
ACTA ARITHMETICA
LXXV.3 (1996)

Kummer type congruences and
Stickelberger subideals

by

Takashi Agoh (Chiba) and Ladislav Skula (Brno)

1. Introduction. Let l be an odd prime, Bm the Bernoulli number
defined by

X

eX − 1
=
∞∑
m=0

Bm
m!

Xm

and ϕk(X) the Mirimanoff polynomial , i.e.,

ϕk(X) =
l−1∑
v=1

vk−1Xv (k ∈ Z).

In 1857, Kummer [11] considered the following system of congruences in
connection with the first case of Fermat’s last theorem:

(K)
{
ϕl−1(t) ≡ 0 (mod l),
B2mϕl−2m(t) ≡ 0 (mod l) (1 ≤ m ≤ (l − 3)/2).

This system has many kinds of interesting variations and consequences
(see, e.g., Agoh [2, 3], Fueter [7] and Ribenboim [13]). In the papers of
Skula [16, 17] the equivalent system to (K) was introduced by means of the
Stickelberger ideal in a certain group ring.

We now consider the special system of congruences as follows:

(K(N))
{
ϕl−1(t) ≡ 0 (mod l),
1−N2m

2m B2mϕl−2m(t) ≡ 0 (mod l) (1 ≤ m ≤ (l − 3)/2),

where N is a fixed positive integer with 2 ≤ N ≤ l − 1.
It is clear that all the solutions of (K) satisfy (K(N)). In addition, we

can see that if N is a primitive root mod l, then each solution of (K(N)) is
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also a solution of (K), which implies that the systems (K) and (K(N)) are
equivalent in this case.

The main purpose of this paper is to introduce some equivalent systems
to (K(N)) and investigate subideals of the Stickelberger ideal relating to
these systems.

Section 2 contains general notations which will be needed throughout
the whole paper. In Section 3 we shall present a certain polynomial equality
(Proposition 3.2), in which all the terms in the system (K(N)) are involved.
By making use of this equality we shall derive some systems of congru-
ences equivalent to (K(N)) (Theorems 3.3, 3.4 and Proposition 3.5). In
Section 4, we define a special matrix KN (Definition 4.2) which is related
to the modified Dem’yanenko matrix and give an explicit formula (Theo-
rem 4.4) for detKN by means of the first factor h− of the class number of
the lth cyclotomic field Q(ζl) (where ζl = e2πi/l) over the field Q of rational
numbers. This formula will be proved in Section 5 using Sinnott’s Lemma
(Lemma 5.4). Proposition 4.5 is used for the determination of the sign of
detKN .

Section 5 deals with a special ideal BN which is contained in the Stickel-
berger ideal I of the group ring Z[G], where G is a cyclic group of order l−1.
First, the group indices [R′ : BN ] and [I : BN ] are evaluated by construct-
ing a Z-basis of BN , where R′ is a special subring of Z[G] (Theorem 5.8).
Here, again Sinnott’s Lemma plays a central role. Subsequently, we define
a special system of congruences by means of BN and show in Theorem 5.10
that it is equivalent to the system (V) mentioned in Proposition 3.5.

When N = 2, our matrix KN is related to the matrix H considered by
Hazama [8], which is essentially a modified Dem’yanenko matrix D′(l) for
l ≥ 5 from the paper of Folz and Zimmer [6].

We note that in his recent paper ([9], Section 5) Hazama deals with an
analogous (0, 1) square matrix whose determinant is connected with the first
factor of the class number of the pqth cyclotomic field Q(ζpq), where p, q
are distinct odd primes.

A generalization of the Dem’yanenko matrix associated with an arbitrary
abelian field of odd prime power conductor is introduced by Sands and
Schwarz [14].

The ideal BN for N = 2 was recently investigated by Skula [18]. The cor-
responding system of congruences with B2 is equivalent to that of Benneton
introduced in [4] (see Skula [18], Theorem 5.3).

