# Problems and results on $\alpha p-\beta q$ 

by

K. Ramachandra, A. Sankaranarayanan

and K. Srinivas (Bombay)

## Dedicated to Professor K. Chandrasekharan on his seventy-fifth birthday

1. Introduction. This paper is a continuation of the work of K. Ramachandra [10]. It is in fact a development of the methods adopted there. We prove three theorems of which Theorem 1 (below) is a remark on Goldbach numbers (i.e. numbers which can be represented as a sum of two odd primes). We state and prove Theorems 2 and 3 in Sections 2 and Section 3 respectively. In Section 4 we make some concluding remarks.

Theorem 1. Let $\theta(3 / 55<\theta \leq 1)$ be any constant and let $x$ exceed a certain large positive constant. Then the number of Goldbach numbers in $\left(x, x+x^{\theta}\right)$ exceeds a positive constant times $x^{\theta}$. In particular, if $g_{n}$ denotes the $n$th Goldbach number then

$$
g_{n+1}-g_{n} \ll g_{n}^{\theta}
$$

Remark1. This theorem and its proof has its genesis in Section 9 of the paper [8] of H. L. Montgomery and R. C. Vaughan.

Remark 2. Let $\alpha$ be any positive constant. By considering (in our proof of Theorem 1) the expression

$$
\begin{array}{r}
\frac{1}{Y} \sum_{y=Y}^{2 Y}(\vartheta(x+h-y)-\vartheta(x-y))\left(\vartheta\left(\frac{y+h}{\alpha}\right)-\vartheta\left(\frac{y}{\alpha}\right)\right) \\
\left(\operatorname{resp} \cdot \frac{1}{Y} \sum_{y=Y}^{2 Y}(\vartheta(x+h+y)-\vartheta(x+y))\left(\vartheta\left(\frac{y+h}{\alpha}\right)-\vartheta\left(\frac{y}{\alpha}\right)\right)\right)
\end{array}
$$

we can prove that every interval $\left(x, x+x^{\theta}\right)$ contains a number of the form

[^0]$p+q \alpha$ (resp. $p-q \alpha$ ) where $p$ and $q$ are primes, provided $x$ exceeds a large positive constant.

Since the proof of Theorem 1 follows nearly the corresponding result of [10], with $7 / 72<\theta \leq 1$, we will prove this theorem in the introduction itself. In both Section 2 and Section 3 and also in Section 4 we deal with the problem: How small can $\alpha p-\beta q(>0)$ be made if $\alpha$ and $\beta$ are positive constants and $p$ and $q$ primes? We also consider similar questions about $|\alpha p-\beta q|$.

Proof of Theorem 1. Let $\varepsilon(0<\varepsilon<1 / 100)$ be any constant. Let $x$ be any integer which exceeds a large positive constant depending on $\varepsilon$. Put $Y=\left[x^{6 / 11+\varepsilon}\right], h=\left[Y^{1 / 10+\varepsilon}\right]$. As in [10] consider the sum

$$
J \equiv Y^{-1} \sum_{y=Y}^{2 Y}(\vartheta(x+h-y)-\vartheta(x-y))(\vartheta(y+h)-\vartheta(y)) .
$$

According to a theorem of G. Harman (see [3]) the number of integers $y$ with $\vartheta(y+h)-\vartheta(y) \leq \eta h$ is $o(Y)$ provided $\eta(>0)$ is a certain small constant. Since the terms in the sum defining $J$ are non-negative we have

$$
J \geq J_{1} \equiv \eta h Y^{-1} \sum_{y=Y}^{2 Y}(\vartheta(x+h-y)-\vartheta(x-y)),
$$

where the accent indicates the restriction of the sum to integers $y$ with $\vartheta(y+h)-\vartheta(y)>\eta h$. (Note that the omitted values are $o(Y)$ in number.) We now include these omitted values of $y$, and by applying a well-known theorem of V. Brun (see [11]) these contribute $o\left(h^{2}\right)$ to $J_{1}$. Thus

$$
J \geq J_{1}=\eta h Y^{-1} J_{2}+o\left(h^{2}\right),
$$

where

$$
J_{2}=\sum_{y=Y}^{2 Y}(\vartheta(x+h-y)-\vartheta(x-y)) .
$$

Now

$$
J_{2}=\sum_{x+h-2 Y \leq n \leq x+h-Y} \vartheta(n)-\sum_{x-2 Y \leq n \leq x-Y} \vartheta(n) .
$$

Here the first sum is over $x+h-2 Y \leq n \leq x-Y$ and $x-Y<n \leq x+h-Y$, and the second is over $x-2 Y \leq n<x+h-2 Y$ and $x+h-2 Y \leq n \leq x-Y$. Hence

$$
J_{2}=\sum_{x-Y<n \leq x+h-Y}(\vartheta(n)-\vartheta(n-Y-1)) .
$$

Now by applying the results of S. Lou and Q. Yao (see [7]), we see that each term of the last sum is $\gg Y$ and so $J_{1} \gg h^{2}$ and thus $J \gg h^{2}$. From this we deduce Theorem 1 as in [10] by applying Corollary 5.8.3 on page 179 of [2].

