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1. Introduction. Let f1, . . . , fn : R→ R be (n+ 1)-times continuously
differentiable functions. Write

(1) W (f ′1, . . . , f
′
n)(x) =




f ′1(x) . . . f ′n(x)
. . . . . . . . . . . . . . . . . . . . .
f

(n)
1 (x) . . . f

(n)
n (x)


 ,

(2) w(f ′1, . . . , f
′
n)(x) = detW (f ′1, . . . , f

′
n)(x),

(3) Fn(x) = a0 + a1f1(x) + . . .+ anfn(x),

where a0, a1, . . . , an ∈ Z. We denote by F = Fn the set of all functions of
the form (3). We will suppose that

(4) w(f ′1, . . . , f
′
n)(x) 6= 0

for almost all x. Moreover, µA is the Lebesgue measure of the set A in R.
We are interested in the solutions of the inequalities

(5) |F (x)| < H−n−ε,

where H = H(F ) = max(|a0|, . . . , |an|), F ∈ Fn, ε > 0. For ε > 0 we define

(6) Ψ = Ψn(ε) = {x ∈ R : (5) holds for infinitely many F ∈ Fn}.
In 1964 W. Schmidt proved that µΨ2 = 0 (see [2]). In this article we

prove the next case:

Theorem. For any ε > 0, µΨ3(ε) = 0.

We set

(7) σ(F ) = {x ∈ R : |F (x)| < H−3−ε},
where F ∈ F3. For any finite interval ∆ ⊂ R we put

(8) ∆̂ = {x ∈ R : |x− y| ≤ 2µ∆ for any y ∈ ∆}.
We write X � Y for X = O(Y ), and X � Y is equivalent to the

simultaneous validity of X � Y and Y � X. Moreover, |A| is the number of
elements in a finite set A. We denote by d(∆1,∆2) the distance between the

[219]
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centers of two intervals ∆1, ∆2. Notice one property of d(∆1,∆2): suppose
we have two families of intervals ∆1(t) and ∆2(t) which satisfy the condition

(9) max(µ∆1(t), µ∆2(t)) =
t→∞

o(d(∆1(t), ∆2(t))).

Then for any x1(t) ∈ ∆1(t) and x2(t) ∈ ∆2(t), we have

(10) |x1(t)− x2(t)| � d(∆1(t),∆2(t)).

The proof is trivial.
Let 1 ≤ m ≤ n. We denote by C(n,m) the set of all J = (j1, . . . , jm) ∈

Zm, where 1 ≤ j1 < . . . < jm ≤ n, and (fj1 , . . . , fjm) is denoted by fJ.

2. Auxiliary statements

Lemma 1. Let M ⊂ R and suppose that every point of M is isolated.
Then M is at most countable.

Lemma 1 is well known. It is an easy exercise.

Lemma 2. Let ϕ : R → R be an m-times continuously differentiable
function, and N = {x ∈ R : ϕ(x) = 0}. Let µN > 0. Then there exists a
subset L ⊂ N such that

(a) N \ L is at most countable,
(b) for any i ∈ {1, . . . ,m} and for any x ∈ L, ϕ(i)(x) = 0.

P r o o f. It is sufficient to prove this lemma for m = 1. We denote by L
the set of all limit points of N . Then M = N \ L consists of all isolated
points of N . From Lemma 1 it follows that M is at most countable. Since
ϕ is continuous, N is closed. Hence L ⊂ N . Now (b) is easy to obtain by
applying the definition of limit points in terms of sequences, Lagrange’s
formula and the continuity of ϕ′.

Lemma 3. Let fi : R→ R (1 ≤ i ≤ n) be n-times continuously differen-
tiable functions and w(f ′1, . . . , f

′
n) 6= 0 for almost all x ∈ R. Then for any

m ∈ {1, . . . , n} and any J ∈ C(n,m),

(11) w(f ′J) 6= 0

for almost all x ∈ R.

