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1. Introduction. This paper is a continuation of the work of K. Ra-
machandra [10]. It is in fact a development of the methods adopted there.
We prove three theorems of which Theorem 1 (below) is a remark on Gold-
bach numbers (i.e. numbers which can be represented as a sum of two odd
primes). We state and prove Theorems 2 and 3 in Sections 2 and Section 3
respectively. In Section 4 we make some concluding remarks.

Theorem 1. Let θ (3/55 < θ ≤ 1) be any constant and let x exceed a
certain large positive constant. Then the number of Goldbach numbers in
(x, x+ xθ) exceeds a positive constant times xθ. In particular , if gn denotes
the nth Goldbach number then

gn+1 − gn � gθ
n.

R e m a r k 1. This theorem and its proof has its genesis in Section 9 of
the paper [8] of H. L. Montgomery and R. C. Vaughan.

R e m a r k 2. Let α be any positive constant. By considering (in our
proof of Theorem 1) the expression

1
Y

2Y∑
y=Y

(ϑ(x+ h− y)− ϑ(x− y))
(
ϑ

(
y + h

α

)
− ϑ

(
y

α

))
(

resp.
1
Y

2Y∑
y=Y

(ϑ(x+ h+ y)− ϑ(x+ y))
(
ϑ

(
y + h

α

)
− ϑ

(
y

α

)))
we can prove that every interval (x, x+ xθ) contains a number of the form
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p+ qα (resp. p− qα) where p and q are primes, provided x exceeds a large
positive constant.

Since the proof of Theorem 1 follows nearly the corresponding result of
[10], with 7/72 < θ ≤ 1, we will prove this theorem in the introduction
itself. In both Section 2 and Section 3 and also in Section 4 we deal with
the problem: How small can αp− βq (> 0) be made if α and β are positive
constants and p and q primes? We also consider similar questions about
|αp− βq|.

P r o o f o f T h e o r e m 1. Let ε (0 < ε < 1/100) be any constant. Let
x be any integer which exceeds a large positive constant depending on ε.
Put Y = [x6/11+ε], h = [Y 1/10+ε]. As in [10] consider the sum

J ≡ Y −1
2Y∑

y=Y

(ϑ(x+ h− y)− ϑ(x− y))(ϑ(y + h)− ϑ(y)).

According to a theorem of G. Harman (see [3]) the number of integers y with
ϑ(y + h) − ϑ(y) ≤ ηh is o(Y ) provided η (> 0) is a certain small constant.
Since the terms in the sum defining J are non-negative we have

J ≥ J1 ≡ ηhY −1
2Y∑

y=Y

′(ϑ(x+ h− y)− ϑ(x− y)),

where the accent indicates the restriction of the sum to integers y with
ϑ(y + h)− ϑ(y) > ηh. (Note that the omitted values are o(Y ) in number.)
We now include these omitted values of y, and by applying a well-known
theorem of V. Brun (see [11]) these contribute o(h2) to J1. Thus

J ≥ J1 = ηhY −1J2 + o(h2),
where

J2 =
2Y∑

y=Y

(ϑ(x+ h− y)− ϑ(x− y)).

Now
J2 =

∑
x+h−2Y≤n≤x+h−Y

ϑ(n)−
∑

x−2Y≤n≤x−Y

ϑ(n).

Here the first sum is over x+h−2Y ≤ n ≤ x−Y and x−Y < n ≤ x+h−Y ,
and the second is over x−2Y ≤ n < x+h−2Y and x+h−2Y ≤ n ≤ x−Y .
Hence

J2 =
∑

x−Y <n≤x+h−Y

(ϑ(n)− ϑ(n− Y − 1)).

Now by applying the results of S. Lou and Q. Yao (see [7]), we see that each
term of the last sum is � Y and so J1 � h2 and thus J � h2. From this we
deduce Theorem 1 as in [10] by applying Corollary 5.8.3 on page 179 of [2].
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R e m a r k 1. There is an improvement of log and log log factors in density
results in our previous paper [12]. This gives

1
X

2X∫
X

(ϑ(x+H)− ϑ(x)−H)2 dx = o(H2(logX)−1)

provided H = X1/6(logX)137/12(log logX)47/12f(X), where f(X) is any
function of X which tends to infinity as X →∞. But this has no advantage
over the results of G. Harman (see [3]) which in the direction of Theorem 1
is more powerful than all the results known so far.