Remark1. There is an improvement of $\log$ and $\log \log$ factors in density results in our previous paper [12]. This gives

$$
\frac{1}{X} \int_{X}^{2 X}(\vartheta(x+H)-\vartheta(x)-H)^{2} d x=o\left(H^{2}(\log X)^{-1}\right)
$$

provided $H=X^{1 / 6}(\log X)^{137 / 12}(\log \log X)^{47 / 12} f(X)$, where $f(X)$ is any function of $X$ which tends to infinity as $X \rightarrow \infty$. But this has no advantage over the results of G. Harman (see [3]) which in the direction of Theorem 1 is more powerful than all the results known so far.

Remark 2. If we assume a certain obvious hypothesis we can improve Theorem 1. However, assuming a stronger hypothesis like the Riemann hypothesis (R.H.) Theorem 1 can be improved much further (see Section 4 for a remark in this direction).

After Theorem 1 we turn to a different question. We ask whether for every $\varepsilon(>0)$, the inequality $0<p-2 q<p^{\varepsilon}$ has infinitely many solutions in primes $p, q$. (In Section 2 we prove a more general result which shows that this is so if $\varepsilon>1 / 10$.) But if $\varepsilon \leq 1 / 10$ we do not know whether even $|p-2 q|<p^{\varepsilon}$ has infinitely many solutions. A milder question is this: Do there exist positive integer constants $a$ and $b$ with $\mu(a b)=-1$ for which $0<a p-b q<p^{\varepsilon}$ has infinitely many solutions in primes $p, q$ (for every $\varepsilon>0)$ ? We do not know whether even $\mu(n(n+1))=-1$ has infinitely many solutions in positive integers $n$.

Notation. We use standard notation. The symbol $\equiv$ denotes a definition. The symbols $\ll($ resp. $\gg)$ mean less than (resp. greater than) a positive constant multiple of. Sometimes we specify the constants on which these constants depend by indicating them below these signs. For any positive function $g$ of $X, o(g)$ means a term which when divided by $g$ tends to zero as $X \rightarrow \infty$. The symbol $O(g)$ means a quantity which when divided by $g$ remains bounded as $X \rightarrow \infty$. The function $\vartheta(x)$ is as usual $\sum \log p$ summed up over all primes $p \leq x$. But in Section 3, $\vartheta(x)$ may have a slightly different meaning which will be explained at relevant places. We put $\mu(1)=1, \mu(n)=0$ if $p^{2}$ divides $n$ for some prime $p$, and otherwise $\mu(n)= \pm 1$ according as the number of prime factors of $n$ is even or odd. Also if $n>1$ we define $\Omega(n)$ to be the number of prime factors of $n$ counted with multiplicity. For any real $x,[x]$ will mean the greatest integer $\leq x$. We use $x$ (or $X$ ) to represent the only independent variable and unless otherwise stated they will be supposed to exceed a large positive constant. Any other notation will be explained at relevant places.
2. Statement and proof of Theorem 2. In the statement of Theorem 2 positive functions $F(x)$ of $x$ with a certain property play an important role. The property is this: For all but $o(X)$ integers $n$ with $X \leq n \leq 2 X$, the intervals $(n, n+F(X))$ should contain $\geq \eta F(X)(\log X)^{-1}$ primes, where $\eta>0$ is a constant. Owing to the work of G. Harman (see [3]) we can take $F(X)$ to be $X^{1 / 10+\varepsilon}$, where $\varepsilon>0$ is any constant and $\eta$ depends on $\varepsilon$. This work of his has already been referred to in Section 1. (If, however, we assume (R.H.) then there is the following result due to A. Selberg (see [14] and for references to the related material see page 349 of [5] and $\S 9$ of [8]):
$\frac{1}{X} \int_{X}^{2 X}(\vartheta(x+h)-\vartheta(x)-h)^{2} d x \ll\left(h^{1 / 2} \log X\right)^{2} \quad$ valid for $h \geq 1, X \geq 2$.
Here the left hand side is equal to

$$
\frac{1}{X} \sum_{X \leq n \leq 2 X}(\vartheta(n+h)-\vartheta(n)-h)^{2}+O(\log X)^{2}
$$

and so we can choose $F(X)$ to be $(\log X)^{2}$ times any function which tends to $\infty$ as $X \rightarrow \infty$, and $\eta$ to be any constant $<1$.) It should be stressed that our Theorem 2 is a self contained statement and does not depend on any external unproved hypothesis. We are now in a position to state Theorem 2.

Theorem 2. Let $F(x)\left(\right.$ with $\left.(\log x)^{2} \leq F(x) \leq x(\log x)^{-2}\right)$ be a function of $x$ such that for all but $o(X)$ integers $n$ in the interval $X \leq n \leq 2 X$, the interval $(n, n+F(X))$ contains at least $\eta F(X)(\log X)^{-1}$ primes, where $\eta>0$ is some constant. Let $\alpha_{1}, \ldots, \alpha_{N}(N \geq 1)$ be any fixed positive constants. Let $e_{1}, \ldots, e_{N}$ denote integers which are 0 or 1 . Then there exist infinitely many $(N+1)$-tuples of primes $p, q_{1}, \ldots, q_{N}$ such that

$$
\begin{equation*}
0<(-1)^{e_{k}}\left(p-\alpha_{k} q_{k}\right)<F(p) f(p) \quad(k=1, \ldots, N) \tag{2.1}
\end{equation*}
$$