P r o o f. Let m = 1, 1 ≤ j ≤ n and N = {x : f ′j(x) = 0}. Suppose
µN > 0. By Lemma 2 there exists L ⊂ N such that µL = µN > 0 and
f

(i)
j (x) = 0 for any i = 1, . . . , n and for any x ∈ L. Hence for any x ∈ L the
ith column in W (f ′1, . . . , f

′
n)(x) is zero. It follows that w(f ′1, . . . , f

′
n) = 0 for

any x ∈ L. But µL > 0. The contradiction proves the lemma for m = 1.
Now suppose the lemma is proved for m − 1 with m > 1. We write

N = {x : w(f ′J)(x) = 0}, where J ∈ C(n,m). We denote by ri the ith
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derivative of fJ. Suppose µN > 0. According to Lemma 2 there exists
L ⊂ N such that µL = µN > 0 and

(12)
dk

dxk
(w(f ′J)) = 0

for all x ∈ L, where 1 ≤ k ≤ n−m. From the inductive assumption it follows
that the vectors r1(x), . . . , rm−1(x) are linearly independent for almost all
x ∈ R. Hence we can assume that they are linearly independent for all
x ∈ L. Applying (12) with k = 1, . . . , n − m we find that ri(x) depends
linearly on r1(x), . . . , rm−1(x) for all x ∈ L, 1 ≤ i ≤ n. Hence the columns
of W (f ′1, . . . , f

′
n) with indices j1, . . . , jm are linearly dependent for all x ∈ L.

This contradiction finishes the proof.

Define

S =
n⋃

m=1

⋃

J∈C(n,m)

{x ∈ R : w(f ′J)(x) = 0}.

Since S is closed, R \S has the form
⋃∞
k=1[ak, bk]. From Lemma 3 it follows

that µS = 0. Then

µΨ ≤
∞∑

k=1

µ(Ψ ∩ [ak, bk]).

In order to prove our theorem it is sufficient to show that if I = [a, b] and
I ∩S = ∅ then µ(Ψ ∩ I) = 0. Later on, to simplify the writing, we let I be a
fixed closed interval in R \S. We redefine σ(F ) and Ψ to be the intersection
of I with the former sets σ(F ) and Ψ . Since w(f ′J) is continuous and not
zero over I, for all J ∈ C(n,m) with 1 ≤ m ≤ n and for all x ∈ I we have

(13) |w(f ′J)(x)| ≥ d > 0,

where d is a positive constant depending on the functions f1, . . . , fn and the
interval I only.

Lemma 4. Let δ, ν > 0. Let ϕ be an n-times continuously differentiable
function on (a, b) satisfying |ϕ(n)(x)| ≥ δ for all x ∈ (a, b). Then µ({x ∈
(a, b) : |ϕ(x)| < ν}) ≤ c(n)(ν/δ)(1/n).

This is proved in [1].

Lemma 5. Set αm = max{1, sup{|f (i)
j (x)| : x ∈ I} : 0 ≤ i ≤ m, 1 ≤ j

≤ n} and C1 = dα−nn /(n + 1)!, where fi ∈ C(n)(R) (1 ≤ i ≤ n). Then for
all x ∈ σ(F ) and H ≥ H0 we have

(14) max
1≤i≤n

(|F (i)(x)|) ≥ C1H,

where σ(F ) is defined in (7), F ∈ Fn and H = H(F ).
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P r o o f. We may write the following system of linear equations:

(15)





a0 + a1f1(x) + . . .+ anfn(x) = F (x),
a1f
′
1(x) + . . .+ anf

′
n(x) = F ′(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1f

(n)
1 (x) + . . .+ anf

(n)
n (x) = F (n)(x).

The modulus of the determinant of (15) is not less than d. Using Cramer’s
rule we have, for i = 0, . . . , n,

|ai| ≤ 1
d
αnn(n+ 1)! max{|F (j)(x)| : 0 ≤ j ≤ n},

whence the lemma readily follows.

Lemma 6. Let fi (1 ≤ i ≤ n) be (n+1)-times continuously differentiable
functions. Suppose C2 = C1/(2nαn+1), µI ≤ C2 and |F (i)(κ)| ≥ C1H,
where κ ∈ I and 1 ≤ i ≤ n. Then |F (i)(x)| ≥ C1H/2 for all x ∈ I.

P r o o f. Assume x ∈ I. By Lagrange’s formula, F (i)(x) = F (i)(κ) +
F (i+1)(κ1)(x− κ). Furthermore, |F (i+1)(κ)(x− κ)| ≤ nαn+1C2H = C1H/2.
Thus |F (i)(x)| ≥ |F (i)(κ)| − |F (i+1)(κ1)(x − κ)| ≥ C1H − C1H/2, and the
lemma is proved.

Since I is a finite union of intervals of length ≤ C2, we may suppose
without loss of generality that µI ≤ C2.

3. Preliminary remarks. From now on, n = 3.

R e m a r k 1. Suppose we have a finite set of conditions according to
which F is divided into subclasses: F =

⋃N
i=1 F i. Let a division of σ(F ) =⋃M

j=1 σ
j(F ) into a finite number of intervals be defined for every F ∈ F ,

where M is an absolute constant. Define

Ψi,j =
∞⋂

k=1

⋃

F∈Fi, H(F )≥k
σj(F ).