2. General notation. We list some general notations which will be used
throughout this paper:

• #S — the number of elements of a set S,
• Z— the ring of rational integers,
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• l— an odd prime,
• N — any fixed integer with 2 ≤ N ≤ l − 1,
• z — the least non-negative residue of z ∈ Z modulo l, i.e.,

z ∈ Z with z ≡ z (mod l), 0 ≤ z ≤ l − 1,

• [x] — the greatest integer ≤ x for a real number x, i.e.,

[x] ∈ Z with [x] ≤ x < [x] + 1,

• Bm — the mth Bernoulli number in the “even suffix” notation, hence

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, . . . ,

• Sm(k) = 1m + 2m + . . .+ km (m, k ∈ Z, m ≥ 0, k ≥ 1),
• ϕm(X) =

∑l−1
v=1 v

m−1Xv (m ∈ Z), the Mirimanoff polynomial,

• ql(a) = al−1−1
l (a ∈ Z, l - a), the Fermat quotient of l with base a,

• i(l) = #{k | B2k ≡ 0 (mod l), 1 ≤ k ≤ (l − 3)/2}, the irregularity
index of l,
• r— a primitive root mod l,
• ri — the least positive residue of ri (i ∈ Z) modulo l, i.e.,

ri ∈ Z with ri ≡ ri (mod l), 1 ≤ ri ≤ l − 1,

• indx— the index of x ∈ Z, l -x, relative to the primitive root r mod l,
i.e.,

x ≡ rind x (mod l), 0 ≤ indx ≤ l − 2,

• Q(ζl) — the cyclotomic field defined by a primitive lth root of unity
ζl = e2πi/l over the field Q of rational numbers,
• h−— the first factor of the class number of Q(ζl).

All other notations will be defined as they arise.

3. Some systems equivalent to (K(N)). The purpose of this section is
to introduce various systems of congruences equivalent to the system (K(N))
by using a certain polynomial equality.

Throughout this section, we denote

B(N)
m =

1−Nm

m
Bm (m ≥ 1),

Sm(k;N) = Sm(kN)−Nm+1Sm(k) (m ≥ 0, k ≥ 1),

B(X) =
X

eX − 1
(the generating function of Bernoulli numbers),

WN (X) =
e(N−2)X + 2e(N−3)X + . . .+ (N − 1)

e(N−1)X + e(N−2)X + . . .+ 1
,

αN (l) = #{k | B(N)
2k ≡ 0 (mod l), 1 ≤ k ≤ (l − 3)/2}.
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If η(N) is the number of non-trivial congruences in the system (K(N)),
then we obviously have

η(N) ≤ l − 1
2
− αN (l) ≤ l − 1

2
− i(l).

Here we note that if N is a primitive root mod l, then αN (l) = i(l),
hence η(N) is equal to the number of non-trivial congruences in the system
(K).

First we shall show the following functional identity:

Proposition 3.1. Let m be an integer and k be a positive integer. If t
and X are two independent variables, then

{1−N +WN (X)}ϕm+1(tekNX)− ϕm+1(t)WN (X)

=
l−1∑
v=1

{ vkN∑

j=0

ejX −N
vk∑

j=0

ejNX
}
vmtv.

P r o o f. We let

Ak,m(t,X) = {B(X)eX}ϕm+1(tekX)− ϕm+1(t)B(X),

and consider the identity

Ak,m(t,X) = X

l−1∑
v=1

{ vk∑

j=0

ejX
}
vmtv (cf. [2], (3.3)).

Since
1
X
{B(X)eX −B(NX)eNX} =

1
X
{(1−N)X +B(X)−B(NX)}

= 1−N +WN (X)

and

WN (X) =
1
X
{B(X)−B(NX)},

it follows that

AkN,m(t,X)−Ak,m(t,NX)

= {(B(X)eX)ϕm+1(tekNX)− ϕm+1(t)B(X)}
− {(B(NX)eNX)ϕm+1(tekNX)− ϕm+1(t)B(NX)}

= {B(X)eX −B(NX)eNX}ϕm+1(tekNX)− ϕm+1(t){B(X)−B(NX)}
= X{1−N +WN (X)}ϕm+1(tekNX)− ϕm+1(t){XWN (X)},

which gives the identity indicated in the proposition.

Using this proposition we can deduce a polynomial equality including all
the terms in the system (K(N)).
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Proposition 3.2. Let m and k be integers with m ≤ l − 3 and k ≥ 1.
Then

1−N
2

(kN)l−2−mϕl−1(t)

+
l−3−m∑

i=1

(
l − 2−m

i

)
(kN)l−2−m−i{B(N)

i+1ϕl−i−1(t)}

=
l−1∑
v=1

Sl−2−m(vk;N)vmtv.

