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Let two lattices Λ′, Λ′′ ⊂ Rs have the same number of points on each
hyperbolic surface |x1 . . . xs| = C. We investigate the case when Λ′, Λ′′ are
sublattices of Zs of the same prime index and show that then Λ′ and Λ′′

must coincide up to renumbering the coordinate axes and changing their
directions.

1. Introduction. If the opposite is not stated explicitly, we denote
vectors by lower-case italic and Greek letters and their coordinates by the
same letters with appropriate lower indices. This paper’s aim is to prove the
following result.

Theorem 1. Let Λ′, Λ′′ be two sublattices of Zs of the same prime index ,
having the same number of points on each surface

|x1 . . . xs| = C.

Then Λ′′ may be obtained from Λ′ (and vice versa) by renumbering the co-
ordinate axes and changing their directions.

It would be interesting to extend this theorem to the case of Zs-sublat-
tices of non-prime indices, and also to investigate the case of general Rs-
sublattices, when rotations around the bisectrices ±x1 = . . . = ±xs should
also be taken into account. However, this may present some unexpected
difficulties, as shown already for s = 2 by the example of

Λ′ = {m ∈ Z2 | m1 ≡ 0 (mod 4)},
Λ′′ = {m ∈ Z2 | m1,m2 ≡ 0 (mod 2)}.

Both these lattices are of index 4, and they evidently have the same number
of points on each hyperbola |x1x2| = C.
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One may also investigate surfaces of other types, say, spheres. A special
class of hyperbolas-like surfaces arises in the theory of uniform distribution,
where one often encounters functions of the form

Z(t, Λ) =
∑

m∈Λ

1
(m1 . . .ms)t

,

where mi = max{1, |mi|}. It is natural to consider those Λ′, Λ′′ for which
Z(t, Λ′) = Z(t, Λ′′) and evidently this means that on each surface of the form
x1 . . . xs = C there is the same number of points of Λ′ and Λ′′. Using the
method of this paper, one can prove that Theorem 1 remains valid also for
these surfaces instead of pure hyperbolas (though the proof would require
substantially greater amount of calculations).

No other results concerning this kind of problems are known to the au-
thor.

2. Sublattices of prime index. In this section we establish the struc-
ture of Zs-sublattices of prime index, and thus reduce the considered prob-
lem to an algebraic one.

In what follows p will stand for a fixed prime number. For λ ∈ Z (or
λ ∈ Fp) define

δp(λ) =
{

1 if λ ≡ 0 (mod p),
0 if λ 6≡ 0 (mod p).

Lemma 1. Let a ∈ Fsp and assume a 6= 0. Then the set

Λa = {m ∈ Zs | δp(a1m1 + . . .+ asms) = 1}
is a Zs-sublattice of index p and moreover , every Zs-sublattice of index p is
of this form for a properly chosen a.

P r o o f. Suppose as 6= 0, denote by a′s the inverse to as in Fp and let
a∗i = −aia′s (i = 1, . . . , s− 1). Consider the matrix

E =




1 0 . . . 0 0
0 1 . . . 0 0
. . . .
. . . .
. . . .
0 0 . . . 1 0
a∗1 a∗2 . . . a∗s−1 p



.

Its columns form a basis for some lattice Λ of index |detE| = p, while each
column obviously belongs to Λa. Hence Λ ⊆ Λa, and therefore either Λa = Λ,
or Λa = Zs. Obviously it is the first possibility that really holds, and thus
Λa = Λ is a lattice of index p.
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Conversely, let Λ ⊂ Zs be a lattice of index p generated by some matrix
E. Then detE = ±p, and, therefore, there exists a vector a ∈ Fsp, a 6= 0,
such that ETa ≡ 0 (mod p) (more precisely, all the coordinates of ETa are
divisible by p). Hence, each column e of E satisfies a1e1 + . . . + ases ≡ 0
(mod p), thus Λ ⊆ Λa. But (by the already proved part of the lemma) both
these lattices are of the same index p, so Λ = Λa.