Then

(16) Ψ =
∞⋂

k=1

⋃

F∈F, H(F )≥k
σ(F ) ⊂

N⋃

i=1

M⋃

j=1

Ψi,j .

Hence if we prove that µΨi,j = 0 for all 1 ≤ i ≤ N , 1 ≤ j ≤ M , we
obtain µΨ = 0. In the sequel to simplify the writing we shall impose some
conditions, additional indices being omitted.

R e m a r k 2. From Lemmas 5 and 6 it follows that there exists k ∈
{1, 2, 3} such that |F (k)(x)| ≥ C1H/2. We obtain a covering of I by at
most six subintervals such that F (i)(x) is monotone on each subinterval for
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0 ≤ i ≤ k− 1, where F (0) ≡ F . Therefore by Remark 1 we can assume that
σ(F ) is such an interval.

R e m a r k 3. We define

(17) F(t) = {F ∈ F : 2t ≤ H(F ) ≤ 2t+1}.
The number of functions in F(t) is� 24t. Suppose we have µσ(F )� H−4−ξ

for some ξ > 0. Then

(18)
∑

F∈F(t)

µσ(F )� 2−ξt.

The convergence of
∑

2−ξt and the Borel–Cantelli lemma now show that
the set of x belonging to infinitely many sets of σ(F ) has measure zero.

R e m a r k 4. Lemmas 4–6 give the estimate

(19) µσ(F )� H−(4+ε)/3.

If ε > 8 then from (19) we get µσ(F ) � H−4−ξ, where ξ = (ε − 8)/3, and
Remark 3 yields the assertion of the Theorem. Therefore below we consider
ε ≤ 8.

R e m a r k 5. If |F ′(x)| ≥ H1−ε/2 for x ∈ σ(F ) then we get the estimate
µσ(F ) � H−4−ε/2. If |F ′(x)| < H−9 for x ∈ σ(F ) then µσ(F ) � H−5.
If |F ′′(x)| < H−4 then µσ(F ) � H−5. These estimates readily follow from
Lemma 4 with ϕ equal to F ′ and F ′′ respectively. In each of these cases,
Remark 3 yields the assertion of the Theorem. Therefore further we may
suppose that

(20) |F ′(x)| < H1−ε/2,

(21) |F ′(x)| ≥ H−9, |F ′′(x)| ≥ H−4

for x ∈ σ(F ).
Choose a positive parameter

(22) δ = min
(
ε

20
,

ε2

4(5 + ε)
,

ε2

16(4 + ε)

)
.

The conditions

(23) H(l−1)δ ≤ |F ′(x)| < H lδ,

(24) H(k−1)δ ≤ |F ′′(x)| < Hkδ,

where k, l ∈ Z, define a subdivision of σ(F ). If (l − 1)δ > 1 or (k − 1)δ > 1
then the corresponding element of the subdivision is empty when H ≥ H0.
From (21) we have lδ ≥ −9, kδ ≥ −4. Hence the number of different integers
(k, l) is finite. We can thus suppose that σ(F ) is an interval and conditions
(23) and (24) hold for all x ∈ σ(F ), where k and l are fixed.
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4. Proof of the Theorem. The case of large first derivative

Proposition 1. Let (l−1)δ ≥ −1−ε/4 and suppose condition (23) holds
for x ∈ σ(F ). Then the measure of those x ∈ I which belong to infinitely
many σ(F ) is at most µΨ(ε+ ε/8).

P r o o f. The considered functions F are divided into the subclasses F(t)
defined in (17). Suppose η = 3 + 3ε/4 + (l − 1)δ. Using Lemma 4 and (23)
we get

(25) µσ(F )� H−3−ε−(l−1)δ.

We define

(26) [∆]t = {F ∈ F(t) : σ(F ) ∩∆ 6= ∅}
for any interval ∆ ⊂ I. For every fixed t we divide I into subintervals Its of
length cn−ηt each, where c = c(t) ∈ [1, 2].

The number of different Its is � 2ηt. Now define

(27) F ′(t) =
⋃
s

[Its],

where the union is taken over those Its for which |[Its]t| ≤ 2(ε/4−δ)t. We
consider

(28) F ′′(t) = F(t) \ F ′(t), F ′ =
⋃
t

F ′(t), F ′′ =
⋃
t

F ′′(t).