P r o o f. For n ≥ 0 we have[
dn

dXn
ϕm+1(tekNX)

]

X=0
= (kN)nϕm+n+1(t)

and [
dn

dXn
WN (X)

]

X=0
= B

(N)
n+1 (cf. [1], Lemma),

which leads to the desired equality using Leibniz’s theorem for the functional
identity given in Proposition 3.1.

Next, we shall discuss some systems of congruences equivalent to (K(N)).

Theorem 3.3. Let τ be an integer. Then τ is a solution of (K(N)) if and
only if τ is a solution of any one of the following systems of congruences:

l−1∑
v=1

Sl−3(vk;N)vtv ≡ 0 (mod l) (1 ≤ k ≤ l − 1),(I)

l−1∑
v=1

Sl−2(vk;N)tv ≡ 0 (mod l) (1 ≤ k ≤ l − 1),(II)





ϕl−1(t) ≡ 0 (mod l),

l−1∑
v=1

Sl−2−m(vk;N)vmtv ≡ 0 (mod l) (2 ≤ m ≤ l − 3;

k is any fixed integer with 1 ≤ k ≤ l − 1).

(IIIk)

P r o o f. For a fixed integer N with 2 ≤ N ≤ l − 1 we suppose that τ is
a solution of (K(N)). Then we see from Proposition 3.2 that τ is a solution
of

(1)
l−1∑
v=1

Sl−2−m(vk;N)vmtv ≡ 0 (mod l) (1 ≤ k ≤ l − 1; 0 ≤ m ≤ l−3).
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This shows that the solution τ of (K(N)) satisfies (I), (II) and (IIIk). Con-
versely, if τ is a solution of (1) for certain k and m (1 ≤ k ≤ l − 1, 0 ≤
m ≤ l − 3), then we know from Proposition 3.2 that τ is a solution of the
congruence

(2)
1−N

2
(kN)l−2−mϕl−1(t)

+
l−3−m∑

i=1

(
l − 2−m

i

)
(kN)l−2−m−i{B(N)

i+1ϕl−i−1(t)} ≡ 0 (mod l).

For a fixed integer m with 0 ≤ m ≤ l − 3, let D = [aij ]1≤i,j≤l−2−m be
the square matrix with aij = ij . Then it is easy to show that detD 6≡ 0
(mod l), since detD is of Vandermonde type. Hence if τ is a solution of (I)
or (II), then τ is also a solution of (K(N)). On the other hand, for a fixed
integer k with 1 ≤ k ≤ l − 1, take successively m = l− 3, l− 5, . . . , 2 in (2).
Then we can easily infer that τ is a solution of (K(N)). This completes the
proof of the theorem.

Theorem 3.4. Let τ be an integer. Then τ is a solution of (K(N)) if
and only if τ is a solution of the system of congruences

(IV)
l−1∑
v=1

Sl−1(vk;N)
1
v
tv ≡ kNql(N)ϕ1(t) (mod l) (1 ≤ k ≤ l − 1).

P r o o f. Take m = −1 in the equality of Proposition 3.2. By the von
Staudt–Clausen theorem B

(N)
l−1 ≡ −ql(N) (mod l), hence we obtain the re-

sult by the same arguments as in the proof of Theorem 3.3.

Proposition 3.5. Let τ be an integer with τ 6≡ 1 (mod l). Then τ is a
solution of (K(N)) if and only if τ is a solution of the system of congruences

(V)
l−1∑
v=1

([
kNv

l

]
−N

[
kv

l

])
1
v
tv ≡ 0 (mod l) (1 ≤ k ≤ l − 1).

P r o o f. By Fermat’s little theorem we have

Sl−1(vk;N) = Sl−1(vkN)−N lSl−1(vk)

≡
(
vkN −

[
vkN

l

])
−N

(
vk −

[
vk

l

])

≡ −
([

vkN

l

]
−N

[
vk

l

])
(mod l).

If τ 6≡ 1 (mod l), then ϕ1(τ) = (τ l − τ)/(τ − 1) ≡ 0 (mod l). Hence the
result clearly follows from Theorem 3.4.