where $f(x)$ is any function of $x$ which tends to $\infty$ as $x \rightarrow \infty$.
For the purposes of the proof we introduce some notation. First we may assume $f(x)=O(\log \log x)$. $n^{+}$will denote the smallest prime $\geq n$, and $n_{-}$the largest prime $<n$, while $\|p\|^{+}$will denote the minimum of $q-p$ taken over all primes $q>p$. For any constant $\delta(0<\delta<1 / 100)$ we define $\vartheta_{\delta}(x)$ to be the sum $\sum \log p$ taken over all primes $p$ subject to $p \leq x$ and $\|p\|^{+} \geq \delta \log p$. We put $h=h(X)=F(X) \sqrt{f(X)}$. $C$ will denote a large positive constant.

We now start with the auxiliary function

$$
\begin{equation*}
Q \equiv \sum_{X \leq n \leq C X} \prod_{k=1}^{N} A_{k}^{(\delta)}\left(n^{+}\right) \tag{2.2}
\end{equation*}
$$

where for any integer $n$ we have written

$$
\begin{aligned}
& A_{k}^{(\delta)}(n) \\
& \equiv\left\{\left(\vartheta_{\delta}\left(\frac{n}{\alpha_{k}}\right)-\vartheta_{\delta}\left(\frac{n-\left[h \alpha_{k}\right]}{\alpha_{k}}\right)\right)^{1-e_{k}}\left(\vartheta_{\delta}\left(\frac{n+\left[h \alpha_{k}\right]}{\alpha_{k}}\right)-\vartheta_{\delta}\left(\frac{n}{\alpha_{k}}\right)\right)^{e_{k}}\right\}
\end{aligned}
$$

Our aim is to prove that $Q \neq 0$. (In fact, we prove that $Q \gg h^{N} X$.) This would clearly prove Theorem 2. We write

$$
Q_{1} \equiv \sum_{X \leq n \leq C X} \prod_{k=1}^{N} A_{k}^{(\delta)}(n)
$$

Our first step consists in proving that

$$
\begin{equation*}
Q \geq Q_{1}+o\left(h^{N} X\right) \tag{2.3}
\end{equation*}
$$

for a suitable choice of $\delta$ and $C$. We begin by proving that if $p_{1}$ and $p_{2}$ are two unequal primes with $\left\|p_{1}\right\|^{+} \geq \delta \log p_{1}$ and $\left\|p_{2}\right\|^{+} \geq \delta \log p_{2}$ then $\left|p_{1}-p_{2}\right| \geq \min \left(\delta \log p_{1}, \delta \log p_{2}\right)$. To see this let $p_{1}>p_{2}$. Then $p_{1}-p_{2}=$ $p_{1}-p_{2}^{*}+p_{2}^{*}-p_{2} \geq p_{2}^{*}-p_{2}=\left\|p_{2}\right\|^{+}$, where $p_{2}^{*}$ denotes the prime next to $p_{2}$. Similarly if $p_{2}>p_{1}$ then $p_{2}-p_{1} \geq\left\|p_{1}\right\|^{+}$. This proves our assertion. From this it follows that $A_{k}^{(\delta)}(n)$ and $A_{k}^{(\delta)}\left(n^{+}\right)$are both $O\left(h \delta^{-1}\right)$ and also their difference is $O\left(\left(\left(n^{+}-n_{-}\right)(\delta \log X)^{-1}+1\right) \log X\right)$. Thus

$$
\begin{aligned}
& \sum_{n_{-} \leq n \leq n^{+}}\left|A_{k}^{(\delta)}(n)-A_{k}^{(\delta)}\left(n^{+}\right)\right| \\
& \quad=O\left(\min \left(h\left(n^{+}-n_{-}\right) \delta^{-1},\left(\left(n^{+}-n_{-}\right)^{2}(\delta \log X)^{-1}+\left(n^{+}-n_{-}\right)\right) \log X\right)\right)
\end{aligned}
$$

Hence if in (2.2) we replace $A_{N}^{(\delta)}\left(n^{+}\right)$by $A_{N}^{(\delta)}(n)$ the total error is
$O\left(\left(\frac{h}{\delta}\right)^{N-1} \sum_{X \leq n^{+} \leq C X} \min \left(\frac{h}{\delta}\left(n^{+}-n_{-}\right), \frac{\left(n^{+}-n_{-}\right)^{2}}{\delta}+\left(n^{+}-n_{-}\right) \log X\right)\right)$.
Put $H=F(X)$. Then the sum

$$
\sum_{X \leq n^{+} \leq C X, n^{+}-n_{-} \geq H}\left(n^{+}-n_{-}\right)
$$

is easily seen to be $\leq 2 \sum_{n} 1$, where the sum is over all $n$ for which $(n, n+$ $F(X)$ ) does not contain any prime. This can be seen by considering the intervals $\left[n_{-}, n^{+}\right]$and $\left[n^{+}, n^{+}+H\right]$. Hence by hypothesis this sum is $o(X)$.
Again