R e m a r k 2. If we assume a certain obvious hypothesis we can improve
Theorem 1. However, assuming a stronger hypothesis like the Riemann
hypothesis (R.H.) Theorem 1 can be improved much further (see Section 4
for a remark in this direction).

After Theorem 1 we turn to a different question. We ask whether for
every ε (> 0), the inequality 0 < p − 2q < pε has infinitely many solutions
in primes p, q. (In Section 2 we prove a more general result which shows
that this is so if ε > 1/10.) But if ε ≤ 1/10 we do not know whether even
|p − 2q| < pε has infinitely many solutions. A milder question is this: Do
there exist positive integer constants a and b with µ(ab) = −1 for which
0 < ap − bq < pε has infinitely many solutions in primes p, q (for every
ε > 0)? We do not know whether even µ(n(n + 1)) = −1 has infinitely
many solutions in positive integers n.

N o t a t i o n. We use standard notation. The symbol ≡ denotes a def-
inition. The symbols � (resp. �) mean less than (resp. greater than) a
positive constant multiple of. Sometimes we specify the constants on which
these constants depend by indicating them below these signs. For any pos-
itive function g of X, o(g) means a term which when divided by g tends to
zero as X → ∞. The symbol O(g) means a quantity which when divided
by g remains bounded as X → ∞. The function ϑ(x) is as usual

∑
log p

summed up over all primes p ≤ x. But in Section 3, ϑ(x) may have a
slightly different meaning which will be explained at relevant places. We
put µ(1) = 1, µ(n) = 0 if p2 divides n for some prime p, and otherwise
µ(n) = ±1 according as the number of prime factors of n is even or odd.
Also if n > 1 we define Ω(n) to be the number of prime factors of n counted
with multiplicity. For any real x, [x] will mean the greatest integer ≤ x. We
use x (or X) to represent the only independent variable and unless otherwise
stated they will be supposed to exceed a large positive constant. Any other
notation will be explained at relevant places.
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2. Statement and proof of Theorem 2. In the statement of Theo-
rem 2 positive functions F (x) of x with a certain property play an important
role. The property is this: For all but o(X) integers n with X ≤ n ≤ 2X,
the intervals (n, n+F (X)) should contain ≥ ηF (X)(logX)−1 primes, where
η > 0 is a constant. Owing to the work of G. Harman (see [3]) we can take
F (X) to be X1/10+ε, where ε > 0 is any constant and η depends on ε.
This work of his has already been referred to in Section 1. (If, however, we
assume (R.H.) then there is the following result due to A. Selberg (see [14]
and for references to the related material see page 349 of [5] and §9 of [8]):

1
X

2X∫
X

(ϑ(x+ h)− ϑ(x)− h)2 dx� (h1/2 logX)2 valid for h ≥ 1, X ≥ 2.

Here the left hand side is equal to
1
X

∑
X≤n≤2X

(ϑ(n+ h)− ϑ(n)− h)2 +O(logX)2

and so we can choose F (X) to be (logX)2 times any function which tends
to ∞ as X →∞, and η to be any constant < 1.) It should be stressed that
our Theorem 2 is a self contained statement and does not depend on any
external unproved hypothesis. We are now in a position to state Theorem 2.

Theorem 2. Let F (x) (with (log x)2 ≤ F (x) ≤ x(log x)−2) be a function
of x such that for all but o(X) integers n in the interval X ≤ n ≤ 2X, the
interval (n, n+F (X)) contains at least ηF (X)(logX)−1 primes, where η > 0
is some constant. Let α1, . . . , αN (N ≥ 1) be any fixed positive constants.
Let e1, . . . , eN denote integers which are 0 or 1. Then there exist infinitely
many (N + 1)-tuples of primes p, q1, . . . , qN such that

(2.1) 0 < (−1)ek(p− αkqk) < F (p)f(p) (k = 1, . . . , N),

where f(x) is any function of x which tends to ∞ as x→∞.