In Section 5 we will derive a system of congruences equivalent to (V) by
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means of a special subideal BN of the Stickelberger ideal (see Theorem 5.10
below).

R e m a r k 3.6. (a) In 1922, Fueter ([6], (VI)) considered the following
system of congruences:

(F)
l−1∑
v=1

[
av

l

]
1
v
tv ≡ 0 (mod l) (1 ≤ a ≤ l − 1).

Obviously, each integer τ 6≡ 1 (mod l) satisfying (F) is also a solution of (V).
On the other hand, putting a = l − 1 we see immediately that no integer
τ ≡ 1 (mod l) is a solution of (F).

(b) Clearly, each integer τ ≡ 1 (mod l) is a solution of the Kummer
system (K) and hence also of the system (K(N)) for each N (2 ≤ N ≤ l − 1).

Using Theorem 3.4 and the expression for Sl−1(vk;N) given in the proof
of Proposition 3.5 we get

kNql(N) ≡
l−1∑
v=1

([
vkN

l

]
−N

[
vk

l

])
1
v

(mod l)

for each integer k (1 ≤ k ≤ l − 1).
This formula can also be derived from Lerch’s expression ([12], (8)) for

the Fermat quotient as follows:

ql(a) ≡
l−1∑
v=1

[
va

l

]
1
va

(mod l) (a ∈ Z, l - a).

In fact, from the “logarithmic property” of the Fermat quotient it follows
that

kNql(N) ≡ kN{ql(kN)− ql(k)}

≡
l−1∑
v=1

[
vkN

l

]
1
v
−N

l−1∑
v=1

[
vk

l

]
1
v

≡
l−1∑
v=1

([
vkN

l

]
−N

[
vk

l

])
1
v

(mod l).

Thus, we may conclude that each integer τ ≡ 1 (mod l) is a solution of (V)
if and only if ql(N) ≡ 0 (mod l).

4. The determinant of KN . In this section we shall define a special
matrix KN and deduce the formula for its determinant by means of the first
factor h− of the class number of Q(ζl).



242 T. Agoh and L. Skula

Let f be the order of N mod l. Put

ω(N) =
{

(Nf/2 + 1)(l−1)/f if f is even,
(Nf − 1)(l−1)/(2f) if f is odd.

In [8] Hazama introduced the square matrix H = [hij ]1≤i,j≤(l−1)/2 de-
fined by

hij =
{

0 if ij > l/2,
1 if ij < l/2.

This (0, 1) matrix H is regarded as a modified Dem’yanenko matrix
D′(l) for l ≥ 5 considered by Folz and Zimmer ([6]). Hazama evaluated the
determinant of H:

Theorem 4.1.

detH = (−1)[(l−1)/4]ω(2)
l
h−.

We now define a new square matrix KN of order (l − 1)/2 as follows:

Definition 4.2.

KN = [kij ]1≤i,j≤(l−1)/2, kij = ν − (N − 1)/2,

where ν is an integer such that

νl/N < ij < (ν + 1)l/N,

hence ν = [ijN/l].

We note that the entries of H are either 0 or 1, however, those of K2 are
either −1/2 or 1/2. Also, the first rows of H and K2 are, respectively,

[1, 1, . . . , 1] and
[− 1

2 ,− 1
2 , . . . ,− 1

2

]
.

From Theorem 4.1 we deduce

Proposition 4.3.

detK2 = (−1)(l−1)/2+[(l−1)/4]ω(2)
2l

h−.

P r o o f. We perform the following row operations to the matrix H:

(a) multiply the first row by −1/2 and add it to the others,
(b) multiply all rows by −1,
(c) multiply the first row by −1/2.

Then we easily see that detH = (−1)(l−1)/22 detK2, which leads to the
conclusion in view of Theorem 4.1.

The following theorem is a generalization of Theorem 4.1 and hence of
Proposition 4.3. In Section 5 we shall give the proof of this theorem using
Proposition 5.5.
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Theorem 4.4.

detKN = (−1)(l2−1)/8ω(N)
2l

h−.