Counting the number of functions in F ′(t) and using (25) we get
∑

t≥0

∑

F∈F ′(t)
µσ(F )�

∑

t≥0

2ηt2(ε/4−δ)t2(−3−ε−(l−1)δ)t

=
∑

t≥0

2−δt <∞.

Thus, from the Borel–Cantelli lemma it follows that the set of those x ∈ I
which belong to infinitely many σ(F ) for F ∈ F ′ has measure zero.

Now consider x0 ∈ I belonging to infinitely many σ(F ) for F ∈ F ′′. The
choice of η and the estimate (25) show that σ(F ) ⊂ Îts if t ≥ t0 and F ∈ [Its]t.
Thus x0 belongs to Îts for infinitely many t with |[Its]t| > 2(ε/4−δ)t. Consider
a fixed such interval Its. Let F ∈ [Its]t and κ ∈ σ(F )∩Its. By Taylor’s formula
we have

(29) F (x) = F (κ) + F ′(κ)(x− κ) + 1
2F
′′(κ1)(x− κ)2,

where κ1 lies between x and κ. From (5), (23) and the estimate |x−κ| � H−η

we get

(30) |F (x)| � H−3−ε +H lδ−η +H1−2η.
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The choice of δ and η and the assumption of Proposition 1 imply that the
first and third terms on the right hand side (30) are less than the second
term. Now using the value of η, and (30), we obtain

(31) |F (x)| � H−3−3ε/4+δ

for all x ∈ Îts. Analogously we have

(32) |F ′(x)| � H lδ

for all x ∈ Îts.
Both a2 and a3 range in the interval [−2t+1, 2t+1]. We divide it into

intervals ∆j with length 2t(1−ε/8+δ/2)+2. Thus we obtain at most 2t(ε/4−δ)

pairs of intervals (∆j1 ,∆j2). Since by assumption we have |[Its]t| > 2t(ε/4−δ),
there exist F1, F2 ∈ [Its]t whose coefficients a2 and a3 belong to one pair of
intervals (∆j1 ,∆j2). Consider R(x) = F1(x)− F2(x). We obtain

(33) |ai(R)| ≤ 2t(1−ε/8+δ/2)+2

for i = 2, 3. From (31) and (32) for F1 and F2 it follows that

(34) |R(x)| � 2t(−3−3ε/4+δ),

(35) |R′(x)| � 2lδt

for all x ∈ Îts. From (20) we get lδ ≤ 1− ε/2 + δ < 1− ε/8 + δ/2. Therefore
from (13), (33) and (35) we have |a1(R)| � 2t(1−ε/8+δ/2). From this and
(34) we obtain |a0(R)| � 2t(1−ε/8+δ/2). Thus we conclude that

(36) H(R)� 2t(1−ε/8+δ/2).

The relation

(37) |R(x)| � H(R)−(3+3ε/4−δ)/(1−ε/8+δ/2)

follows from (34) and (36) for all x ∈ Îts. We have

3 + 3ε/4− δ
1− ε/8 + δ/2

− (3 + ε) > 3 + 3ε/4− δ − (1− ε/8 + δ/2)(3 + ε) ≥ ε/8.

Therefore

(38) |R(x0)| < H(R)−3−ε−ε/8,

where H(R) ≥ H0 and H0 is sufficiently large.

R e m a r k 6. Applying Lemma 2 it is easy to show that for every fixed
R ∈ Fn the measure of En(R) = {x : R(x) = 0} is zero. Then the union En
of all En(R) with R ∈ Fn also has measure zero. If the number of different
R(x) in (38) is finite then x0 is a solution of some equivalent R(x) = 0,
where R has the form (3).

The inequality (38) and the previous discussion prove Proposition 1.
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5. The case of small second derivative

Proposition 2. Let (l− 1)δ < −1− ε/4, (k− 1)δ ≤ 1− ε/2 and suppose
that conditions (23) and (24) are valid for x ∈ σ(F ). Then the measure of
the set of x ∈ I belonging to infinitely many σ(F ) is at most µΨ(ε+ ε2/16).

P r o o f. From (23), (24) and Lemmas 5 and 6 it follows that

(39) |F ′′′(x)| ≥ C1H/2

for all x ∈ I. By Lemma 4, from (5), (23), (24) and (39) we get six estimates
of the measure of σ(F ). Choosing the optimal estimate we obtain

(40) µσ(F )� H−ν ,

where

ν = max
(

3 + ε+ (l − 1)δ,
3 + ε+ (k − 1)δ

2
,

4 + ε

3
,

−lδ + (k − 1)δ,
−lδ + 1

2
,−kδ + 1

)
.

