Z>(Y1)(10g Y2 > Z (Ys)

Y>
(Y1,0/)=1 (Y2,a')=1
1 0.99G(N) ) “Lona)

< 2G(N lo
< 26(N) ; ¢(Y1)<g vy Y

(Yha/):l

2G(N)Y1 ’ 101€Y1
(N—2G(N) +ola))log —5— ).

Now,

0.49N/G(N)<Y1<D

(Yl,oc,):l
1 0990(N)>‘1 pu(d)?
= — | log
> (et 2o
(Y1,a/)=1
u(d)? 1 0.99G(N)\ !
2w 2 Bz )
d<D 0.49N/(dG(N))<y<D/d
(d,a’)=1 (y,a)=1

Since G(N)/D? > 100, we see that

1 0.99G(N)\ "
Z — | log 272
0.49N/(dG(N))<y<D/d 7 yd
. <y<D/d
(y,)=1
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3 L (10, 099G(N) !
g\ BT R

y<D/d

(y,a')=1

o) 1( 0.99G(N)\ !

= + Y (s

log 99 a,<ySD/dy y2d
(y,a")=1

Next,

1 0.99G(N)\ !
Z & log y2d?
o' <y<D/d
(y,)=1

‘1 0.99G(N) \ !
SIED DR i s
ko! + 1 (ka/ +1)2d2

D/(a'd)>k>1 (l,la:’)0=1
o(a) 1( 0.99G(N) \ '
= > s g
o k<D ord) k (k4 1)%2(a’d)
o)) Ba) 1 3.96G(N)\ "
Z1oe 22T
~ a’log25 + o Z K\ %8 9(a’dk)?

2<k<D/(a’d)

(since (k + 1)% < 9%k2/4 when k > 2). Since log(0.44G(N)/(c/dk)?)/k is a
decreasing function of k in the range 2 < k < D/(d/d), it follows that

> 4 (uste0y”

2<k<D/(a'd)

1 ; VOAAG(NY\ tat
<= [ (log ¥———
2 a'td t

2<k<D/(a'd) k—1

0.44G(N)\ 'dt
log o'td t

D/(c'd)

IA
b =
—

O.44G(N)] D/l )

1
< iloglog VG(N).

Piecing these observations together (and since o < 6) we deduce that
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Z (b(;l) <10g 0.99122(N)>1

0.49N/G(N)<Y1 <D
(Yl ,Oé’):l

LD S L )

! = do(d) \ log 99 10g25
(d,a')=1
1 ¢(@) <« pld)?
< .
Sy w2 d¢(d)log(4logG(N))
(d,a')=1
Ch(a’)

= log(4log G(N)).

ZkDp @) 201(;; i C%h2 (/) log(4log G(N))

+2G(N)p(a/)Ch(a)

1 1.01eY; ( 0.99G(N) > -1
X lo lo .
D R G

(Yl,a/)zl

Let

A= 3 ok

0.49N/G(N)<Y:i <t
(Yl,o/)zl
Then A(0.49N/G(N)) = 0 and, by Lemma 2.8, A(t) < Ch(a/)logt. Clearly,
3 L, L0LeYy () 0.99G(N) -1
Yi¢(Y1) T s vy

Y1

(Y1,0")=1
? log(1.01et/a’)
= 1l S dA(t)
049N GV tlog(0.99G(N)/t2)
§ VGjV)/m log(1L01et/a!)
- tlog(0.99G(N)/t2) '

0.49N/G(N)

Integrating by parts (and since A(0.49N/G(N)) = 0), we obtain
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\/?/10 log(1.0let/a)
0.49N/G(N) tlog(0.99G(N)/1?)
0 1 1.016\/G(N)A<\/Cf(()N)>

= 0
VG(N)log99 & 100/

dA(t)

VG(N)/10 | ) ,
_ og(1.0let/a’)
O.49N/fG(N) A®) <tlog(0.99G(N) /tz)) dt
10Ch(a) GO\?
< Jamn (=3 )
B @/10 A(t)( log(1.01et/a’) )/dt
0.49N)G(N) t1og(0.99G(N)/t?) '

Since

Ly, L0tet (\ 0.99G(N) Y
t BT T

is negative in the range 2 <t < /G(INV)/10, we deduce that

VG(N)/10 1 / /
og(1.01let/a’)
- f A(t)<tlog(0.99G(N)/t2)> «

0.49N/G(N)
VG(N)/10

< —Ch(a') f logt< log(1.0let/a’) )>/dt.