Obviously, Λa does not change if we multiply a by a non-zero residue
λ ∈ Fp. If we permute the coordinates of a, the new lattice may be obtained
from the original one by renumbering the coordinate axes. And if we change
the signs of some of the coordinates ai, this maps the lattice symmetrically
relative to the hyperplanes xi = 0. This shows that if

(1) Ta(C) =
∑

|m1...ms|=C
δp(a1m1 + . . .+ asms)

is the number of points of Λa on the surface |x1 . . . xs| = C, then Theorem 1
will follow from (and is actually equivalent to) the following theorem:

Theorem 1′. Assume Ta(C) = Tb(C) for some fixed non-zero a, b ∈ Fsp
and every integer C. Then b may be obtained from a (and vice versa) by
means of multiplying by a non-zero residue λ ∈ Fp, reordering the coordi-
nates and changing the signs of some of them.

We write a ∼ b if a and b are related as described in this theorem.
We show now that without loss of generality we may restrict ourselves

to the case when all the coordinates of a, b are non-zero. This will include
two steps. As the first step, we suppose Ta(C) = Tb(C) for every C and
prove that a and b have the same number of non-zero coefficients. To this
end, assume

a = (a1, . . . , as′ , 0, . . . , 0), b = (b1, . . . , bs′′ , 0, . . . , 0),

where a1, . . . , as′ , b1, . . . , bs′′ 6= 0, and define

α = (a1, . . . , as′), β = (b1, . . . , bs′′).

If (m1, . . . ,ms) contributes a non-zero term to the sum Ta(1), then (m1, . . .
. . . ,ms′) contributes a non-zero term to Tα(1), and it is easily seen that every
such (m1, . . . ,ms′) will be induced in this way by exactly 2s−s

′
vectors (as

the coordinates ms′+1, . . . ,ms can be independently picked out to be ±1).
The same applies to Tb(1) and Tβ(1), and therefore

(2) Ta(1) = 2s−s
′
Tα(1), Tb(1) = 2s−s

′′
Tβ(1),

and for brevity we denote this common value by T . Furthermore, if q is
prime then

Ta(q) = 2s−s
′
Tα(q) + 2s−s

′
(s− s′)Tα(1) = 2s−s

′
Tα(q) + (s− s′)T,(3)
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Tb(q) = 2s−s
′′
Tβ(q) + 2s−s

′′
(s− s′′)Tβ(1) = 2s−s

′′
Tβ(q) + (s− s′′)T.(4)

By the Dirichlet theorem, for each z = 1, . . . , p − 1 there exists a prime qz
with qz ≡ z (mod p), and for z = 0 choose q0 = p. Substituting this qz into
(3), (4) and summing up over all z one obtains

(5) 2s−s
′
p−1∑
z=0

Tα(qz) + p(s− s′)T = 2s−s
′′
p−1∑
z=0

Tβ(qz) + p(s− s′′)T.

But the sums in the latter identity may be explicitly evaluated:
p−1∑
z=0

Tα(qz)

=
p−1∑
z=0

1∑
ε1,...,εs′=0

s′∑

i=1

δp((−1)ε1a1 + . . .+ (−1)εiqzai + . . .+ (−1)εs′as′)

=
1∑

ε1,...,εs′=0

s′∑

i=1

p−1∑
z=0

δp((−1)ε1a1 + . . .+ (−1)εizai + . . .+ (−1)εs′as′)

= 2s
′
s′,

and similarly,
p−1∑
z=0

Tβ(qz) = 2s
′′
s′′.

Hence (5) yields

2ss′ + p(s− s′)T = 2ss′′ + p(s− s′′)T,
s′(2s − pT ) = s′′(2s − pT ),

and so s′ = s′′, unless p = 2. But if p = 2, then

T = Ta(1) =
{

2s if s′ ≡ 0 (mod 2),
0 if s′ 6≡ 0 (mod 2),

therefore 2s 6= pT and s′ = s′′ also in this case. Observe that this completely
settles Theorem 1′ for p = 2, and in what follows we will assume p to be
odd .