Suppose η = ν−ε/8. We divide all the functions F ∈ F3 under consideration
into the subclasses F(t) defined in (17). For every fixed integer t we divide
I into subintervals Its of length c2−ηt each, where c = c(t) ∈ [1, 2]. The
number of different Its is � 2ηt. The classes F ′(t) and F ′′(t) are defined in
the same way as in (27) and (28), with the union in (27) taken over those
Its for which |[Its]t| ≤ 2t(ε/8−δ). The classes F ′ and F ′′ are defined as above.
Counting the number of functions in F ′(t) and using (40) we get

∑

t≥0

∑

F∈F ′(t)
µσ(F )�

∑

t≥0

2ηt2(ε/8−δ)t2−νt =
∑

t≥0

2−δt <∞.

Thus the Borel–Cantelli lemma shows that the set of those x ∈ I which
belong to infinitely many σ(F ) for F ∈ F ′ has zero measure.

Now consider x0 ∈ I belonging to infinitely many σ(F ) for F ∈ F ′′. The
choice of η and the estimate (40) give σ(F ) ⊂ Îts if t ≥ t0 and F ∈ [Its]t.
Thus x0 belongs to Îts for infinitely many t and |[Its]t| > 2(ε/4−δ)t. Consider
a fixed such interval Its. Let F ∈ [Its]t and κ ∈ σ(F ) ∩ Its. From (24) and
Taylor’s formula we obtain

|F ′′(x)| = |F ′′(κ) + F ′′′(κ1)(x− κ)| ≤ |F ′′(κ)|+ |F ′′′(κ1)(x− κ)|
� Hkδ +H1−η ≤ Hkδ +Hkδ+ε/8 ≤ 2 ·Hkδ+ε/8,

where κ1 lies between x and κ. Analogously we get estimates for F (x) and
F ′(x) using (23), (24) and Taylor’s formula. Thus

(41) |F (x)| � H−3−ε+3ε/8+δ,

(42) |F ′(x)| � H lδ+2ε/8+δ,
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(43) |F ′′(x)| � Hkδ+ε/8

for all x ∈ Îts. The coefficient a3 ranges over the interval [−2t+1, 2t+1].
We divide it into intervals ∆j of length 2t(1−ε/8+δ)+2. There are at most
2t(ε/8−δ) intervals ∆j . Since by assumption we have |[Its]t| > 2t(ε/8−δ) there
exist F1, F2 ∈ [Its]t whose coefficients a3 belong to one ∆j . Consider R(x) =
F1(x)− F2(x). Then

(44) |a3(R)| ≤ 2t(1−ε/8+δ)+2.

It is clear that conditions (41)–(43) apply to R(x) if we substitute 2t for H.
It is not difficult to verify that lδ + 2ε/8 + δ ≤ 1− ε/8 + δ and kδ + ε/8 ≤
1− ε/8 + δ. From conditions (42) and (43) for F1 and F2 it follows that

(45) |R′(x)| � 2t(1−ε/8+δ), |R′′(x)| � 2t(1−ε/8+δ).

By (44) and (45),

(46)
|a1(R)f ′1(x) + a2(R)f ′2(x)� 2t(1−ε/8+δ),

|a1(R)f ′′1 (x) + a2(R)f ′′2 (x)| � 2t(1−ε/8+δ).

From (46) we obtain |ai(R)| � 2t(1−ε/8+δ) (i = 1, 2) because |w(f ′1, f
′
2)| ≥

d > 0 according to (13). From (41) for F1 and F2 it follows that

(47) |R(x)| � 2t(−3−ε+3ε/8+δ)

and from (47) we find |a0(R)| � 2t(1−ε/8+δ). Hence

(48) H(R)� 2t(1−ε/8+δ).

Observe that
3− ε− 3ε/8− δ

1− ε/8 + δ
− (3− ε) > 3 + ε− 3ε/8− δ− (1− ε/8 + δ)(3 + ε) ≥ ε2/16.

Thus from (47) and (48) we obtain

|R(x0)| < H(R)−3−ε−ε2/16

with H(R) ≥ H0, where H0 is sufficiently large. The last inequality together
with Remark 6 finishes the proof of Proposition 2.

6. The last case. Let γ > 0. Set

G = {F = a0 + a1f1 + a2f2 : (a0, a1, a2) ∈ Z3 \ {0}}.
For F ∈ G consider the system

(49) |F (x)| < H−1−γ , |F ′(x)| < H−γ/2,

where H = H(F ) = max(|a0|, |a1|, |a2|). The set of its solutions is denoted
by σ∗(F ). Define

(50) Ω(γ) = {x ∈ I : (49) is valid for infinitely many F ∈ G}.
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Now we return to our problem. By Remark 1 we can assume that any
F ∈ F3 has a3 ≥ |ai| (1 ≤ i ≤ 3).