2
049N G(Y) t1log(0.99G(N)/t

Note that, since N/G(N) > 1000,
[ log(1.01et/a') '
t1log(0.99G(N)/t?)

1 log(1.01et/a’)
Tt <tlog(0.99G(N) /t2)>

(1@ (4, L0Let - 1
Lote \ 8 & 10g(0.99G(N)/12)

v

1 log(1.01let/a’)
t (tlog(0.99G(N) /t2)>

)
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o 1
x|1—- -
1.01elog(500e/a’)  log 99

0.4 log(1.01et/a)
=7 <t log(0.99G (N)/£2) )

Hence

B @“0 logt< log(1.01et/a) >’dt
2
049N G(N) tlog(0.99G(N)/t?)

[ Lo p log(1.01ct/a’) }VG(N)/“)
=|—-1lo

t10g(0.99G(N)/t2) 0.49N/G(N)

N
(/0 log(1.0let/a’) dt

+ ~—
oaonTa 108(0.99G(N)/2) ¢

<2.05

G(N) (| 049N\ log(eN/(20'G(N))
N (Og G(N)) 1og(3.9G(N)3/N2)

V/G(N)/10

log(1.01et/a) )’
+25 [ (— ) dt
040N G(N) tlog(0.99G(N)/t?)

G(N) log(eN/(2a’G(N)))l 0.49 N 23
N log(3.9G(N)3/N? 08 G(N)

<2.05

G(N) log(eN/(2¢/G(N))) log TN
N log(3.9G(N)3/N?) G(N)’

Putting these remarks together, we see that

3 L, LoteYs () 0.99G(N) !
Yio(Y1) & o & Yy

10Ch(c!) G(N)\°
= vG(N)log99 (IO 3 >

+2.05Ch(c/)

< 2.05

G(N) log(eN/(2¢/G(N))) log TN
N 1og(3.9G(N)3/N?) G(N)’

Consequently,
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2
S holp—a) < 2OLCINY. o (o) g 4 10g G(V))

n\log(eN/(20/G(N))) ~ log(TN/G(N))
. (1 +1030(0) 3 BOGINIT/N?)  Tog(log G(N))
10¢(a/)N .logg(\/G(N)/10)>
G(N)3/210g99 log(4log G(N)) )°
This proves the lemma when D < /G(N)/10.
We now turn to the case D > /G(N)/10. As noted earlier,

Yko-es 3 > > 1

D>Y; YiN/(N=2G(N))>Y> (2N—G(N)—a)/(Y1Y2)>p
Y1>0.49N/G(N) Ya>Y, p>(2N—2G(N)—a)/(Y1Y>)

< 2 2 > !

V/G(N) /10>y, YiN/(N-2G(N))>Y> (2N-G(N)—a)/(Y1Y2)>p
le()(.49)J/V/G_(J\}) Ya>Y, u>(2N—2G(N)—a)/(Y1Y>)

D 2 > 1

G /10 YiN/(N=2G(N))>Y2 (2N—G(N)—a)/(Y1Y2)>
Yizy/GIN)/10 Ya>Y; ’ ,uZ(ZN—2G(N)—a)1/(§/1YI;)

where, as before, the * indicates that a4+ uY7Y5 is to be prime. The result
just established takes care of the first sum. It is easy to see that the second
sum is bounded by