Next (and this is our second step), we show that Tα(C) = Tβ(C) provided
Ta(C) = Tb(C) (for each C). For C = 1 this follows from (2) (in view of
s′ = s′′); and for C > 1 we have

Ta(C) = 2s−s
′
Tα(C) + 2s−s

′ ∑

d|C, d<C
kC/dTα(d),

where kC/d are some combinatorial coefficients which do not depend on a,
but only on s−s′ and on the system of exponents in the prime decomposition



Distribution of lattice points 89

of C/d. A similar equality holds for Tb(C), and thus the required conclusion
follows by induction on C.

Now, if we prove Theorem 1′ for vectors with non-zero coordinates, then
Tα(C) = Tβ(C) implies α ∼ β, and hence a ∼ b. Thus we arrive at the final
form of the theorem to be proved:

Theorem 1′′. Let p be an odd prime, and let a, b ∈ (F×p )s. Assume
Ta(C) = Tb(C) for all integer C. Then a ∼ b.

3. Even Dirichlet characters. The starting point of our proof is as
follows: along with Ta(C), we consider all the values Tc(C) for c ∈ (F×p )s,
sum them up and then select Ta(C) using characters of the group (F×p )s.
But characters of (F×p )s are closely related to the Dirichlet characters of F×p .
And of all the characters of F×p , of particular interest for us will be the even
ones (those for which χ(−1) = 1). The even characters form a subgroup of
index 2 in the group of all characters, and we denote this subgroup by X.
Also, we denote by G the multiplicative group of all squares of F×p , and by

Ĝ the dual group of characters of G. Most of the properties of X we use will
be derived from the following simple lemma.

Lemma 2. The mapping Ĝ→ X defined by

χ 7→ (n 7→ χ(n2)) (n ∈ F×p )

establishes an isomorphism Ĝ ∼= X.

P r o o f. The above mapping is obviously an injective homomorphism,
and |Ĝ| = |G| = (p− 1)/2 = |X|.

Corollary 1.
(i) X is cyclic.

(ii) For λ ∈ F×p ,
∑

χ∈X
χ(λ) =

{
(p− 1)/2 if λ = ±1,
0 if λ 6= ±1.

(iii) Each complex multiplicative function on X (that is, each character
of X) is of the form χ 7→ χ(λ) for some fixed λ ∈ F×p (and even λ ∈ G).

P r o o f.
(i) X ∼= Ĝ ∼= G, and G is cyclic.
(ii) follows from the orthogonality relation for group G.

(iii) follows from the canonical homomorphism between G and ̂̂
G (the

group of characters of Ĝ).

By χ0 we denote the principal character of F×p , and by χ the character
conjugate to χ.
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Lemma 3. Let X0 ⊆ X be a set of even characters such that χ0 ∈ X0,
and if χ ∈ X0 then necessarily χ ∈ X0. Let also f : X0 → C be a complex
function on X0 such that χ1 . . . χr = χ0 implies f(χ1) . . . f(χr) = 1 for
every r ≥ 1 and χ1, . . . , χr ∈ X0. Then f can be extended to a multiplicative
function on all X.

P r o o f. First, observe that f can be extended to the subgroup X̃0 ⊆
X generated by X0: if χ = χ1 . . . χr (χ1, . . . , χr ∈ X0), we put f(χ) =
f(χ1) . . . f(χr), and it is easily verified that this correctly defines f as a
multiplicative function on X̃0.

Next, if χ is a generating element of X, then all elements of X̃0 are
powers of χ, and we choose ν to be the smallest positive integer with χν in
X̃0. Now, we choose the value of f(χ) to satisfy fν(χ) = f(χν), and then
we define f(χn) = fn(χ) for every integer n.