For the purposes of the proof we introduce some notation. First we may
assume f(x) = O(log log x). n+ will denote the smallest prime ≥ n, and
n− the largest prime < n, while ‖p‖+ will denote the minimum of q − p
taken over all primes q > p. For any constant δ (0 < δ < 1/100) we define
ϑδ(x) to be the sum

∑
log p taken over all primes p subject to p ≤ x and

‖p‖+ ≥ δ log p. We put h = h(X) = F (X)
√
f(X). C will denote a large

positive constant.
We now start with the auxiliary function

(2.2) Q ≡
∑

X≤n≤CX

N∏
k=1

A
(δ)
k (n+),
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where for any integer n we have written

A
(δ)
k (n)

≡
{(

ϑδ

(
n

αk

)
− ϑδ

(
n− [hαk]

αk

))1−ek
(
ϑδ

(
n+ [hαk]

αk

)
− ϑδ

(
n

αk

))ek
}
.

Our aim is to prove that Q 6= 0. (In fact, we prove that Q � hNX.) This
would clearly prove Theorem 2. We write

Q1 ≡
∑

X≤n≤CX

N∏
k=1

A
(δ)
k (n).

Our first step consists in proving that

(2.3) Q ≥ Q1 + o(hNX)

for a suitable choice of δ and C. We begin by proving that if p1 and p2

are two unequal primes with ‖p1‖+ ≥ δ log p1 and ‖p2‖+ ≥ δ log p2 then
|p1 − p2| ≥ min(δ log p1, δ log p2). To see this let p1 > p2. Then p1 − p2 =
p1 − p∗2 + p∗2 − p2 ≥ p∗2 − p2 = ‖p2‖+, where p∗2 denotes the prime next to
p2. Similarly if p2 > p1 then p2 − p1 ≥ ‖p1‖+. This proves our assertion.
From this it follows that A(δ)

k (n) and A
(δ)
k (n+) are both O(hδ−1) and also

their difference is O(((n+ − n−)(δ logX)−1 + 1) logX). Thus∑
n−≤n≤n+

|A(δ)
k (n)−A

(δ)
k (n+)|

= O(min(h(n+ − n−)δ−1, ((n+ − n−)2(δ logX)−1 + (n+ − n−)) logX)).

Hence if in (2.2) we replace A(δ)
N (n+) by A(δ)

N (n) the total error is

O

((
h

δ

)N−1 ∑
X≤n+≤CX

min
(
h

δ
(n+−n−),

(n+ − n−)2

δ
+(n+−n−) logX

))
.

Put H = F (X). Then the sum∑
X≤n+≤CX, n+−n−≥H

(n+ − n−)

is easily seen to be ≤ 2
∑

n 1, where the sum is over all n for which (n, n+
F (X)) does not contain any prime. This can be seen by considering the
intervals [n−, n+] and [n+, n+ +H]. Hence by hypothesis this sum is o(X).
Again∑

X≤n+≤CX

n+−n−≤H

(
(n+ − n−)2

δ
+ (n+ − n−) logX

)
= O

(
HX

δ

)
= o

(
hX

δ

)
,
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since
∑

X≤n+≤CX(n+ − n−) = O(X) and
∑

X≤n+≤CX 1 = O(X/ logX).

Hence the total error obtained by replacing in (2.2) the numbers A(δ)
N (n+)

by A
(δ)
N (n) is o(hNX). By repeating this process we can replace all the

numbers A(δ)
k (n+) by A

(δ)
k (n) (k = 1, 2, . . . , N) with a total error which is

o(hNX). This proves (2.3). (Note that we have retained δ in the estimates
to give a rough idea of how we obtained them. But it is not important.)

We now prove the following lemma.

Lemma 2.1. We have, for x ≥ 2,

0 ≤ ϑ(x)− ϑδ(x) ≤ 4xδ1

where δ1 = δ1(x) → δ as x→∞.

R e m a r k. We postpone the proof of this lemma to the end of the proof
of Lemma 2.4.