$$
\sum_{\substack{X \leq n^{+} \leq C X \\ n^{+}-n_{-} \leq H}}\left(\frac{\left(n^{+}-n_{-}\right)^{2}}{\delta}+\left(n^{+}-n_{-}\right) \log X\right)=O\left(\frac{H X}{\delta}\right)=o\left(\frac{h X}{\delta}\right)
$$

since $\sum_{X \leq n^{+} \leq C X}\left(n^{+}-n_{-}\right)=O(X)$ and $\sum_{X \leq n^{+} \leq C X} 1=O(X / \log X)$. Hence the total error obtained by replacing in (2.2) the numbers $A_{N}^{(\delta)}\left(n^{+}\right)$ by $A_{N}^{(\delta)}(n)$ is $o\left(h^{N} X\right)$. By repeating this process we can replace all the numbers $A_{k}^{(\delta)}\left(n^{+}\right)$by $A_{k}^{(\delta)}(n)(k=1,2, \ldots, N)$ with a total error which is $o\left(h^{N} X\right)$. This proves (2.3). (Note that we have retained $\delta$ in the estimates to give a rough idea of how we obtained them. But it is not important.)

We now prove the following lemma.
Lemma 2.1. We have, for $x \geq 2$,

$$
0 \leq \vartheta(x)-\vartheta_{\delta}(x) \leq 4 x \delta_{1}
$$

where $\delta_{1}=\delta_{1}(x) \rightarrow \delta$ as $x \rightarrow \infty$.
Remark. We postpone the proof of this lemma to the end of the proof of Lemma 2.4.

Lemma 2.2. Let
$A_{k}(n)=\left\{\left(\vartheta\left(\frac{n}{\alpha_{k}}\right)-\vartheta\left(\frac{n-\left[h \alpha_{k}\right]}{\alpha_{k}}\right)\right)^{1-e_{k}}\left(\vartheta\left(\frac{n+\left[h \alpha_{k}\right]}{\alpha_{k}}\right)-\vartheta\left(\frac{n}{\alpha_{k}}\right)\right)^{e_{k}}\right\}$.
Then $A_{k}(n) \geq A_{k}^{(\delta)}(n)$ and

$$
\sum_{X \leq n \leq C X}\left(A_{k}(n)-A_{k}^{(\delta)}(n)\right) \leq 4 X h \delta_{1} C
$$

for $k=1, \ldots, N$ with $\delta_{1}=\delta_{1}(X) \rightarrow \delta$ as $X \rightarrow \infty$.
Proof. Put $\psi_{\delta}(x)=\vartheta(x)-\vartheta_{\delta}(x)$. Then

$$
A_{k}(n)-A_{k}^{(\delta)}(n)=\psi_{\delta}\left(\frac{n+\left[h \alpha_{k}\right]}{\alpha_{k}}\right)-\psi_{\delta}\left(\frac{n}{\alpha_{k}}\right)
$$

provided $e_{k}=1$ (the case $e_{k}=0$ can be treated similarly). Now by treating the sum

$$
\sum_{X \leq n \leq C X}\left(\psi_{\delta}\left(\frac{n+\left[h \alpha_{k}\right]}{\alpha_{k}}\right)-\psi_{\delta}\left(\frac{n}{\alpha_{k}}\right)\right)
$$

just as we treated $J_{2}$ in the proof of Theorem 1 of Section 1 we are led to the lemma in view of Lemma 2.1.

Lemma 2.3. We have

$$
A_{k}(n)-A_{k}^{(\delta)}(n) \leq h \sqrt{\delta} \quad(X \leq n \leq C X)
$$

except for $O\left(X \delta^{1 / 2}\right.$ ) integers $n$. Also (by hypothesis) $A_{k}(n) \geq \eta h$ for some constant $\eta>0$ and for all integers $n(X \leq n \leq C X)$ with the exception of $o(X)$ integers $n$.

Proof. The proof follows from Lemma 2.2.

Lemma 2.4. We have

$$
A_{k}^{(\delta)}(n) \gg h \quad(k=1,2, \ldots, n)
$$

for $\gg X$ integers $n$ in $X \leq n \leq C X$.
Proof. Follows from Lemma 2.3 by choosing a small $\delta$. Lemmas 2.1 to 2.4 prove that $Q_{1}$ and therefore $Q$ are $\gg h^{N} X$, for a suitable choice of $X$ and $\delta$, provided we prove Lemma 2.1.

Proof of Lemma 2.1. We have to prove that

$$
\sum_{p \leq x,\|p\|+\leq \delta \log p} \log p \leq 4 x \delta_{1} .
$$

The proof of this is based on the following lemma.
Note. In Lemma 2.5 and its proof we use $h, H$. This should not be confused with the earlier ones.

Lemma 2.5. Let $h$ be any non-zero integer. Then the number of primes $p \leq x$ for which $p+h\left(=p^{\prime}\right)$ is again prime is

$$
\leq\left\{8 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{2<p \mid h}\left(\frac{p-1}{p-2}\right)\right\}\left(1+O\left(\frac{\log \log x}{\log x}\right)\right) \frac{x}{(\log x)^{2}}
$$

uniformly in $h$ provided $h$ is even. If $h$ is odd the number in question is $\leq 1$.
Remark. For the proof of this lemma we refer to Theorem 3.11 on page 117 of [2]. This result is due to E. Bombieri and H. Davenport (see [1]) and independently also to L. F. Kondakova and N. I. Klimov (see [6]). Both these discoveries use the Selberg sieve.