> 2 2. L

HS100N/G(N) (N—2G(N))/\/Nu<Y: Y1<Ya<+/N/p
vi<+/N/n a+pY1Ys prime

If a+pY1Y5 is to be prime then (uY1Ys, a) = 1 and, in particular, (uY;Ya, o)
= 1. Thus

D IEED I

u<100N/G(N) Y1 Yo
a+pY1Ys prime

Ty (] ) )

(#70/):1 (Y1 ,O/):l

Arguing as in Lemma 5.1, we easily see that

/ N 2
Z N -v SQM @_’_ﬁ ]
W o VvVNu 2
(N=2G(N))//Nu<Y1<y/N/p
(Yl,a')=1
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Using this, we see that

2.2 2 !

B Y3
a+upY1Ys prime

D)

p<100N/G(N)

(ma)=1
+ote) (U5 208 o))
)3 )

(msa")=1
Again, arguing as in Lemma 5.1, we may conclude that

1 ¢(d) 100e N ,
> =t e g )

1u<100N/G(N)

(ma')=1
and
1 o(a’) [100N  o(a) N ,
Z — < ¢(a)) +2 : = —=(20y) 55+ ).
u<i00nyG(vy VP o G(N) o G(N)

(m,a”)=1
Thus

> > !
u<100N/G(N) Yi Ya

a+upY1Ys prime

() )

+ 4o/ <¢§f/) ) 3% <20\/$ + o/> + ; : ‘MZ,,)?) <100 Gé\jfv) + o/>

o)\’ G(N)2 100e® 1N o' N (a/)2N2
<2(“57) (o S+ 2atnen G )

It is trivial to verify that

7N
=
Q\
~——
w
=
Q\
S~—
5
IA
™| ©
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Since 9/(8C?) < 0.3 it follows that

)EED DD S

p<100N/G(N) Y1 Yo
a+pY1Ys prime
G(N)? 100e® 1N o' N (a/)2N?
< 2C?h(a/)? 0.31 13 23
< 20N = CTaaN) T PamEE TGy

IN

Combining this with our earlier estimate for the terms with Y;

/G(N)/10, we see that
G(N)?

> kp(p—a) < 2‘0102h(0‘/)2T log(4log G(N))L(c/),
P
where
log(eN/(2¢/G(N))) log(7TN/G(N))
log(3.9G(N)3/N?) log(4log G(N))
10¢(/)N  log*(y/G(N)/10)
G(N)3/210g99 log(4log G(N))
N 0.3 100e” 1N
log(4log G(N)) 8 o’G(N)
O[/N (a/)2N2
1 2 .
T N 2 log(dlog GIV)) T 2> GNP log(d1og G(V)
This completes the proof.
LEMMA 5.3. Let Py =3 p(2N —p) (as in Lemma 4.2) and put

Ly = 0.51L(1) 4 0.45L(2) + 0.27L(3)

L(a!) =1+ 1.03¢(c')

and
Lo =0.31L(1) + 0.25L(2) + 0.24L(3) + 0.19L(6).
Then

> (@)= 1)

G(N) (. 40G(N)? 16 G(N)logN
ON <1°g T Tl T N

Ly G(N)logN
26 N
Proof. As noted at the beginning of this section,

D> (@) =D<) > kpla)+) Y kp(a)kn(p—a).

peEP aed, P «a€[p—N,N] p aecd,

< P log(4log G(N))

log(4log G(N)) log 3GY) > .

4T
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By Lemma 5.1, we see that

S Y kol <n SN log<40G;N> >

2N
P «a€[p—N,N]

Now, by Lemma 5.2,

> Y kn(@)kp(p—a)
p a€&d,
= ) knlo) > kp(p — o)

a€[N—-G(N),N] 2N—-2G(N)<p
p<min(2a, 2N —-G(N))

G(N
<2.01C? (N) log(4log G(N ka 2L(a).