For the determination of the sign of det KN we need the following

Proposition 4.5. Suppose that auv are complex numbers satisfying

au+(l−1)/2,v = au,v+(l−1)/2 = −auv
for all integers u, v. Let A = [auv]0≤u,v≤(l−3)/2 and D = [dxy]1≤x,y≤(l−1)/2
with dxy = aind x,− ind y. Then

detD = (−1)(l−1)(l−3)/8 detA.

P r o o f. I. For integers u and v put

cuv =
{
auv if ru, r−v < l/2 or ru, r−v > l/2,
−auv otherwise,

and consider the matrix C = [cuv]0≤u,v≤(l−3)/2. Then for u, v ∈ Z we have

cu+(l−1)/2, v = cu, v+(l−1)/2 = cuv,

and therefore
detC = (−1)(l−3)/2 detA.

II. For an integer w with 0 ≤ w ≤ (l − 3)/2 let ϕ(w) = ind(w + 1) or
ϕ(w) = ind(w + 1) − (l − 1)/2 such that 0 ≤ ϕ(w) ≤ (l − 3)/2. Also, let
ψ(0) = 0 and ψ(w) = (l − 1)/2− w for w ∈ Z, 1 ≤ w ≤ (l − 3)/2. Then ϕ,
ψ and π = ψ ◦ ϕ are permutations of the set {0, 1, . . . , (l − 3)/2}.

Since dxy = cind x,− ind y for x, y ∈ Z (1 ≤ x, y ≤ (l − 1)/2), we get
du+1, v+1 = cϕ(u), π(v) for integers u, v (0 ≤ u, v ≤ (l − 3)/2), hence

detD = (−1)ε(l) detC,

where

ε(l) =
{

(l − 3)/4 when (l − 3)/2 is even,
(l − 5)/4 when (l − 3)/2 is odd.

Since

ε(l) +
l − 3

2
≡ (l − 1)(l − 3)

8
(mod 2),

the result follows.

5. The ideal BN . In this section we deal with a special ideal BN of the
group ring R = Z[G], which is contained in the Stickelberger ideal I for the
lth cyclotomic field Q(ζl).

We write:

• G = {1, s, s2, . . . , sl−2}, a multiplicative cyclic group of order l−1 with
generator s,
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• R = Z[G], the group ring of G over Z; hence each element of R is of
the form α =

∑l−2
i=0 ais

i (ai ∈ Z),

• R′ =
{
α =

l−2∑

i=0

ais
i ∈ R | aj + aj+(l−1)/2 = ak + ak+(l−1)/2

for each j, k ∈ Z with 0 ≤ j, k ≤ (l − 3)/2
}

=
{
α ∈ R | (1 + s(l−1)/2)α ∈ Z ·

l−2∑

i=0

si
}
, a subring of R,

• εh = sh(1− s(l−1)/2) for h ∈ Z,

• ε =
∑(l−3)/2
i=0 si,

• S′ = {εh | 0 ≤ h ≤ (l − 3)/2} ∪ {ε}, a basis of R′ considered as a
Z-module,
• γ =

∑l−2
i=0 r−is

i ∈ R′,
• I = {α ∈ R | ∃β ∈ R such that lα = βγ} ⊆ R′, the Stickelberger ideal

of R,
• γk =

∑l−2
i=0

1
l (r−irk − r−i+k)si =

∑l−2
i=0

[ r−irk
l

]
si ∈ R′ for k ∈ Z,

• δ =
∑l−2
i=0 s

i, a special element from R corresponding to the norm of
Q(ζl).

The elements γk (k ∈ Z) of R were used in Fueter’s paper ([7], Section 8)
to derive a special system of congruences (see Remark 3.6(a)). The elements
γk, γ and δ belong to the Stickelberger ideal I of R and satisfy, for each
k ∈ Z,

γk + γk+(l−1)/2 = γ − δ.
Since γ(l−1)/2 = γ − δ, we get the following theorem from the result by

Skula ([17], Theorem 2.7):

Theorem 5.1. The system

{γk | 1 ≤ k ≤ (l − 1)/2} ∪ {δ}
forms a basis of the Stickelberger ideal I considered as a Z-module.

For a fixed integer N with 2 ≤ N ≤ l− 1, we let N = rn (1 ≤ n ≤ l− 2)
and put for simplicity

β = γn =
l−2∑

i=0

[
Nr−i
l

]
si.