We continue the proof of Lemma 2.1. Put $H=[\delta \log x(1+o(1))]$. Then it suffices to prove that

$$
8\left(\sum_{1 \leq h \leq H / 2} \prod_{2<p \mid h}\left(\frac{p-1}{p-2}\right)\right) \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \leq 4 \delta_{1} \log x .
$$

For $s=\sigma+i t, \sigma>1$, we have

$$
\begin{aligned}
G(s) \equiv & \sum_{h=1}^{\infty}\left(\prod_{2<p \mid h}\left(\frac{p-1}{p-2}\right)\right) h^{-s} \\
= & \sum_{h \text { odd }}\left(\sum_{p \mid h}\left(\frac{p-1}{p-2}\right)\right) h^{-s}+2^{-s} \sum_{2 \leq h \equiv 2(\bmod 4)} \prod_{p \mid h / 2}(\ldots)\left(\frac{h}{2}\right)^{-s} \\
& +4^{-s} \sum_{4 \leq h \equiv 4(\bmod 8)} \prod_{p \mid h / 4}(\ldots)\left(\frac{h}{4}\right)^{-s}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{p>2}\left\{1+p^{-s}\left(\frac{p-1}{p-2}\right)+p^{-2 s}\left(\frac{p-1}{p-2}\right)+\ldots\right\}\right) \sum_{n=0}^{\infty} 2^{-n s} \\
& =\zeta(s) \prod_{p>2}\left\{\left(1-\frac{1}{p^{s}}\right)\left(1+\frac{p^{-s}}{1-p^{-s}}\left(\frac{p-1}{p-2}\right)\right)\right\} \\
& =\zeta(s) \prod_{p>2}\left\{1+\left(\frac{p-1}{p-2}-1\right) p^{-s}\right\}=\zeta(s) \prod_{p>2}\left(1+\frac{p^{-s}}{p-2}\right) .
\end{aligned}
$$

Hence by standard methods (using Perron's formula etc.) we deduce that the quantity in question is
$\leq 8\left(\prod_{p>2}\left\{\left(1+\frac{1}{p(p-2)}\right)\left(1-\frac{1}{(p-1)^{2}}\right)\right\}\right)\left(\frac{1}{2} H+o(H)\right)=4 H(1+o(1))$.
Thus Lemma 2.1, and hence Theorem 2, is completely proved.
Before leaving this section we record a remark.
Remark. Let $S$ be a fixed infinite set of primes with the property that

$$
\Pi(S, x) \equiv \sum_{p \leq x, p \in S} 1
$$

satisfies $\Pi(S, x) \geq(d+o(1)) x(\log x)^{-1}$, where $d(0<d \leq 1)$ is a constant. We define

$$
\vartheta_{\delta}(S, x) \equiv \sum_{p \leq x, p \in S,\|p\|^{+} \geq \delta \log p} \log p \quad \text { and } \quad \vartheta(S, x) \equiv \sum_{p \leq x, p \in S} \log p .
$$

Then trivially (with any constant $\alpha>0$ ) the arguments in the previous paragraphs lead to

$$
\begin{aligned}
& \sum_{X \leq n \leq C X}\left(\vartheta_{\delta}\left(S, \frac{n+[h \alpha]}{\alpha}\right)-\vartheta_{\delta}\left(S, \frac{n}{\alpha}\right)\right) \\
\geq & \sum_{C X<n \leq C X+[h \alpha]}\left(\vartheta\left(S, \frac{n}{\alpha}\right)-\frac{4 n \delta_{1}}{\alpha}\right)-\sum_{X \leq n<X+[h \alpha]} \vartheta\left(\frac{n}{\alpha}\right) \\
\geq & \left(\frac{d}{\alpha}+o(1)-\frac{4 \delta_{1}}{\alpha}\right) C X[h \alpha]-(1+o(1))\left(\frac{X+[h \alpha]}{\alpha}\right)[h \alpha]
\end{aligned}
$$

(by dividing the sum $\vartheta(S, n / \alpha)$ into primes $\leq X(\log X)^{-2}$ and the rest)

$$
\geq(C(d-4 \delta)-1+o(1)) h X .
$$

3. Statement and proof of Theorem 3. We begin by stating an earlier result due to K. Ramachandra (see [10]) obtained by applying Selberg's sieve.

Result. Let $\varepsilon$ be any positive constant $<1$ and let $N$ be any natural number $>2 \varepsilon^{-1}$. Let $\alpha_{1}, \ldots, \alpha_{N}$ be any distinct positive constants. Then there exist two of these constants, say $\beta$ and $\gamma$, such that the inequality

$$
\begin{equation*}
|\beta p-\gamma q|<p^{\varepsilon} \tag{3.1}
\end{equation*}
$$

holds for infinitely many prime pairs $(p, q)$.
By a careful use of Brun's sieve, S. Srinivasan [15] has shown that (3.1) holds with $p^{\varepsilon}$ replaced by a certain constant times $\log p$, provided $N$ exceeds a certain large constant. He has also shown that the set of primes can be replaced by a slightly thinner set such as our set $S$. The purpose of this section is to develop the method of proof of Theorem 2 and prove the following theorem.

