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On addition of two distinct sets of integers

by

Yonutz Stanchescu (Tel Aviv)

1. Introduction. For any nonempty finite set K ⊆ Z we denote by
d(K) the greatest common divisor of K and by |K| the cardinality of K.
By the length `(K) of K we mean the difference between its maximal and
minimal elements.

We write [m,n] = {x ∈ Z | m ≤ x ≤ n}.
Let A = {0 = a1 < . . . < ak} and B = {0 = b1 < . . . < bl} be two sets

of integers. As usual, their sum is defined by

A+B = {x ∈ Z | x = a+ b, a ∈ A, b ∈ B}
and we put 2A = A+A.

Let hA = `(A)− |A|+ 1 denote the number of holes in A, that is,

hA = |[1, `(A)] \A|.
Here `(A) is the largest element of A.

It is easily seen that

(1) |A+B| ≥ |A|+ |B| − 1.

In [1] G. Freiman proved the following:

Theorem 1. (a) If ak ≤ 2k − 3, then |2A| ≥ ak + k = 2|A| − 1 + hA.
(b) If ak ≥ 2k − 2 and d(A) = 1, then |2A| ≥ 3|A| − 3.

Note that (a) improves the lower bound in (1) by exactly hA. The first
generalization of Theorem 1 in the case of two different summands was given
by G. Freiman in [2]:

Theorem 2. (a) If `(B) ≤ `(A) ≤ |A|+ |B| − 3 then

|A+B| ≥ `(A) + |B| = |A|+ |B| − 1 + hA.

(b) If max(`(A), `(B)) ≥ |A|+ |B| − 2 and d(A ∪B) = 1 then

|A+B| ≥ (|A|+ |B| − 3) + min(|A|, |B|).
Later, J. Steinig gave in [4] a somewhat simplified proof of Theorem 2(b),

by using Mann’s inequality.
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A sharpening of Theorem 2(b) with a new beautiful proof based on
Kneser’s Theorem was recently obtained by V. F. Lev and P. Y. Smeliansky
in [3]. Their main result is

Theorem 3. Assume `(A) ≥ `(B) and define

δ =
{

1 if ak = bl,
0 if ak > bl.

(a) If `(A) ≤ |A|+ |B| − 2− δ, then

|A+B| ≥ `(A) + |B| = |A|+ |B| − 1 + hA.

(b) If `(A) ≥ |A|+ |B| − 1− δ and d(A) = 1, then

|A+B| ≥ |A|+ 2|B| − 2− δ.
Note that neither Theorem 2(a) nor Theorem 3(a) improve the trivial

lower bound (1) in the case:

`(B) ≤ `(A) ≤ |A|+ |B| − 3 and hA = 0.

At the same time the lower bound |A| + |B| − 1 + hA gives only a modest
improvement of (1) if hA is very close to 0.

More precisely, the lower bound given by Theorems 2 and 3 in case (a)
depends only on hA and we would desire a symmetric one, which uses both
sets A and B. What happens if hA is much smaller than hB? Is it still
possible to improve the lower bound in this situation?

We prove

Theorem 4. Define

δ =
{

1 if `(A) = `(B),
0 if `(A) 6= `(B).

If max(`(A), `(B)) ≤ |A|+ |B| − 2− δ, then

(2) |A+B| ≥ (|A|+ |B| − 1) + max(hA, hB).

2. Proof of Theorem 4. There is no loss of generality in assuming
`(A) ≥ `(B). If hA ≥ hB , Theorem 3(a) gives the desired inequality (for an
elementary proof see for example [4], Theorem x).

Suppose that hB > hA. If `(A) = `(B), then Theorem 3(a) gives

|A+B| ≥ `(B) + |A| = |A|+ |B| − 1 + hB

= |A|+ |B| − 1 + max(hA, hB).