Then it is easy to show the following
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Proposition 5.2. Let j be an integer. Then

sjβ =
l−2∑

i=0

[
Nr−i+j

l

]
si and sjβ + sj+(l−1)/2β = (N − 1)δ.

Definition 5.3. Denote by BN the ideal of R generated by β and δ,
thus

BN =
{ l−2∑

j=0

bjs
jβ + bδ

∣∣∣ bj , b ∈ Z
}
⊆ I.

We see from Proposition 5.2 that the elements of the system
{sjβ | 0 ≤ j ≤ (l − 3)/2} ∪ {δ} are generators of the Z-module BN .

For an element ξ of the group ring Q[G] of the cyclic group G over
the rational number field Q, there exist rational numbers xhk (0 ≤ h, k ≤
(l − 3)/2) such that

εhξ =
(l−3)/2∑

k=0

xhkεk for each h with 0 ≤ h ≤ (l − 3)/2.

Define

M(ξ) = [xhk]0≤h, k≤(l−3)/2, D(ξ) = detM(ξ).

Note that M(ξ) is a skew circulant matrix (cf. [5], 3.2.1).
For the proof of Proposition 5.5 stated below, we formulate Sinnott’s

Lemma ([15], Lemma 1.2(b)) as follows:

Lemma 5.4. Let ξ =
∑l−2
i=0 xis

i ∈ Q[G] (xi ∈ Q) and let X− be the set
of all odd characters of G. Then

D(ξ) =
∏

χ∈X−

l−2∑

i=0

xiχ(s)i.

(This lemma can also be proved directly by using a skew circulant matrix.
See Davis [5], 3.2.1, Proposition 6.)

Proposition 5.5.

D(β) = (−1)(l−1)/22(l−3)/2ω(N)
l

h−.

P r o o f. For a real number θ, we write 〈θ〉 for the fractional part of θ
(i.e., 〈θ〉 = θ − [θ]). Let B1,χ denote the generalized first Bernoulli number
for an odd character χ of G, hence

B1,χ =
1
l

l−1∑
a=1

χ(a)a.
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Then it is well known that h− can be expressed as

h− = 2l
∏

χ∈X−

(
−1

2
B1,χ

)
.

Also, we easily see that
l−1∑
a=1

〈
Na

l

〉
χ(a) =

χ(N)
l

l−1∑
a=1

χ(a)a

and ∏

χ∈X−
(N − χ(N)) = ω(N),

where χ is the conjugate character of χ. By Lemma 5.4, we obtain

D(β) =
∏

χ∈X−

l−2∑

i=0

[
Nr−i
l

]
χ(s)i =

∏

χ∈X−

l−1∑
a=1

[
Na

l

]
χ(a)

=
∏

χ∈X−

l−1∑
a=1

(
Na

l
−
〈
Na

l

〉)
χ(a)

=
∏

χ∈X−
(N − χ(N)) ·

∏

χ∈X−

1
l

l−1∑
a=1

χ(a)a

= ω(N)(−2)(l−1)/2
∏

χ∈X−

(
− 1

2
B1,χ

)
= (−1)(l−1)/22(l−3)/2ω(N)

l
h−,

as desired.

Now we are able to evaluate detKN :

P r o o f o f T h e o r e m 4.4. For integers u, v put

auv =
[
Nr−u+v

l

]
− N − 1

2
.

Then au+(l−1)/2,v = au,v+(l−1)/2 = −auv. By Proposition 5.2, it follows that
for each integer h (0 ≤ h ≤ (l − 3)/2),

εhβ = shβ − sh+(l−1)/2β = 2shβ − (N − 1)δ

= 2
(l−3)/2∑

k=0

([
Nr−k+h

l

]
sk +

[
Nr−k+h+(l−1)/2

l

]
sk+(l−1)/2

)

+ (N − 1)
(l−3)/2∑

k=0

εk − 2(N − 1)ε
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= 2
(l−3)/2∑

k=0

[
Nr−k+h

l

]
εk + 2(N − 1)

(l−3)/2∑

k=0

sk+(l−1)/2

+ (N − 1)
(l−3)/2∑

k=0

εk − 2(N − 1)ε

=
(l−3)/2∑

k=0

(
2
[
Nr−k+h

l

]
− (N − 1)

)
εk = 2

(l−3)/2∑

k=0

akhεk.