Theorem 3. Let $S$ be a fixed infinite set of primes satisfying

$$
\begin{equation*}
\sum_{p \in S, p \leq x} 1 \geq(d+o(1)) x(\log x)^{-1} \quad(x \geq 2) \tag{3.2}
\end{equation*}
$$

where $d(0<d \leq 1)$ is any constant. Let $\delta(0<\delta<d / 4)$ be any constant and $r \geq 2$ any integer constant. Put

$$
\begin{equation*}
N=\left[\frac{r!}{2 \delta(d-4 \delta)}\right]+1 \tag{3.3}
\end{equation*}
$$

Let $\alpha_{1}, \ldots, \alpha_{N}$ be any given distinct positive constants. Then there exist $r$ of these constants, say $\beta_{1}, \ldots, \beta_{r}$ such that the $\frac{1}{2} r(r-1)$ inequalities

$$
\begin{equation*}
\left|\beta_{i} p_{i}-\beta_{j} p_{j}\right| \leq \delta\left(\beta_{i}+\beta_{j}\right) L \quad(i, j=1, \ldots, r ; i<j) \tag{3.4}
\end{equation*}
$$

where $L=\min \left(\log p_{1}, \ldots, \log p_{r}\right)$, hold for an infinite set of r-tuples of primes $p_{1}, \ldots, p_{r}$ all belonging to $S$.

By taking $d=1, r=2, \delta=1 / 8, N=17$ we have the following corollary.
Corollary 1. Given any 17 distinct positive constants $\alpha_{1}, \ldots, \alpha_{17}$, there exist two of them, say $\beta$ and $\gamma$, such that the inequality

$$
\begin{equation*}
|\beta p-\gamma q| \leq \frac{1}{8}(\beta+\gamma) \log p \tag{3.5}
\end{equation*}
$$

has infinitely many solutions in prime pairs $(p, q)$.
Letting $\delta$ to be arbitrary and choosing $\alpha_{1}, \ldots, \alpha_{N}$ to be suitable distinct rational constants close to 1 , we have the following corollary.

Corollary 2. Given any $\delta>0$ there exist infinitely many rational constants $\beta>0(\beta \neq 1)$ with

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \inf \left\{\left(\min _{q}|p-\beta q|\right)(\log p)^{-1}\right\} \leq \delta \tag{3.6}
\end{equation*}
$$

Here $p$ and $q$ denote primes.

For the proof of Theorem 3 we adopt the notation explained in the last remark of Section 2. For simplicity of notation we do not mention the dependence of $\vartheta_{\delta}(\ldots)$ etc. on the set $S$. We implicitly involve $S$ in the notation of this section. We need a few lemmas.

Lemma 3.1. Let $C$ be a large positive constant and $\alpha$ any positive constant. Then for any function $h=h(X)$ (which is $O(\log X)$ but tends to $\infty$ as $X \rightarrow \infty)$ and any constant $\delta(0<\delta<d / 4)$, we have

$$
\begin{equation*}
\sum_{X \leq n \leq C X}\left(\vartheta_{\delta}\left(\frac{n+[h \alpha]}{\alpha}\right)-\vartheta_{\delta}\left(\frac{n}{\alpha}\right)\right) \geq(C(d-4 \delta)-1+o(1)) h X \tag{3.7}
\end{equation*}
$$

Proof. See the last remark in Section 2.
Lemma 3.2. There exists an integer $n$ (with $X \leq n \leq C X$ ) such that

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\vartheta_{\delta}\left(\frac{n+\left[h \alpha_{j}\right]}{\alpha_{j}}\right)-\vartheta\left(\frac{n}{\alpha_{j}}\right)\right) \geq \frac{h N(C(d-4 \delta)-1+o(1))}{C-1} . \tag{3.8}
\end{equation*}
$$

Proof. The proof follows from Lemma 3.1.
From now on $n$ will be fixed as the one given by Lemma 3.2.
Lemma 3.3. Put

$$
A_{j}=\vartheta_{\delta}\left(\frac{n+\left[h \alpha_{j}\right]}{\alpha_{j}}\right)-\vartheta_{\delta}\left(\frac{n}{\alpha_{j}}\right) \quad \text { and } \quad A=\sum_{j=1}^{N} A_{j} .
$$

Then for any integer $r \geq 2$, we have

$$
\begin{equation*}
A^{r} \leq \frac{1}{2}(r!\Delta) A^{r-1}+r!Q_{2} \tag{3.9}
\end{equation*}
$$

where $Q_{2}$ is the sum of the square-free products of $A_{1}, \ldots, A_{N}$ occurring in $A^{r}$ and $\Delta=\max \left(A_{1}, \ldots, A_{N}\right)$.