It is trivial to verify the identity

> kp(a)h(e/)*L(c)

a€[N—G(N),N]

+ > L(e)kp(a)(h(3)*L(3) — h(6)*L(6))
“ClV=GON.N)

+ > L(a)kp(a)(h(2)*L(2) — h(6)*L(6))
"ElN=GUN.N

+ Y. L(@kp(@)(h(1)’L(1) - h(2)*L(2)
a€[N—-G(N),N]
(a,6)=1

—h(3)2L(3) + h(6)*L(6)).
From Lemma 5.1, we see that

Z kp(a) < 1.21 . G(]]VV)Q log 3G(N)?

2
+ 4.01G(N)

T N
a€[N—=G(N),N]

1.01 G(N)?2  3G(N)? G(N)?
< . )
E kp(a) < 3 N log T +1.3 N

a€[N—-G(N),N]
(a,2)=1

Z kp(a) < 2.02 G(N)? log 3G(N)? +4'5G(N)2

- 27 N T N

a€[N—G(N),N]
(a,3)=1
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and
1.01 G(N)? G(N)? G(N)?

3
< . Ol——.
E kp(a) < 108 N log T +0.51 N
a€[N—G(N),N]

(a,6)=1

From these inequalities and the identity above, we see that

ZkD(oz)L(o/)h(o/)2
< G(JJVV)Q (0.51h(1)*L(1) + 4h(2)°L(2) + 0.8h(3)*L(3) — 1.28h(6)°L(6))
G(N)2_ 3G(N)? (h(1)2L(1) 2 1 )
+1.01 ~ log T < 108 + <27 - 1%) h(2)°L(2)
11 ) 1 1 1 2 )
+ (32 - 108)]@(3) L(3) + (4 +t I8 "33 27>h(6> L(6)>
< Iy G(]j\\rf)2 + O.O3G(Jj\>r)2 log 3G(Q{V)2L27

where L and Lo, were defined in the statement of the lemma. Hence

Z Z(rp(a) -1 <P GN) log A0G(N)” + 8L, GWV)* log(4log G(N))

2N T N2
G(N)* 3G(N)?
+0.25L, NE log(4log G(N)) log AT
Since Py =) p(2N —p) > 9?0(512,2, it follows that
> (rpla) = 1)
P «
G(N) 40G(N)? 16 _ G(N)logN
< iy St S =
<P o (log T + 7 L, N log(4log G(N))

Ly G(N)log N 3G(N)?
59 N log(4log G(N)) log AT .

This proves the lemma.

6. Completion of the proof. We first make our choice of G(IN) and
record the value of § permitted by this choice. (Recall that 6 was defined
in the paragraph preceding Lemma 4.2.)

LEMMA 6.1. If e*® < N < ¢°® and G(N) = N/(5(log N)?), then 6 = 1/3
is permissible. If € < N < 2% and G(N) = N/(30log N) then 6 = 1/2
is permissible. If N > €20 and G(N) = 40N/(log N)? then 6 = 1/2 is
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permissible. Finally, our choices for G(N) and 0 satisfy the requirements
(5N)?/3 < G(N) < N/1000 and 6 > 1/4.

Proof. Let (x) be such that |¢(x) — 2| < ze(x). From Theorem 6 of
Rosser and Schoenfeld [8], we see that [1)(x)—0(x)| < 1.1y/z when 2 > 1000.
(Here, as usual, 0(x) = > _ logp.) Thus if z >y > 1000, it follows that

0(@) — 0(y) _ b(x) — v(y) —22/3
m(z) = 7(y) 2 log = log

S Ty —we(r) —yely) — 2.2V
- log x '

The table on page 267 of Rosser and Schoenfeld [8] gives permissible values
for £(z) when e'® <z < 1990, From this we may easily deduce the lemma
in the range 28 < N < 2000

For the range N > €29°° we note that Theorem 8 of Rosser and Schoen-
feld [8] enables us to take e(x) = 8.6853z/ log® . The remaining assertions
are trivial.

LEMMA 6.2. Theorem 1.1 holds in the range e*® < N < e°°.