4. Proof of Theorem 1′′. We start with fulfilling the plan outlined in
the previous section: by (1), we have

Ta(C) = (p− 1)−s
∑
c

∑

m1...ms=±C
δp(c1m1 + . . .+ csms)

×
∑
χ

χ1(c′1a1) . . . χs(c′sas),

where c = (c1, . . . , cs) runs over all elements of (F×p )s; next, χ runs over
all collections (χ1, . . . , χs) of Dirichlet characters; finally, c′i (i = 1, . . . , s)
stands for the inverse of ci in F×p . For our purposes, it is sufficient to consider
only those C for which C 6≡ 0 (mod p). Then cimi runs over F×p together
with ci, and using multiplicativity of characters we get

Ta(C) = (p− 1)−s
∑
χ

χ1(a1) . . . χs(as)
∑

m1...ms=±C
χ1(m1) . . . χs(ms)

×
∑
c

χ1(c1m1) . . . χs(csms)δp(c1m1 + . . .+ csms)

= (p− 1)−s
∑
χ

σ(χ) χ1(a1) . . . χs(as)
∑

m1...ms=±C
χ1(m1) . . . χs(ms),

where
σ(χ) =

∑
c

χ1(c1) . . . χs(cs)δp(c1 + . . .+ cs).

Consider the latter sum. If λ ∈ F×p is fixed, then λc runs over (F×p )s

together with c, hence

σ(χ) =
∑
c

χ1(λc1) . . . χs(λcs)δp(λ(c1 + . . .+ cs))

= χ1 . . . χs(λ)σ(χ),
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and so σ(χ) = 0 if the product χ1 . . . χs is not the principal character χ0.
On the other hand, for χ1 . . . χs = χ0 and at least one χi distinct from χ0,
we use a well-known representation of δp with complex exponents to obtain

σ(χ) =
1
p

p−1∑
z=0

p−1∑
c1,...,cs=1

χ1(c1) . . . χs(cs)e
2πi(c1+...+cs)z/p

=
1
p

p−1∑
z=1

(χ1 . . . χs)(z)
p−1∑

c1,...,cs=1

χ1(zc1) . . . χs(zcs)e
2πi(zc1+...+zcs)/p

=
1
p

p−1∑
z=1

( p−1∑
c1=1

χ1(c1)e2πic1/p
)
. . .
( p−1∑
cs=1

χs(cs)e
2πics/p

)

=
p− 1
p

τ(χ1) . . . τ(χs),

where the Gaussian sums τ(χi) are known to be non-zero. Also, if χ1 =
. . . = χs = χ0 then obviously σ(χ) 6= 0. We see that σ(χ) is not 0 if and
only if χ1 . . . χs = χ0, and thus

Ta(C) = (p− 1)−s
∑
χ

∗
σ(χ)χ1(a1) . . . χs(as)

∑

m1...ms=±C
χ1(m1) . . . χs(ms),

where the sum marked by an asterisk extends over all collections of Dirichlet
characters with product χ0. As to the inner sum, it may be written as

∑

m1...ms=C
m1,...,ms≥1

(χ1(m1) + χ1(−m1)) . . . (χs(ms) + χs(−ms)),

and this vanishes if at least one of the characters χi is odd. But otherwise
χi(mi) + χi(−mi) = 2χi(mi) and therefore

Ta(C) = 2s(p− 1)−s
∑
χ

∗∗
σ(χ)χ1(a1) . . . χs(as)

∑

m1...ms=C

χ1(m1) . . . χs(ms),

where the sum marked by two asterisks extends over all collections of even
Dirichlet characters with product χ0, and the mi here and in all subsequent
sums take only positive values. Group now together those collections χ which
differ only by a permutation. If χ′ and χ′′ are two such collections then
obviously σ(χ′) = σ(χ′′), and also

∑

m1...ms=C

χ′1(m1) . . . χ′s(ms) =
∑

m1...ms=C

χ′′1(m1) . . . χ′′s (ms)

for each C, hence
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Ta(C) = 2s(p− 1)−s
∑
ϕ

∗∗∗
σ(ϕ)

( ∑

χ∈P (ϕ)

χ1(a1) . . . χs(as)
)

×
∑

m1...ms=C

ϕ1(m1) . . . ϕs(ms),

where ϕ runs over all ordered collections of even characters with product
χ0, and χ runs over the set P (ϕ) of all collections which may be obtained
by a permutation of ϕ.