Proof. Clearly

$$
A^{r}-r!Q_{2} \leq \frac{r!}{2}\left(A_{1}^{2} A^{r-2}+A_{2}^{2} A^{r-2}+\ldots+A_{N}^{2} A^{r-2}\right)
$$

and $A_{1}^{2}+A_{2}^{2}+\ldots+A_{N}^{2} \leq \Delta A$. Thus the lemma is proved.
Lemma 3.4. We have, with $R=\log \log X$,

$$
\begin{equation*}
\Delta \leq\left(1+\left[h(\delta \log X-2 \delta R)^{-1}\right]\right)(\log X+R) \tag{3.10}
\end{equation*}
$$

Proof. By our remarks immediately following (2.3) we see that the distance between any two primes occurring in

$$
A_{j}=\sum_{n \alpha_{j}^{-1}<p<\left(n+\left[h \alpha_{j}\right]\right) \alpha_{j}^{-1},\|p\|^{+} \geq \delta \log p} \log p
$$

is $\geq \delta(\log X-2 R)$. This proves the lemma.

Lemma 3.5. Put $h=\delta\left(\log X-R^{2}\right)$, where as before $R=\log \log X$. Then

$$
\begin{equation*}
Q_{2} \neq 0 . \tag{3.1}
\end{equation*}
$$

Proof. Otherwise we have (by Lemma 3.3) $A \leq \frac{1}{2}(r!\Delta)$. Note that $\Delta \leq \log X+R$ and so

$$
\frac{2 h N(C(d-4 \delta)-1+o(1))}{C-1} \leq r!(\log X+R) .
$$

Here dividing by $\log X$ and letting $X \rightarrow \infty$, we have

$$
2 N \delta(C(d-4 \delta)-1)(C-1)^{-1} \leq r!
$$

Since $C$ can be chosen to be a large constant it follows that this is possible only if $2 N \delta(d-4 \delta) \leq r!$, which is a contradiction since $N>r!(2 \delta(d-4 \delta))^{-1}$.

Remark. In fact, we can obtain a contradiction even if $\delta$ is replaced by a slightly smaller number.

Proof of Theorem 3. By Lemma 3.5, the hypothesis of the theorem implies that $Q_{2} \neq 0$. Thus there exist constants $\beta_{1}, \ldots, \beta_{r}$ out of $\alpha_{1}, \ldots, \alpha_{N}$ for which (for a suitable $n$ with $X \leq n \leq C X$ ) we have

$$
\vartheta_{\delta}\left(\frac{n+\left[h \beta_{j}\right]}{\beta_{j}}\right)-\vartheta_{\delta}\left(\frac{n}{\beta_{j}}\right)>0 \quad(j=1, \ldots, r) .
$$

Hence there exist $p_{1}, \ldots, p_{r}($ all in $S)$ with $X \beta_{j}^{-1}<p_{j}<\left(C X+\left[h \beta_{j}\right]\right) \beta_{j}^{-1}$ satisfying the inequalities

$$
\frac{n+\left[h \beta_{j}\right]}{\beta_{j}} \geq p_{j}>\frac{n}{\beta_{j}} \quad(j=1, \ldots, r)
$$

i.e.

$$
\begin{equation*}
\left|\beta_{i} p_{i}-\beta_{j} p_{j}\right|<h\left(\beta_{i}+\beta_{j}\right) \quad(i, j=1, \ldots, r ; i<j) . \tag{3.12}
\end{equation*}
$$

Now $h=\delta\left(\log X-R^{2}\right)$ and $\log p_{i}=\log X+O(1)(i=1, \ldots, r)$. By choosing $C$ large and using the remark at the end of the proof of Lemma 3.5, we see that $O(1)$ can be omitted. Next $\beta_{1}, \ldots, \beta_{r}$ depend on $X$. But there are at most $N!(r!(N-r)!)^{-1}$ choices for them and the set of $r$-tuples of primes which figure in (3.12) is infinite. Thus we have (3.4) for an infinite set of $r$-tuples of primes for a suitable set of $r$ constants (chosen from $\alpha_{1}, \ldots, \alpha_{N}$ ) which we again denote by $\beta_{1}, \ldots, \beta_{r}$ for simplicity of notation. This proves Theorem 3 completely.
4. Concluding remarks. (1) Our proof of Theorem 1 actually gives the following corollary. Suppose $\theta_{1}$ and $\theta_{2}$ are two positive constants such that $\pi(x+Y)-\pi(x) \gg Y(\log Y)^{-1}$ for $Y=\left[x^{\theta_{1}+\varepsilon}\right]$ and with $h=\left[Y^{\theta_{2}+\varepsilon}\right]$ we have $\pi(y+h)-\pi(y) \gg h(\log h)^{-1}$ for all integers $y$ in $[Y, 2 Y]$ with $o(Y)$ exceptions ( $\varepsilon>0$ being arbitrary). Then Theorem 1 holds with $\theta_{1} \theta_{2}<\theta \leq 1$. In
proving Theorem 1 we have taken $\theta_{1}=6 / 11$ and $\theta_{2}=1 / 10$, which are known results giving the above hypothesis for these values of $\theta_{1}$ and $\theta_{2}$. However, we have to use the method of [10]. We will deal with consequences of R.H. and Montgomery's pair correlation conjecture in another paper. According to A. Perelli the last two hypotheses together seem to imply that there are $\gg \log x$ Goldbach numbers in the interval $(x, x+D \log x)$, where $D>0$ is a certain large constant.
(2) G. Harman has shown in [4] that almost all intervals $\left(n, n+(\log n)^{7+\delta}\right)$ (where $\delta>0$ is any constant) contain a number of the type $p_{1} p_{2}$, where $p_{1}$ and $p_{2}$ are odd, $p_{1}$ "big" and $p_{2}$ "small". From this it follows by our method that there exist infinitely many pairs $\left(n_{1}, n_{2}\right)$ of positive integers with $\Omega\left(2 n_{1} n_{2}\right) \leq 5, \mu\left(2 n_{1} n_{2}\right)=-1$ and $\left|n_{1}-2 n_{2}\right| \leq\left(\log n_{1}\right)^{7+\delta}$. (See also D. Wolke [16] for a bigger constant in place of 7 in Harman's result. Mention has to be made of Y. Motohashi's result [9]. Using his result we can prove that each of $0<p-2 p_{1} p_{2}<p^{\varepsilon}$ and $0<2 p_{1} p_{2}-p<p^{\varepsilon}$ (taken separately) has infinitely many solutions in odd primes $p, p_{1}$ and $p_{2}$ with $p_{1}$ "big" and $p_{2}$ "small".)
(3) In Sections 2 and 3 we get economical constants since we have used the results based on Selberg's sieve. If, however, we use results based on Brun's sieve (see [11] for an exposition of Brun's sieve) we obtain bad constants; but the analogous results are still true. We take this opportunity to point out some numerical corrections in [11]: page $90,2_{-}, 4 a \log 2-3 \rightarrow$ $4^{a} a \log 2-2$; page $91,4^{+}, 4 a \log 2 \rightarrow 4^{a} a \log 2 ; 3_{-}, 4 a \log 2<D+3 \rightarrow$ $4^{a} a \log 2<D+2$; page $92,9^{+}, 4 a \log 2 \rightarrow 4^{a} a \log 2 ; 10^{+}, 4 a \log 2<D+3 \rightarrow$ $4^{a} a \log 2<D+2$.
(4) From the results of S. Lou and Q. Yao (see [7]) it follows that given any constant $\alpha>0$ and any prime $p$ there exists a prime $q$ such that $0<\alpha p-q \ll \varepsilon p^{6 / 11+\varepsilon}$, where $\varepsilon(>0)$ is any arbitrary constant.

