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Solvability of p-adic diagonal equations

by

Christopher M. Skinner (Princeton, N.J.)

1. Introduction. Let p be a prime, let Qp denote the p-adic numbers,
and let K be a finite extension of Qp. One of the fundamental questions in
the study of diophantine equations asks: when does an equation of the form

(1) a1x
k
1 + . . .+ asx

k
s = 0, ai ∈ K, k ≥ 2,

have a non-trivial solution over K? (By “non-trivial solution” we mean a
non-zero vector x = (x1, . . . , xs) ∈ Ks satisfying (1).) When K = Qp, it
is well known that it suffices to have s ≥ k2 + 1. More generally, suppose
k = ptm, (m, p) = 1, f is the residue class degree of K, and d = (m, pf −1).
Birch [B] has shown that for any K, it suffices to have s ≥ (2t+3)k(d2k)k−1.
It is the purpose of this note to improve the result of Birch, by essentially
reducing the exponent k to log k. Specifically, we prove the following theo-
rem.

Theorem. If s ≥ k((k + 1)max(2t,1) − 1) + 1, then any equation of the
form (1) has a non-trivial solution over K. In particular , if (k, p) = 1, then
it suffices to have s ≥ k2 + 1.

If K is unramified over Qp, then it is possible to replace the 2t of the
Theorem with a constant. A proof of such a result is indicated in [D]. It
is also possible to generalize the results of Schmidt [S] for simultaneous
additive equations, at least in the case (k, p) = 1. However, in order to keep
our exposition as elementary as possible, we do not treat either of these
problems in this paper.

2. Notation and preliminaries. In what follows, O is the ring of
integers of K, p = (π) is the maximal ideal of O, f is the residue class
degree of K, e is the ramification index of p, and t and m are integers such
that k = ptm, with (m, p) = 1. Also, L is the maximal unramified subfield
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of K, and o is the ring of integers of L. Recall that {1, π, . . . , πe−1} is an
o-basis of O.

Clearly, we lose no generality by assuming that ai ∈ O for all i, so
henceforth we shall do so.

We write Γ (k) for the least positive integer such that if s ≥ Γ (k), then
any equation of the form (1) is solvable non-trivially over K. We use Γ1(k)
to denote the similar function for those equations of the form (1) with the
additional restriction that ai 6≡ 0 mod π for all i.

We write that x is a “non-trivial solution mod πn” if x = (x1, . . . , xs) ∈
Os is a solution of (1) modulo πn and if xj 6≡ 0 mod π for some j. We let
Φ(k, n) denote the least positive integer such that if s ≥ Φ(k, n), then any
equation of the form (1) has a non-trivial solution mod πn.

Our first lemma reduces the proof of the Theorem to showing that
Φ(k, e) ≤ k + 1.

Lemma 1. (i) Γ (k) ≤ k(Γ1(k)− 1) + 1.
(ii) Γ1(k) ≤ Φ(k,max(2et, 1)).

(iii) Φ(k, (r + 1)e) ≤ Φ(k, e)Φ(k, re) ≤ Φ(k, e)r+1.
(iv) If Φ(k, e) ≤ (k + 1), then

Γ (k) ≤ k((k + 1)max(2t,1) − 1) + 1.

P r o o f. (i) Write ai = πrik+cibi with ri ≥ 0, 0 ≤ ci < k and (bi, π) = 1.
If s > k(c− 1), then by the Box Principle at least c of the ci’s are the same.
We may assume the corresponding i’s to be i = 1, . . . , c. Thus it suffices to
find a non-trivial solution of the equation

(2) b1x
k
1 + b2x

k
2 + . . .+ bcx

k
c = 0, (bi, π) = 1.

That such a solution exists if c ≥ Γ1(k) is a consequence of the definition of
Γ1(k).

(ii) Assume a1 6≡ 0 mod π for all i. Put r = max(1, 2te). If s ≥ Φ(k, r),
then by the definition of Φ(k, r), there exists a non-trivial solution of (1)
mod πr. Let x = (x1, . . . , xs) be such a solution. We may assume that x1 6≡ 0
mod π. Choose y2, . . . , ys ∈ o such that yi ≡ xi mod πr. Let d =

∑s
i=2 aiy

k
i .

Since a1x
k
1 +d ≡ 0 mod πr, it follows from Hensel’s Lemma [La, II, Prop. 2]

that we can find y1 ∈ o such that y1 ≡ x1 mod πr and a1y
k
1 + d = 0. Thus

y = (y1, . . . , yc) is a non-trivial solution of (1).
(iii) Let h = Φ(k, re), l = Φ(k, e) and let

Fj(xj) = ajh+1x
k
jh+1 + . . .+ a(j+1)hx

k
(j+1)h, j = 0, . . . , l − 1.

Then (1) becomes

F0(x0) + F1(x1) + . . .+ Fl−1(xl−1) +
s∑

i=lh+1

aix
k
i = 0.
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Thus, it suffices to find a non-trivial solution of

(3) F0(x0) + . . .+ Fl−1(xl−1) ≡ 0 mod π(r+1)e.