Proposition 3. Let (l− 1)δ < −1− ε/4, (k− 1)δ > 1− ε/2 and suppose
that conditions (23) and (24) are valid throughout σ(F ). Moreover , let a3 ≥
|ai| (1 ≤ i ≤ 3) for F ∈ F3. Then the measure of the set of x ∈ I belonging
to infinitely many σ(F ) is at most µΩ(ε/5).

P r o o f. We have |F (x)| ≥ H1−ε/2. By Lemma 4 we get µσ(F ) �
H−2−ε/4. Define η = 1 + ε/8. Divide the collection of F ∈ F3 under con-
sideration into the subclasses F(t) = {F ∈ F3 : a3(F ) = t}. It is clear that
H(F ) � t for F ∈ F(t). Fix t and divide I into subintervals Its of length
ct−η each, where c = c(t) ∈ [1, 2]. The number of different Its is � tη. The
classes F ′(t) and F ′′(t) are defined as in (27) and (28), with the union in
(27) taken over those Its for which |[Its]t| ≤ 1. The classes F ′ and F ′′ are
defined as above. Counting the number of functions in F ′(t) and estimating
the measure of σ(F ) we get

∑

t≥1

∑

F∈F ′(t)
µσ(F )�

∑

t≥1

tηt−2−ε/4 =
∑

t≥1

t−1−ε/8 <∞.

Thus, the Borel–Cantelli lemma shows that the set of those x ∈ I which
belong to infinitely many σ(F ) for F ∈ F ′ has measure zero.

Now consider x0 ∈ I belonging to infinitely many σ(F ) with F ∈ F ′′.
The choice of η implies that σ(F ) ⊂ Îts if t ≥ t0, where F ∈ [Its]t. Thus x0

belongs to Îts for infinitely many t with |[Its]t| ≥ 2. Consider a fixed such
interval Its. Let F ∈ [Its]t and κ ∈ σ(F ) ∩ Its. By Taylor’s formula we have
F ′(x) = F ′(κ) + F ′′(κ1)(x− κ). Hence

(51) |F ′(x)| � H−ε/8.

Analogously we find

(52) |F (x)| � H−1−ε/4

for all x ∈ Îts. There exist different F1, F2 ∈ [Its]t. Consider R = F1 − F2.
Then R ∈ G and H(R)� t. From (51) and (52) it follows that

|R(x)| < H(R)−1−ε/5, |R′(x)| < H(R)−ε/10,

whenever H(R) ≥ H0. Thus Proposition 3 is proved.

Proposition 4. For any γ > 0, µΩ(γ) = 0.

P r o o f. We shall consider only those F ∈ G for which σ∗(F ) 6= ∅. As in
the proof of Lemmas 5 and 6, for all x ∈ I we obtain

(53) |F ′′(x)| ≥ C3H,

where F ∈ G, H = H(F ) and C3 is a fixed positive constant. Moreover, from
the condition |ai| = o(H), where 1 ≤ i ≤ 2, we would get a contradiction.
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Therefore we assume that

(54) min(|a1|, |a2|) ≥ C4H,

where H = H(F ) with F = a0 +a1f1 +a2f2. Now we deal with the inequal-
ities

(55) |F (x)| < H−1−γ ,

(56) |F ′(x)| < H−γ/2

with F ∈ G. Using Lemma 4 and condition (53) we find that for (55) the
measure of the solution set is � H−1−γ/2, and similarly for (56). Thus

(57) µσ(F )� H−1−γ/2,

where σ′(F ) denotes the union of the solution sets for (55) and (56). Since
σ∗(F ) 6= ∅ we can assume that σ′(F ) is an interval. Moreover, σ∗(F ) ⊂
σ′(F ).

Condition (53) implies the monotonicity of F ′(x) in I = [a, b]. Consider
those F ∈ G which have a nonvanishing derivative on all I. Either a or
b necessarily belongs to σ′(F ) because F ′ is monotonic. Thus there exist
C5 > 0 and H0 such that for any H ≥ H0 and for all F ∈ G with H(F ) ≥ H
we have

σ(F ) ⊂ [a, a+ C5H
−1−γ/2] ∪ [b− C5H

−1−γ/2, b].