Acknowledgements. We are very much indebted to the work [2] and its continuation [13] for beautiful expositions of Brun's sieve and Selberg's sieve. We should also mention that the exposition of Brun's sieve in [11] was also useful. The first author wishes to acknowledge the help given to him by H. Halberstam during his stay for three months in Nottingham, U.K., during 1978.

## References

[^1][5] A. Ivić, The Riemann Zeta-function, Wiley-Interscience, New York, 1985.
[6] L. F. Kondakova and N. I. Klimov, Certain additive problems, Volzh. Mat. Sb. 7 (1969), 41-44 (in Russian).
[7] S. Lou and Q. Yao, A Chebychev's type of prime number theorem in a short interval II, Hardy-Ramanujan J. 15 (1992), 1-33.
[8] H. L. Montgomery and R. C. Vaughan, The exceptional set of Goldbach's problem, Acta Arith. 27 (1975), 353-370.
[9] Y. Motohashi, A note on almost primes in short intervals, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 225-226.
[10] K. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math. France 105 (1977), 433-437.
[11] -, Viggo Brun (13-10-1885 to 15-8-1978), Math. Student 49 (1981), 97-95.
[12] K. Ramachandra, A. Sankaranarayanan and K. Srinivas, Ramanujan's lattice point problem, prime number theory and other remarks, Hardy-Ramanujan J. 19 (1996), 2-56.
[13] H.-E. Richert, Sieve Methods, Lecture Notes 55, Tata Institute of Fundamental Research, Bombay, 1976.
[14] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105.
[15] S. Srinivasan, A note on $|\alpha p-q|$, Acta Arith. 41 (1982), 15-18.
[16] D. Wolke, Fast-Primzahlen in kurzen Intervallen, Math. Ann. 244 (1979), 233-242.

Post-script (November 1995). Regarding Remark (1) of Section 4 the following results have been proved recently (information from Professor A. Perelli): $\theta_{1}=535 / 1000$ due to R. C. Baker and G. Harman (to appear in Proc. London Math. Soc.), $\theta_{2}=1 / 14$ due to Nigel Watt (Short intervals almost all containing primes, Acta Arith. 72 (1995), 131-167). The result of Nigel Watt has been improved by K. C. Wong (a student of Glyn Harman). His exponent is $1 / 18$. This is in the course of publication. More recently we came to know from the Editors that the exponent has been improved to $1 / 20$ by Jia Chaohua (Almost all short intervals containing prime numbers, to appear in Acta Arith.). Thus in Theorem 1 we can replace $3 / 55$ by $535 / 20000$. This seems to be the best known result of this kind.

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Colaba, Bombay 400 005, India
E-mail: kram@tifrvax.tifr.res.in sank@tifrvax.tifr.res.in srini@tifrvax.tifr.res.in


[^0]:    1991 Mathematics Subject Classification: 11xx, 11Nxx, 11N05.
    Key words and phrases: primes, inequalities, Harman's result, Selberg's sieve, Brun's sieve.

[^1]:    [1] E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. London Ser. A 293 (1966), 1-18.
    [2] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
    [3] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348.
    [4] -, Almost primes in short intervals, Math. Ann. 258 (1981), 107-112.