Lemma 2.2. Let

Ak(n) =
{(

ϑ

(
n

αk

)
−ϑ

(
n− [hαk]

αk

))1−ek
(
ϑ

(
n+ [hαk]

αk

)
−ϑ

(
n

αk

))ek
}
.

Then Ak(n) ≥ A
(δ)
k (n) and∑

X≤n≤CX

(Ak(n)−A
(δ)
k (n)) ≤ 4Xhδ1C

for k = 1, . . . , N with δ1 = δ1(X) → δ as X →∞.

P r o o f. Put ψδ(x) = ϑ(x)− ϑδ(x). Then

Ak(n)−A
(δ)
k (n) = ψδ

(
n+ [hαk]

αk

)
− ψδ

(
n

αk

)
provided ek = 1 (the case ek = 0 can be treated similarly). Now by treating
the sum ∑

X≤n≤CX

(
ψδ

(
n+ [hαk]

αk

)
− ψδ

(
n

αk

))
just as we treated J2 in the proof of Theorem 1 of Section 1 we are led to
the lemma in view of Lemma 2.1.

Lemma 2.3. We have

Ak(n)−A
(δ)
k (n) ≤ h

√
δ (X ≤ n ≤ CX)

except for O(Xδ1/2) integers n. Also (by hypothesis) Ak(n) ≥ ηh for some
constant η > 0 and for all integers n (X ≤ n ≤ CX) with the exception of
o(X) integers n.

P r o o f. The proof follows from Lemma 2.2.
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Lemma 2.4. We have

A
(δ)
k (n) � h (k = 1, 2, . . . , n)

for � X integers n in X ≤ n ≤ CX.

P r o o f. Follows from Lemma 2.3 by choosing a small δ. Lemmas 2.1 to
2.4 prove that Q1 and therefore Q are � hNX, for a suitable choice of X
and δ, provided we prove Lemma 2.1.

P r o o f o f L e m m a 2.1. We have to prove that∑
p≤x, ‖p‖+≤δ log p

log p ≤ 4xδ1.

The proof of this is based on the following lemma.

N o t e. In Lemma 2.5 and its proof we use h, H. This should not be
confused with the earlier ones.

Lemma 2.5. Let h be any non-zero integer. Then the number of primes
p ≤ x for which p+ h (= p′) is again prime is

≤
{

8
∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|h

(
p− 1
p− 2

)}(
1 +O

(
log log x

log x

))
x

(log x)2
,

uniformly in h provided h is even. If h is odd the number in question is ≤ 1.

R e m a r k. For the proof of this lemma we refer to Theorem 3.11 on
page 117 of [2]. This result is due to E. Bombieri and H. Davenport (see
[1]) and independently also to L. F. Kondakova and N. I. Klimov (see [6]).
Both these discoveries use the Selberg sieve.

We continue the proof of Lemma 2.1. Put H = [δ log x(1 + o(1))]. Then
it suffices to prove that

8
( ∑

1≤h≤H/2

∏
2<p|h

(
p− 1
p− 2

)) ∏
p>2

(
1− 1

(p− 1)2

)
≤ 4δ1 log x.

For s = σ + it, σ > 1, we have

G(s) ≡
∞∑

h=1

( ∏
2<p|h

(
p− 1
p− 2

))
h−s

=
∑

h odd

( ∑
p|h

(
p− 1
p− 2

))
h−s + 2−s

∑
2≤h≡2 (mod 4)

∏
p|h/2

(. . .)
(
h

2

)−s

+ 4−s
∑

4≤h≡4 (mod 8)

∏
p|h/4

(. . .)
(
h

4

)−s

+ . . .
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=
( ∏

p>2

{
1 + p−s

(
p− 1
p− 2

)
+ p−2s

(
p− 1
p− 2

)
+ . . .

}) ∞∑
n=0

2−ns

= ζ(s)
∏
p>2

{(
1− 1

ps

)(
1 +

p−s

1− p−s

(
p− 1
p− 2

))}

= ζ(s)
∏
p>2

{
1 +

(
p− 1
p− 2

− 1
)
p−s

}
= ζ(s)

∏
p>2

(
1 +

p−s

p− 2

)
.