Hence µΩ(γ)� H−1−γ/2 and µΩ(γ) = 0.
The remaining case is when F ′(x) has a root κ = κ(F ) ∈ I for F ∈ G.
We use the following notations: A = (a0, a1, a2) is a vector; FA = a0 +

a1f1 + a2f2; F(x) = (1, f1(x), f2(x)) ∈ R3; (A,B) is the scalar product of
the vectors A and B; A×B is their vector product. Set g(x) = f ′2(x)/f ′1(x).
Then

(58) g′(x) =
f ′′1 (x)f ′2(x)− f ′′2 (x)f ′1(x)

(f ′1(x))2 .

From (13) and (58) it follows that g′(x) 6= 0 for all x ∈ I. Hence g′(x) � 1.
Let FA, FB ∈ G, and let κA and κB be the roots of F ′A and F ′B respectively.
Obviously g(κA) = a1/a2 and g(κB) = b1/b2.

We have

|a1/a2 − b1/b2| = |g(κA)− g(κB)| = |g′(τ)(κA − κB)| � |(κA − κB)|,
where τ lies between κA and κB. We obtain

(59) |a1/a2 − b1/b2| � |κA − κB|.
We divide the considered F ∈ G into the classes

(60) G(t) = {F ∈ G : 2t ≤ H(F ) ≤ 2t+1}
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and choose the parameters α and β as follows:

(61) 0 < α < γ/4,

(62) α/2 < β < α.

For every t we divide I into intervals Its of length c2t(−1−γ/2+α) each, where
c = c(t) ∈ [1, 2]. Let

(63) [Its]t = {F ∈ G(t) : σ(F ) ∩ Its 6= ∅}.
If F ∈ [Its]t, then by Taylor’s formula, (55) and (56), we get

(64) |F (x)| � 2t(−1−γ+2α),

(65) |F ′(x)| � 2t(−γ/2+α)

for all x ∈ Îts.
Consider the following four types of intervals:

1) Its is called of type A if |[Its]t| ≤ 2αt/2.
2) Its is called of type B if for any distinct F1, F2 ∈ [Its]t,

(66) d(F1, F2) ≤ 2t(−1−γ/2+β),

where d(F1, F2) = d(σ(F1), σ(F2)).
3) Its is called of type C if there exist FA, FB, FC ∈ [Its]t such that

(67)

∣∣∣∣∣∣

a0 a1 a2

b0 b1 b2
c0 c1 c2

∣∣∣∣∣∣
6= 0

with A = (a0, a1, a2), B = (b0, b1, b2) and C = (c0, c1, c2).
4) If Its is not of type A, B or C, then it is called of type D.

Assertion 1. The measure of those x ∈ I which belong to infinitely
many σ(F ), where F ∈ [Its]t and Its is a type A or B interval , is equal to
zero.

P r o o f. Counting the number of F for type A intervals Its with a fixed t
we get ∑

F∈G(t)

µσ(F )� 2t(−1−γ/2)2t(1+γ/2−α)2αt/2 = 2−αt/2.

The Borel–Cantelli lemma finishes the proof in this case. Let Its be a type B
interval. By (66) there exists an interval ∆t

s of length � 2t(−1−γ/2+β) such
that ⋃

F∈[Its]t

σ(F ) ⊂ ∆t
s.
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Then counting the number of intervals Its we get
∑

t≥0

∑
s

µ
( ⋃

F∈[Its]t

σ(F )
)
�
∑

t≥0

2t(1+γ/2−α)2t(−1−γ/2+β)

�
∑

t≥0

2−(α−β)t <∞.

The Borel–Cantelli lemma finishes the proof.

Now if x0 ∈ I belongs to infinitely many σ(F ), where F ∈ [Its]t with Its
an interval of type C or D, then x0 belongs to Îts for infinitely many t, where
Its is a type C or D interval.

Assertion 2. The measure of those x ∈ I which belong to infinitely
many Îts, where Its is a type C interval , is equal to zero.

P r o o f. We consider a type C interval Its. There exist FA, FB, FC ∈ [Its]t
satisfying (67). For rational integers p1, p2, p3 such that |pi| ≤ 2t/3 (i =
1, 2, 3), we consider expressions of the form

(68) p1a2 + p2b2 + p3c2.

Their values belong to some interval [−C62t+t/3, C62t+t/3], where C6 is a
constant independent of t. The number of different expressions of the form
(68) is � 2t. Dirichlet’s principle implies the existence of two different ex-
pressions of the form (68) with difference � 2t/3. Let p10a2 + p20b2 + p30c2
denote this difference. It is obvious that

(69) |p10|+ |p20|+ |p30| 6= 0.