Since the entries kxy (1 ≤ x, y ≤ (l− 1)/2) of KN satisfy kxy = a− ind y,ind x,
from Propositions 4.5 and 5.5 we get

detKN = (−1)(l−1)(l−3)/8 det[auv]T0≤u,v≤(l−3)/2

= (−1)(l−1)(l−3)/8+(l−1)/2ω(N)
2l

h− = (−1)(l2−1)/8ω(N)
2l

h−,

which completes the proof of Theorem 4.4.

Proposition 5.6. Let ξ ∈ R′ and let M be the transition matrix from
the basis S′ of R′ to the elements sjξ (0 ≤ j ≤ (l − 3)/2) and δ. Then

detM = 2−(l−3)/2D(ξ).

P r o o f. Assume that ξ =
∑l−2
i=0 xis

i, where xi ∈ Z and xi +xi+(l−1)/2 =
c ∈ Z for each integer i (0 ≤ i ≤ (l − 1)/2). Let M(ξ) = [xhk]0≤h,k≤(l−3)/2
be the matrix defined above. Then for each h ∈ Z (0 ≤ h ≤ (l − 3)/2) we
have

εhξ = shξ − sh+(l−1)/2ξ = 2shξ − cδ.
Since

δ =
l−2∑

i=0

si = −
(l−3)/2∑

k=0

εk + 2ε,

it follows that

shξ =
1
2

(εhξ + cδ) =
1
2

(l−3)/2∑

k=0

(xhk − c)εk + cε.

If J is the square matrix of order (l − 1)/2 whose entries are all ones, then

M =




c

1
2M(ξ)− c

2J
...

c

−1 . . . −1 2



.
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Multiply the last column of M by 1/2 and add it to the others. Using
Proposition 5.5 we obtain

detM = 2−(l−3)/2D(ξ),

which completes the proof.

The next theorem follows from the Iwasawa class number formula ([10])
and was generalized by Sinnott ([15]).

Theorem 5.7.

[R′ : I] = h−.

Here, [A : B] means the index of B in A in case of A being a commutative
group and B a subgroup of A.

Applying Propositions 5.5, 5.6 and Theorem 5.7 we obtain

Theorem 5.8. (a) For the transition matrix M from the basis S′ of R′

to the elements sjβ (0 ≤ j ≤ (l − 3)/2) and δ we have

detM = (−1)(l−1)/2ω(N)
l

h−.

(b) The system

{sjβ | 0 ≤ j ≤ (l − 3)/2} ∪ {δ}
forms a basis of BN considered as a Z-module.

(c) [R′ : BN ] =
ω(N)
l

h− and [I : BN ] =
ω(N)
l

.

Lastly, we shall derive a system equivalent to (V) mentioned in Propo-
sition 3.5 by means of the elements α ∈ BN .

Definition 5.9 (cf. [16], 1.3). For the element α =
∑l−2
i=0 ais

i of R, we
define the polynomial fα(t) as follows:

fα(t) =
l−1∑
v=1

a− ind v
1
v
tv,

where aj (j ∈ Z) is equal to ai (0 ≤ i ≤ l − 2) whenever j ≡ i (mod l − 1).

Theorem 5.10. The system (V) of Proposition 3.5 is equivalent to the
system

fα(t) ≡ 0 (mod l) (α ∈ BN ).

P r o o f. Let k and % be integers with 1 ≤ k ≤ l − 1, 0 ≤ % ≤ l − 2 and
r% = k. According to Proposition 5.2 we let

α = s%β =
l−2∑

i=0

[
Nr−i+%

l

]
si.
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Then it follows that

fα(t) =
l−1∑
v=1

[
Nrind v+%

l

]
1
v
tv =

l−1∑
v=1

[
Nvk

l

]
1
v
tv

=
l−1∑
v=1

([
vkN

l

]
−N

[
vk

l

])
1
v
tv.

Since ϕl−1(t) ≡ fδ(t) (mod l), the theorem follows.

Acknowledgments. We would like to express many thanks to the ref-
eree for his valuable comments and especially for his calling our attention
to Sinnott’s Lemma (Lemma 5.4).
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