A similar equality holds, of course, for Tb(C), and thus

(6)
∑
ϕ

∗∗∗
u(ϕ)

∑

m1...ms=C

ϕ1(m1) . . . ϕs(ms) = 0,

where we set

u(ϕ) = σ(ϕ)
( ∑

χ∈P (ϕ)

χ1(a1) . . . χs(as)−
∑

χ∈P (ϕ)

χ1(b1) . . . χs(bs)
)
.

The next step is to show that the inner sums in (6), considered as func-
tions of C, are linearly independent, and so u(ϕ) = 0.

We first derive from (6) that for every r ≥ 1 and every system of residues
n1, . . . , nr ∈ F×p we have

(7)
∑
ϕ

∗∗∗
u(ϕ)

s∑ ′

i1,...,ir=1

ϕi1(n1) . . . ϕir (nr) = 0;

here and below the indices of the dashed sums (
∑′) run over pairwise distinct

values; for example, in the latter sum (i1, . . . , ir) runs over all r-element
subsets of the set {1, . . . , s}.

To obtain (7) we use induction on r. For r = 1 the result follows immedi-
ately if in (6) we choose C = q1, where q1 ≡ n1 (mod p) is prime. For r ≥ 2
we choose pairwise distinct primes qi with qi ≡ ni (mod p) (i = 1, . . . , r)
and let C = q1 . . . qr. Next, let Ω run over all partitions of the set {1, . . . , r}.
Denote by

∑(Ω) the sum over all those i1, . . . , ir for which iν = iµ if and
only if ν and µ fall into the same class of the partition Ω. We have

(8)
∑
ϕ

∗∗∗
u(ϕ)

∑

m1...ms=C

ϕ1(m1) . . . ϕs(ms)

=
∑
ϕ

∗∗∗
u(ϕ)

s∑

i1,...,ir=1

ϕi1(q1) . . . ϕir (qr)

=
∑

Ω

∑
ϕ

∗∗∗
u(ϕ)

s∑(Ω)

i1,...,ir=1

ϕi1(n1) . . . ϕir (nr).
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Now, if Ω is the partition into r one-element sets, then the inner sum in the
latter equality equals

s∑ ′

i1,...,ir=1

ϕi1(n1) . . . ϕit(nr);

and if Ω = {S1, . . . , St}, where S1 ∪ . . . ∪ St = {1, . . . , r}, t < r, then this
inner sum equals

s∑ ′

j1,...,jt=1

ϕj1(N1) . . . ϕjs(Nt),

where Nν =
∏
i∈Sν ni. Since by the induction hypothesis

∑
ϕ

∗∗∗
u(ϕ)

s∑ ′

j1,...,jt=1

ϕj1(N1) . . . ϕjt(Nt) = 0,

(7) follows from (8) and (6).
Specifically, for r = s, (7) yields

(9)
∑
ϕ

∗∗∗
u(ϕ)

s∑ ′

i1,...,is=1

ϕi1(n1) . . . ϕis(ns) = 0,

where (i1, . . . , is) runs over all permutations of {1, . . . , s}.
Let χ be a fixed collection of even characters with χ1 . . . χs = χ0. Mul-

tiplying (9) by χ1(n1) . . . χs(ns) and summing up over all n ∈ (F×p )s we
obtain

∑
ϕ

∗∗∗
u(ϕ)

s∑ ′

i1,...,is=1

( p−1∑
n1=1

(χ1ϕi1)(n1)
)
. . .
( p−1∑
ns=1

(χsϕis)(ns)
)

= 0,

thus u(χ) = 0 by the orthogonality relation, since there exists precisely one
ϕ and precisely one permutation (i1, . . . , is) with χ1 = ϕi1 , . . . , χs = ϕis .
This shows that

(10)
∑

χ∈P (ϕ)

χ1(a1) . . . χs(as) =
∑

χ∈P (ϕ)

χ1(b1) . . . χs(bs),

provided that the ϕi are even and ϕ1 . . . ϕs = χ0.
Furthermore, it follows from (10) that

(11)
s∑ ′

i1,...,is=1

ϕi1(a1) . . . ϕis(as) =
s∑ ′

i1,...,is=1

ϕi1(b1) . . . ϕis(bs).