By definition of Φ(k, re) there exist non-trivial solutions yj of the l equations

Fj(xj) ≡ 0 mod πre, j = 0, . . . , l − 1.

Let fj = Fj(yj). Substituting xj = tjyj in (3) we get the new equation

(4) f0t
k
0 + . . .+ fl−1t

k
l−1 ≡ 0 mod π(r+1)e, fj ≡ 0 mod πre.

From the definition of Φ(k, e) = l, (4) has a non-trivial solution t = (t0, . . .
. . . , tΦ(k,e)−1). Thus, y = (t0y0, . . . , tΦ(k,e)−1yΦ(k,e)−1, 0, . . . , 0) ∈ os is a
non-trivial solution of (1) modulo π(r+1)e.

(iv) This follows upon combining parts (i)–(iii).

3. Some results about linear systems. Before we can prove that
Φ(k, e) ≤ k + 1, we need some facts about linear systems of a particular
type.

In this section, F is an arbitrary field, and for any non-negative integers
a and b, Ma,b(F ) is the ring of matrices over F of size a× b.

Let c, r, and n be positive integers, and let

(5a) Aij ∈Mri,n(F ), i = 1, . . . , c, j = 1, . . . , i, ri ≤ r,
be arbitrary matrices. We allow “empty” matrices (i.e. ri = 0). Consider
the block matrix

(5b) A =




A11 0 . . . 0
A21 A22 0 . . . 0

...
...

Ac1 . . . Acc


 .

Definition. We say that any matrix A of the form (5a,b) is (c, r, n)-good
if

1. for each i, the non-zero row vectors of Aii are linearly independent
over F , and

2. for each q, the qth row of (Ai1 Ai2 . . . Aii) is non-zero iff the qth row
of Aii is non-zero.

Note that both conditions are trivially satisfied by matrices with ri = 0.
The following lemma partially motivates our use of the adjective “good.”

Lemma 2. Suppose A is (c,r ,n)-good with n > r, and suppose X =
(x1, . . . , xn) is a non-zero solution of the linear system

A11X = 0.
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(For A11 empty , any X is a solution.) Then the linear system

(6) AY = 0

has a solution Y = (y1, . . . , ycn) such that yi = xi for i = 1, . . . , n.

P r o o f. We will proceed by induction on c. The claim is trivially true
for c = 1. Suppose c > 1. Write

A =
(
B1 0
B2 Acc

)
.

B1 is (c − 1, r, n)-good, so by hypothesis there exists a solution Y1 =
(y1, . . . , y(c−1)n) of the linear system

B1Y1 = 0

such that y1 = x1 for i = 1, . . . , n. Let D = B2Y1. It follows from Part 2
of the definition of a good matrix that the qth entry of D is zero if the qth
row of Acc is zero. By Part 1 of the definition of a good matrix, the non-zero
rows of Acc are linearly independent. Thus, since n > r ≥ rank(Acc) the
linear system

AccY2 = −D

has a solution in F . It follows that Y = (Y1,Y2) is the desired solution to
(6).

Next, we consider a slightly more general system, though still of a very
special type. Again, let c, r, n be positive integers. Let

(7a) Mi,j ∈Mrj ,n(F ), i = 1, . . . , c, j = 1, . . . , c− i+ 1,
c∑

j=1

rj ≤ r.

We allow empty matrices (i.e. rj = 0). Consider the block matrix

(7b) M =




M1,1 0 . . . 0
M1,2 0 . . . 0

...
...

...
M1,c 0 . . . 0
M2,1 M1,1 0 . . . 0

...
...

...
...

M2,c−1 M1,c−1 0 . . . 0
...

...
Mc,1 Mc−1,1 Mc−2,1 . . . M11




.
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Lemma 3. If M is any matrix of the form (7a,b), then there exists an
invertible matrix P such that M ′ = PM is (c, r, n)-good.

P r o o f. We will proceed again by induction on c. There is an invertible Q
such that QM1,1 =

(
N1,1

0

)
, where the rows of N1,1 are non-zero and linearly

independent. Suppose that N1,1 has ν rows, so that QM1,1 has r1 − ν zero
rows. For every k = 1, . . . , c,

(8) Q(Mk,1 Mk−1,1 . . . M1,1) =
(
Nk,1 . . . N2,1 N1,1

N∗k,1 . . . N∗2,1 0

)
.

Thus, there exists an invertible matrix P1 such that

(9) P1M =




N1,1 0 . . . 0
N∗2,1
M1,2

...
...

...
M1,c 0 . . . 0
N2,1 N1,1 0 . . . 0
N∗3,1 N∗2,1
M2,2 M1,2

...
...

...
...

M2,c−1 M1,c−1 0 0
...

...
...