Hence by standard methods (using Perron’s formula etc.) we deduce that
the quantity in question is

≤ 8
( ∏

p>2

{(
1+

1
p(p− 2)

)(
1− 1

(p− 1)2

)})(
1
2
H+o(H)

)
= 4H(1+o(1)).

Thus Lemma 2.1, and hence Theorem 2, is completely proved.

Before leaving this section we record a remark.

R e m a r k. Let S be a fixed infinite set of primes with the property that

Π(S, x) ≡
∑

p≤x, p∈S

1

satisfies Π(S, x) ≥ (d+ o(1))x(log x)−1, where d (0 < d ≤ 1) is a constant.
We define

ϑδ(S, x) ≡
∑

p≤x, p∈S, ‖p‖+≥δ log p

log p and ϑ(S, x) ≡
∑

p≤x, p∈S

log p.

Then trivially (with any constant α > 0) the arguments in the previous
paragraphs lead to∑

X≤n≤CX

(
ϑδ

(
S,
n+ [hα]

α

)
− ϑδ

(
S,
n

α

))

≥
∑

CX<n≤CX+[hα]

(
ϑ

(
S,
n

α

)
− 4nδ1

α

)
−

∑
X≤n<X+[hα]

ϑ

(
n

α

)

≥
(
d

α
+ o(1)− 4δ1

α

)
CX[hα]− (1 + o(1))

(
X + [hα]

α

)
[hα]

(by dividing the sum ϑ(S, n/α) into primes ≤ X(logX)−2 and the rest)

≥ (C(d− 4δ)− 1 + o(1))hX.

3. Statement and proof of Theorem 3. We begin by stating an ear-
lier result due to K. Ramachandra (see [10]) obtained by applying Selberg’s
sieve.
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Result. Let ε be any positive constant < 1 and let N be any natural
number > 2ε−1. Let α1, . . . , αN be any distinct positive constants. Then
there exist two of these constants, say β and γ, such that the inequality

(3.1) |βp− γq| < pε

holds for infinitely many prime pairs (p, q).

By a careful use of Brun’s sieve, S. Srinivasan [15] has shown that (3.1)
holds with pε replaced by a certain constant times log p, provided N exceeds
a certain large constant. He has also shown that the set of primes can
be replaced by a slightly thinner set such as our set S. The purpose of
this section is to develop the method of proof of Theorem 2 and prove the
following theorem.

Theorem 3. Let S be a fixed infinite set of primes satisfying

(3.2)
∑

p∈S, p≤x

1 ≥ (d+ o(1))x(log x)−1 (x ≥ 2)

where d (0 < d ≤ 1) is any constant. Let δ (0 < δ < d/4) be any constant
and r ≥ 2 any integer constant. Put

(3.3) N =
[

r!
2δ(d− 4δ)

]
+ 1.

Let α1, . . . , αN be any given distinct positive constants. Then there exist r
of these constants, say β1, . . . , βr such that the 1

2r(r − 1) inequalities

(3.4) |βipi − βjpj | ≤ δ(βi + βj)L (i, j = 1, . . . , r; i < j),

where L = min(log p1, . . . , log pr), hold for an infinite set of r-tuples of
primes p1, . . . , pr all belonging to S.

By taking d = 1, r = 2, δ = 1/8, N = 17 we have the following corollary.

Corollary 1. Given any 17 distinct positive constants α1, . . . , α17, there
exist two of them, say β and γ, such that the inequality

(3.5) |βp− γq| ≤ 1
8 (β + γ) log p

has infinitely many solutions in prime pairs (p, q).

Letting δ to be arbitrary and choosing α1, . . . , αN to be suitable distinct
rational constants close to 1, we have the following corollary.

Corollary 2. Given any δ > 0 there exist infinitely many rational
constants β > 0 (β 6= 1) with

(3.6) lim
p→∞

inf{(min
q
|p− βq|)(log p)−1} ≤ δ.