Proof. In this range we know that G(N) = N/(5log> N) and 6 = 1/3.
From the definition of L1, we easily see that
log(4log G(N)) L,
log(5e(log N)?/2)
log(3.9N/(12510g° N))

< 1.231og(4log G(N)) + 1.511log(35(log N)?)

1‘51 3N G(N
55 0g ng ()
VN log 99 10
1.5 153 31400
5 log N—|—1655 log” N
VN N

< 1.23log(4log G(N)) + 64 < 71.

+ 0.41log(500e? log® N)

+39.39

Similarly we may verify that log(4log G(IN))Ly < 71. From Lemma 5.3, it
follows that

; za;(rp(a) —1<p GQ(]]VV ) <log 4OG;N) +48- 71G(N)A§°gN

1.5-71
+15-7 N og AT

Py ( 40G(N)?
< ——5—|log ————
10log™ N

G(N)log N 1 3G(N)2>

N 2
+ 25+ 0.81og 3G4<T ) )
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Py 40G(N)2D? 3G(N)2D?
< —F—(log——— 4+ 25+ 0.8log ———
= 1010g2N<0g N2 et isle s

P
< —1 (3.6log D).

10log™ N
However, from Lemma 4.2, we see that
epl _ P1 10gD

1) > log D = - 08
zp:za:(r”(a) )2 S10e N 8P = Sh10g v

This is clearly a contradiction which proves the lemma.

LEMMA 6.3. Theorem 1.1 holds in the range e < N < 2990,

Proof. In this range of N, G(N) = N/(30log N) and § = 1/2. As in
Lemma 6.2 we see that
log(4log G(N)) L1

log(15elog N)
log(3.9N/(303 log® N))

< 1.23log(4log G(N)) + 1.511og(2101log N)

L2 1logh® N G(N

+1530 o8 log? (V)
VN log 99 10

30°log"® N 30°%log® N

B AN [ e

VN N

< 1.23log(41og G(N)) + 10.7 < 22.

Similarly we see that log(4log G(N))Ly < 22. From Lemma 5.3 it follows

+ 0.410g(3000€? log N)

+39.39

that
P 40G(N)? 22 22 3G(N)?
—-1)< 1 32—+ —1
zp:za:(Tp(a) )< 6010gN< T %30 T30 % T
P G(N)?
< ——(1.741 27.2
—6010gN< rlog = 2T
P G(N)2D?
< ——(1.74log —=— + 27.2
—601ogN< Talog = — +27
Py Py
< ———(348log D +1.75) < ———(3.72log D
- 6010gN( gL )= 6010gN( og D)
(the last inequality holds since D > N/G(N)). However, by Lemma 4.2,
epl . P1 logD

1) > log D = -1 %8~
Zp:%:(rp(a) )2 S10e N %P = To10g N

which is a contradiction.
LEMMA 6.4. Theorem 1.1 holds in the range N > 2009,
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Proof. In this range of N, G(N) = 40N/log> N and 6 = 1/2. Ar-
guing as in the previous two lemmata we see that log(4log G(N))L; <
2.03log(4log N) + 4 and log(4log G(N))Ls < 2.03log(4log N) + 4. Hence
by Lemma 5.3,

> (rple) = 1)

20P 40G(N)? N)log N
S 021 <log 0GY) +32(2.O310g(410gN)+4)M
log® N N
N)log N N)2
+ (2.03log(410g N) + 4) Z ?v %8N 1og 3GiT) )

20P 40G(N)?
- 02 ] (log 0G(N)” | 14.25+0.45logG(N)2T>
log® N T
20P N)?
log® N T
20P, G(N)*D? >
< 1.45log ——2— + 18
- log2N< SEE
20P
< TI(Z.QIOgD).
log® N
By Lemma 4.2,

0Py logD  PylogD
-1 > =
;g(%(o‘) )2 SlogN ~ T6log N’
which is a contradiction. This proves the lemma.

Since 2.22-10'2 > 28 we see that the above lemmata and the results of
Section 3 cover all the values of N. This completes the proof of Theorem 1.1.
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