Indeed, if {ϕ1, . . . , ϕs} break into t groups with l1, . . . , lt coinciding charac-
ters in each group and distinct characters in distinct groups, then (11) is
obtained from (10) by multiplying by l1! . . . lt!. Next, (11) may be rewritten
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as

(12)
s∑ ′

i1,...,is=1

ϕ1(ai1) . . . ϕs(ais) =
s∑ ′

i1,...,is=1

ϕ1(bi1) . . . ϕs(bis).

If now 1 ≤ r ≤ s and ϕi are even with ϕ1 . . . ϕr = χ0, we define ϕr+1 =
. . . = ϕs = χ0 and get

(13)
s∑ ′

i1,...,ir=1

ϕ1(ai1) . . . ϕr(air ) =
s∑ ′

i1,...,ir=1

ϕ1(bi1) . . . ϕr(bir ).

We prove that the latter equality remains valid if we extend the sum-
mation over all collections i1, . . . , ir, probably with coinciding iν and even
with r > s. Using the above introduced notation, write

s∑

i1,...,ir=1

ϕ1(ai1) . . . ϕr(air ) =
∑

Ω

s∑(Ω)

i1,...,ir=1

ϕ1(ai1) . . . ϕr(air ).

For a fixed Ω = {S1, . . . , St} the inner sum on the right-hand side equals
s∑ ′

j1,...,jt=1

Φ1(aj1) . . . Φt(ajt),

where Φν =
∏
i∈Sν ϕi, and by (13) this does not change if we replace a by b

(if t > s we can not use (13) but then this last sum obviously equals 0).
Our next observation is that

s∑

i1,...,ir=1

ϕ1(ai1) . . . ϕr(air ) =
r∏

j=1

(ϕj(a1) + . . .+ ϕj(as))

and hence we have proved that

(14)
r∏

j=1

(ϕj(a1) + . . .+ ϕj(as)) =
r∏

j=1

(ϕj(b1) + . . .+ ϕj(bs))

as soon as ϕ1, . . . , ϕr are even characters with ϕ1 . . . ϕr = χ0.
We now use Lemma 3. For X0 we choose the set of all characters ϕ

satisfying ϕ(b1) + . . .+ ϕ(bs) 6= 0, and define f : X0 → C by

f(ϕ) =
ϕ(a1) + . . .+ ϕ(as)
ϕ(b1) + . . .+ ϕ(bs)

.

Then (14) guarantees that the conditions of Lemma 3 are satisfied, and using
also Corollary 1(iii) we conclude that there exists λ ∈ F×p such that

(15) ϕ(a1) + . . .+ ϕ(as) = (ϕ(b1) + . . .+ ϕ(bs))ϕ(λ)

for every ϕ ∈ X0. But if in (14) we choose r = 2 and ϕ1 = ϕ, ϕ2 = ϕ, where
ϕ is even but ϕ(b1)+ . . .+ϕ(bs) = 0, we see that also ϕ(a1)+ . . .+ϕ(as) = 0
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and thus (15) holds for all even ϕ, regardless of whether ϕ ∈ X0 or not. By
multiplicativity of ϕ, we can write (15) in the form

(16)
s∑

i=1

ϕ(ai) =
s∑

i=1

ϕ(λbi).

Multiplying (16) by ϕ(n) for n ∈ F×p and summing up over all even charac-
ters ϕ, we obtain

s∑

i=1

(∑
ϕ

ϕ(ain′)
)

=
s∑

i=1

(∑
ϕ

ϕ(λbin′)
)
,

thus using Corollary 1(ii) we conclude that a and λb have the same number
of coordinates equal to ±n. And this shows that a may be obtained from
b by multiplication by λ, reordering the coordinates and changing signs of
some of them.

This completes the proof.
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