Here p and q denote primes.
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For the proof of Theorem 3 we adopt the notation explained in the last
remark of Section 2. For simplicity of notation we do not mention the
dependence of ϑδ(. . .) etc. on the set S. We implicitly involve S in the
notation of this section. We need a few lemmas.

Lemma 3.1. Let C be a large positive constant and α any positive con-
stant. Then for any function h = h(X) (which is O(logX) but tends to ∞
as X →∞) and any constant δ (0 < δ < d/4), we have

(3.7)
∑

X≤n≤CX

(
ϑδ

(
n+ [hα]

α

)
− ϑδ

(
n

α

))
≥ (C(d− 4δ)− 1 + o(1))hX.

P r o o f. See the last remark in Section 2.

Lemma 3.2. There exists an integer n (with X ≤ n ≤ CX) such that

(3.8)
N∑

j=1

(
ϑδ

(
n+ [hαj ]

αj

)
− ϑ

(
n

αj

))
≥ hN(C(d− 4δ)− 1 + o(1))

C − 1
.

P r o o f. The proof follows from Lemma 3.1.

From now on n will be fixed as the one given by Lemma 3.2.

Lemma 3.3. Put

Aj = ϑδ

(
n+ [hαj ]

αj

)
− ϑδ

(
n

αj

)
and A =

N∑
j=1

Aj .

Then for any integer r ≥ 2, we have

(3.9) Ar ≤ 1
2 (r!∆)Ar−1 + r!Q2,

where Q2 is the sum of the square-free products of A1, . . . , AN occurring in
Ar and ∆ = max(A1, . . . , AN ).

P r o o f. Clearly

Ar − r!Q2 ≤
r!
2

(A2
1A

r−2 +A2
2A

r−2 + . . .+A2
NA

r−2)

and A2
1 +A2

2 + . . .+A2
N ≤ ∆A. Thus the lemma is proved.

Lemma 3.4. We have, with R = log logX,

(3.10) ∆ ≤ (1 + [h(δ logX − 2δR)−1])(logX +R).

P r o o f. By our remarks immediately following (2.3) we see that the
distance between any two primes occurring in

Aj =
∑

nα−1
j

<p<(n+[hαj ])α
−1
j

, ‖p‖+≥δ log p

log p

is ≥ δ(logX − 2R). This proves the lemma.
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Lemma 3.5. Put h = δ(logX−R2), where as before R = log logX. Then

(3.11) Q2 6= 0.

P r o o f. Otherwise we have (by Lemma 3.3) A ≤ 1
2 (r!∆). Note that

∆ ≤ logX +R and so
2hN(C(d− 4δ)− 1 + o(1))

C − 1
≤ r!(logX +R).

Here dividing by logX and letting X →∞, we have

2Nδ(C(d− 4δ)− 1)(C − 1)−1 ≤ r!.

Since C can be chosen to be a large constant it follows that this is possible
only if 2Nδ(d−4δ) ≤ r!, which is a contradiction since N > r!(2δ(d−4δ))−1.

R e m a r k. In fact, we can obtain a contradiction even if δ is replaced
by a slightly smaller number.

P r o o f o f T h e o r e m 3. By Lemma 3.5, the hypothesis of the theorem
implies that Q2 6= 0. Thus there exist constants β1, . . . , βr out of α1, . . . , αN

for which (for a suitable n with X ≤ n ≤ CX) we have

ϑδ

(
n+ [hβj ]

βj

)
− ϑδ

(
n

βj

)
> 0 (j = 1, . . . , r).

Hence there exist p1, . . . , pr (all in S) with Xβ−1
j < pj < (CX + [hβj ])β−1

j

satisfying the inequalities
n+ [hβj ]

βj
≥ pj >

n

βj
(j = 1, . . . , r),

i.e.

(3.12) |βipi − βjpj | < h(βi + βj) (i, j = 1, . . . , r; i < j).

Now h = δ(logX−R2) and log pi = logX+O(1) (i = 1, . . . , r). By choosing
C large and using the remark at the end of the proof of Lemma 3.5, we see
that O(1) can be omitted. Next β1, . . . , βr depend on X. But there are at
most N !(r!(N − r)!)−1 choices for them and the set of r-tuples of primes
which figure in (3.12) is infinite. Thus we have (3.4) for an infinite set of
r-tuples of primes for a suitable set of r constants (chosen from α1, . . . , αN )
which we again denote by β1, . . . , βr for simplicity of notation. This proves
Theorem 3 completely.