Nc,1 Nc−1,1 Nc−2,1 . . . N1,1

0 0 . . . . . . 0




,

where there are r1 − ν rows of zeros at the bottom. Put

Ri,1 =




Ni,1

N∗i+1,1

Mi,2


 , i = 1, . . . , c− 1,

Ri,j = Mi,j+1, i = 1, . . . , c− 1, j = 2, . . . , c− i.

Let vj = (number of rows of Ri,j). Then by (8) and the definition of M , we
see that

(10)
c−1∑

j=1

vj =
c∑

j=1

rj ≤ r.



256 C. M. Skinner

Put

R =




R1,1 0 . . . 0
R1,2 0 . . . 0

...
...

...
R1,c−1 0 . . . 0
R2,1 R1,1 0 . . . 0

...
...

...
...

R2,c−2 R1,c−2 0 . . . 0
...

...
Rc−1,1 Rc−2,1 Rc−3,1 . . . R11




.

Then

P1M =



R 0
∗ N1,1

0 0


 .

From (10) it follows that R is of the form (7a,b) with c replaced by c − 1.
By the induction hypothesis, there exists an invertible P2 such that P2R is
(c− 1, r, n)-good. Then

(
P2 0
0 I

)
P1M =



P2R 0
∗ N1,1

0 0


 .

This is clearly (c, r, n)-good, and we have found the desired P .

4. Proof of the Theorem. By Lemma 1, we need only show that any
equation of the form

(11) a1x
k
1 + . . .+ asx

k
s ≡ 0 mod πe, ai ∈ O,

has a non-trivial solution mod πe, provided s ≥ k + 1.
For any x ∈ O we have

x = x0 + x1π + . . .+ xe−1π
e−1, xi ∈ o.

Put c = [e/pt]. Then

xp
t ≡ xpt0 + xp

t

1 π
pt + . . .+ xp

t

c π
cpt mod πe.

Write

ai =
e−1∑

j=0

ai,jπ
j , xi =

e−1∑

j=0

xi,jπ
j .

By the above comments, to solve (11) for k = pt it is sufficient to solve the
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system

(12)

s∑

i=1

ai,0x
pt

i,0 ≡ 0 mod p,

...
s∑

i=1

ai,pt−1x
pt

i,0 ≡ 0 mod p,

s∑

i=1

ai,ptx
pt

i,0 +
s∑

i=1

ai,0x
pt

i,1 ≡ 0 mod p,

...
s∑

i=1

ai,2pt−1x
pt

i,0 +
s∑

i=1

ai,pt−1x
pt

i,1 ≡ 0 mod p,

...
s∑

i=1

ai,(c+1)pt−1x
pt

i,0 +
s∑

i=1

ai,cpt−1x
pt

i,1 + . . .+
s∑

i=1

ai,pt−1x
pt

i,c ≡ 0 mod p,

over o. Here ai,j = 0 if j ≥ e.
Lemma 4. If s ≥ k+1, then any system of the form (12) has a non-trivial

solution such that

(i) xj,0 6≡ 0 mod p for some j.
(ii) xj,0 is an m-th power mod p for all j.

P r o o f. Since p is unramified in L, L(p) = o/(p) is a finite field of
characteristic p. Thus, x 7→ xp

t

is an automorphism of L(p). Therefore, to
solve (12) it suffices to solve the associated linear system (i.e. replace xp

t

i,j

with yi,j) over the field L(p). We wish to find a solution such that yi,0 is an
mth power for i = 1, . . . , s.

Observe that the matrix of coefficients of (12) is in the form of (7a,b),
with c replaced by c + 1, r = pt, and n = s. By Lemma 3, (12) is equiva-
lent via elementary row operations to a system whose coefficient matrix is
(c+ 1, pt, s)-good. Suppose this new matrix is given by



B11 0 . . . 0
B21 B22 0 . . . 0
∗ ∗ ∗ ∗ ∗


 , Bij ∈Mri,s(L(p)), ri ≤ pt.
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By the Thereom of Chevalley–Warning [Se, I, Thm. 3], if s > ptm = k,
then the system B11Y1 = 0 has a non-trivial solution over L(p), say Y1 =
(y1, . . . , ys), such that each yi is an mth power. By Lemma 2 this can be
extended to a solution Y of the linear system associated with (12). By the
remarks in the first paragraph of this proof, Y corresponds to a solution of
(12).

The proof of the Theorem now follows upon combining Lemma 1 with
the following lemma.

Lemma 5. For any k, an equation of the form (11) has a non-trivial
solution mod πe provided s ≥ k + 1. Therefore, Φ(k, e) ≤ k + 1.

P r o o f. By the previous lemma and the comments preceding it, we can
find x1, . . . , xs, not all zero modulo π, such that

a1x
pt

1 + . . .+ asx
pt

s ≡ 0 mod πe,

and
xi ≡ ymi mod π, i = 1, . . . , s.

Since (m, p) = 1, it follows from Hensel’s Lemma that for each i we can
find zi ∈ O such that zmi ≡ xi mod πe. Thus z = (z1, . . . , zs) is the desired
solution of (11).
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