We define R(x) = p10FA(x) + p20FB(x) + p30FC(x). From (69) and (67) we
have R(x) 6≡ 0. Moreover, R(x) = a0(R) + a1(R)f1 + a2(R)f2 and

(70) |a2(R)| � 2t/3.

The estimates (64), (65) and the definition of R yield

(71) |R(x)| � 2t(−2/3−γ+2α),

(72) |R′(x)| � 2t(1/3−γ/2+α)

for all x ∈ Îts. The exponents in (71) and (72) are less than t/3. Hence from
(70) we obtain H(R)� 2t/3 and then from (71) we have

(73) |R(x)| � H(R)−2−(3γ−6α).

The exponent satisfies the inequality −2 − (3γ − 6α) < −2. Therefore the
proof is finished by Schmidt’s theorem.

Consider a type D interval Its. It has the following properties:

(a) |[Its]t| > 2αt/2;
(b) there exist FA, FB ∈ [Its]t such that d(FA, FB) > 2t(−1−γ/2+β);
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(c) for any FA, FB, FC ∈ [Its]t condition (67) does not hold.

By (c) there exists a plane with the normal Ns such that (Ns,A) = 0
for any FA ∈ [Its]t. Let FA, FB ∈ [Its]t and d(FA, FB) > 2t(−1−γ/2+β). Then,
using (54) and (59), we obtain

(74) |a1b2 − a2b1| � 2t(1−γ/2+β).

By definition A × B = (a1b2 − a2b1, a2b0 − a0b2, a0b1 − a1b0). Then from
(74) we have

(75) |A×B| � 2t(1−γ/2+β).

Moreover,

Ns = ± A×B
|A×B| .

It is known that

(76) A× (B×C) = (B,A)C− (C,A)B,

where A,B,C ∈ R3. It is obvious that (F(x),A) = FA(x). Then for x ∈ Îts
we find

F(x)×Ns = ± F(x)× A×B
|A×B| = ± 1

|A×B| ((A,F(x))B− (B,F(x))A)

= ± 1
|A×B| (FA(x)B− FB(x)A).

Further, using the estimates (64), (75) and |A| � 2t, |B| � 2t, we get

|F(x)×Ns| � 2t(−1+γ/2−β)2t2t(−1−γ+2α).

Thus we have

(77) |F(x)×Ns| � 2t(−1−γ/2+2α−β)

for all x ∈ Its.
Assertion 3. The measure of those x ∈ I which belong to infinitely

many Îts, where Its is a type D interval , is equal to zero.

P r o o f. A type D interval Its is called a subtype D1 interval if there does
not exist a type D interval Ith (s 6= h) such that

(78) 2t(−1−γ/2+3α/2) ≤ d(Its, I
t
h) ≤ 2−1−γ/2+2α.

The other type D intervals are subtype D2 intervals. The number of subtype
D1 intervals is � 2t(1+γ/2−3α/2). Hence∑

t≥0

∑
s

µÎts �
∑

t≥0

2αt/2 <∞.

The Borel–Cantelli lemma finishes the proof in this case. Further, let Its be
a subtype D2 interval. There exists a type D interval Ith satisfying (78). Let
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∆t
s,h denote the smallest interval containing both Its and Ith. From (75) we

get

(79) µ∆t
s,h � 2t(−1−γ/2+2α).

If there exist FA, FB, FC ∈ [∆t
s,h]t such that (67) holds then we obtain a

bigger type C interval. The choice of α and (79) yield the following fact:
the set of those x ∈ I which belong to infinitely many such intervals has
measure zero as in the proof of Assertion 2.

In the last case the normals coincide: N = Ns = Nh. Using (13) and
(77) for x ∈ Its and y ∈ Ith we find

|x− y| � |f1(x)− f1(y)| ≤ |F(x)× F(y)|
� |F(x)×N|+ |F(y)×N| � 2t(−1−γ/2+2α−β).

The last inequality and (78) give

(80) 2t(−1−γ/2+3α/2) � |x− y| � 2t(−1−γ/2+2α−β).

The choice of β in (62) shows that (−1−γ/2+3α/2) > (−1−γ/2+2α−β).
Hence inequality (80) is contradictory for t large. Assertion 3 is proved. Thus
Proposition 4 is proved.

7. Completion the proof of the Theorem. Let λ = min(ε/8, ε2/16).
Applying Propositions 1–4 at most [8/λ] + 1 times we get

µΨ3(ε) ≤ µΨ3(ε1),

where ε1 > 8. By Remark 4 the proof of the Theorem is complete.
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