4. Concluding remarks. (1) Our proof of Theorem 1 actually gives the
following corollary. Suppose θ1 and θ2 are two positive constants such that
π(x+Y )−π(x) � Y (log Y )−1 for Y = [xθ1+ε] and with h = [Y θ2+ε] we have
π(y+h)−π(y) � h(log h)−1 for all integers y in [Y, 2Y ] with o(Y ) exceptions
(ε > 0 being arbitrary). Then Theorem 1 holds with θ1θ2 < θ ≤ 1. In
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proving Theorem 1 we have taken θ1 = 6/11 and θ2 = 1/10, which are known
results giving the above hypothesis for these values of θ1 and θ2. However,
we have to use the method of [10]. We will deal with consequences of R.H.
and Montgomery’s pair correlation conjecture in another paper. According
to A. Perelli the last two hypotheses together seem to imply that there are
� log x Goldbach numbers in the interval (x, x +D log x), where D > 0 is
a certain large constant.

(2) G. Harman has shown in [4] that almost all intervals (n, n+(log n)7+δ)
(where δ > 0 is any constant) contain a number of the type p1p2, where
p1 and p2 are odd, p1 “big” and p2 “small”. From this it follows by our
method that there exist infinitely many pairs (n1, n2) of positive integers
with Ω(2n1n2) ≤ 5, µ(2n1n2) = −1 and |n1 − 2n2| ≤ (log n1)7+δ. (See also
D. Wolke [16] for a bigger constant in place of 7 in Harman’s result. Mention
has to be made of Y. Motohashi’s result [9]. Using his result we can prove
that each of 0 < p− 2p1p2 < pε and 0 < 2p1p2 − p < pε (taken separately)
has infinitely many solutions in odd primes p, p1 and p2 with p1 “big” and
p2 “small”.)

(3) In Sections 2 and 3 we get economical constants since we have used
the results based on Selberg’s sieve. If, however, we use results based on
Brun’s sieve (see [11] for an exposition of Brun’s sieve) we obtain bad con-
stants; but the analogous results are still true. We take this opportunity to
point out some numerical corrections in [11]: page 90, 2−, 4a log 2 − 3 →
4aa log 2 − 2; page 91, 4+, 4a log 2 → 4aa log 2; 3−, 4a log 2 < D + 3 →
4aa log 2 < D + 2; page 92, 9+, 4a log 2 → 4aa log 2; 10+, 4a log 2 < D + 3 →
4aa log 2 < D + 2.

(4) From the results of S. Lou and Q. Yao (see [7]) it follows that given
any constant α > 0 and any prime p there exists a prime q such that
0 < αp− q �ε p

6/11+ε, where ε (> 0) is any arbitrary constant.

Acknowledgements. We are very much indebted to the work [2] and
its continuation [13] for beautiful expositions of Brun’s sieve and Selberg’s
sieve. We should also mention that the exposition of Brun’s sieve in [11] was
also useful. The first author wishes to acknowledge the help given to him
by H. Halberstam during his stay for three months in Nottingham, U.K.,
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Post-script (November 1995). Regarding Remark (1) of Section 4 the following
results have been proved recently (information from Professor A. Perelli): θ1 = 535/1000
due to R. C. Baker and G. Harman (to appear in Proc. London Math. Soc.), θ2 = 1/14
due to Nigel Watt (Short intervals almost all containing primes, Acta Arith. 72 (1995),
131–167). The result of Nigel Watt has been improved by K. C. Wong (a student of Glyn
Harman). His exponent is 1/18. This is in the course of publication. More recently we came
to know from the Editors that the exponent has been improved to 1/20 by Jia Chaohua
(Almost all short intervals containing prime numbers, to appear in Acta Arith.). Thus in
Theorem 1 we can replace 3/55 by 535/20000. This seems to be the best known result of
this kind.
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