Hence, we assume below that

hB > hA,(3)

`(A) = ak > bl = `(B)(4)

and this also yields δ = 0.
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Define m by

(5) am < bl ≤ am+1

and let

(6) A′ = {a1, a2, . . . , am}, A′′ = {am+1, am+2, . . . , ak}.
Note that m ≥ 2 in view of (3) and (4). Obviously (A′ +B)∩ (A′′ + bl) = ∅
and therefore

(7) |A+B| ≥ |A′ +B|+ |A′′|.
If we show that B and A′ satisfy the assumptions of Theorem 3(a) then
using this theorem to estimate |B +A′| one obtains

|B +A′| ≥ |B|+ |A′| − 1 + hB ,

and thus
|A+B| ≥ |A′ +B|+ |A′′| ≥ (|B|+ |A′| − 1) + hB + |A′′|

= (|A|+ |B| − 1) + hB ,

completing the proof.
Thus it remains to show that

`(B) > `(A′),(8)

`(B) ≤ |B|+ |A′| − 2.(9)

By inequality (5), the number of holes in A between 1 and bl is given by
bl − (m− 1), and is at most hA. We get

`(A′) = am < bl = `(B) = [bl − (m− 1)] + (m− 1)

≤ hA + (m− 1) = ak − (k − 1) + (m− 1)

≤ (k + l − 2)− (k − 1) + (m− 1) = |B|+ |A′| − 2.

The theorem is proved.

3. Consequences. We usually utilize nontrivial lower bounds for |A+B|
in order to estimate the length of A and B for a given value of |A+B|. Our
theorem sharpens the corresponding results of V. F. Lev and P. Y. Smelian-
sky.

In this section we do not assume that the minimal elements of A and B
are 0 and for A = {a1, . . . , ak} and B = {b1, . . . , bl} we define

δ =
{

1 if `(A) = `(B),
0 if `(A) 6= `(B).

Corollary 1. Let B ⊆ A be two finite sets of integers. Denote by d
the greatest common divisor of a2 − a1, . . . , ak − a1, let a = `(A)/d be the
reduced length of A and put b = `(B)/d. If T = |A+B| < |A|+ 2|B| − 2− δ
then a ≤ T − l and b ≤ T − k.
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P r o o f. Define A′ = {(ai − a1)/d : i = 1, . . . , k} and B′ = {(bj − b1)/d :
j = 1, . . . , l}. Note that `(A′) = a ≥ `(B′) and d(A′) = 1.

If a ≥ |A′|+ |B′| − 1− δ then Theorem 3(b) gives |A+B| = |A′ +B′| ≥
|A′|+ 2|B′| − 2− δ = |A|+ 2|B| − 2− δ, a contradiction.

Therefore a ≤ |A′|+ |B′| − 2− δ. Theorem 4 gives |A+B| = |A′+B′| ≥
(|A′| + |B′| − 1) + max(hA′ , hB′) = max(a + |B|, b + |A|). The corollary is
proven.

Corollary 2. Let A and B be two finite sets of integers. Denote by d
the greatest common divisor of a2 − a1, . . . , ak − a1, b2 − b1, . . . , bl − b1 and
put a = `(A)/d, b = `(B)/d. If T = |A+B| < |A|+|B|+min(|A|, |B|)−2−δ
then a ≤ T − l and b ≤ T − k.

P r o o f. Define A′ = {(ai − a1)/d : i = 1, . . . , k} and B′ = {(bj − b1)/d :
j = 1, . . . , l}. Note that d(A′ ∪B′) = 1.

It is not difficult to prove (see [3], Lemma 2) that |A′ + B′| ≥ 2|A′| +
|B′| − 2 if d(A′) > 1 and d(A′ ∪B′) = 1.

If c = max(a, b) ≥ |A′| + |B′| − 1 − δ then by Theorem 3(b) and the
previous remark we obtain |A + B| = |A′ + B′| ≥ |A′| + |B′| − 2 − δ +
min(|A′|, |B′|) = |A|+ |B| − 2− δ + min(|A|, |B|), a contradiction.

Therefore c ≤ |A′|+ |B′| − 2− δ. Theorem 4 gives |A+B| = |A′+B′| ≥
max(a+ |B′|, b+ |A′|) = max(a+ |B|, b+ |A|). The corollary is proven.
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