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CHRISTOPHER M. SKINNER (Princeton, N.J.)

1. Introduction. Let p be a prime, let Q, denote the p-adic numbers,
and let K be a finite extension of Q,. One of the fundamental questions in
the study of diophantine equations asks: when does an equation of the form

(1) wmaz +.. . F+axb =0, aeK k>2,

have a non-trivial solution over K7 (By “non-trivial solution” we mean a
non-zero vector x = (z1,...,x5) € K* satisfying (1).) When K = Q,, it
is well known that it suffices to have s > k? + 1. More generally, suppose
k = p'm, (m,p) = 1, f is the residue class degree of K, and d = (m,p’ —1).
Birch [B] has shown that for any K, it suffices to have s > (2t +3)*(d?k)*~1.
It is the purpose of this note to improve the result of Birch, by essentially
reducing the exponent k to log k. Specifically, we prove the following theo-
rem.

THEOREM. If s > k((k + 1)™2*t0 1) 4 1, then any equation of the
form (1) has a non-trivial solution over K. In particular, if (k,p) = 1, then
it suffices to have s > k% 4+ 1.

If K is unramified over Q,, then it is possible to replace the 2¢ of the
Theorem with a constant. A proof of such a result is indicated in [D]. It
is also possible to generalize the results of Schmidt [S] for simultaneous
additive equations, at least in the case (k,p) = 1. However, in order to keep
our exposition as elementary as possible, we do not treat either of these
problems in this paper.

2. Notation and preliminaries. In what follows, © is the ring of
integers of K, p = (m) is the maximal ideal of O, f is the residue class
degree of K, e is the ramification index of p, and ¢ and m are integers such
that k = p'm, with (m,p) = 1. Also, L is the maximal unramified subfield
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of K, and o is the ring of integers of L. Recall that {1,7,..., 771} is an
o-basis of O.

Clearly, we lose no generality by assuming that a; € O for all i, so
henceforth we shall do so.

We write I'(k) for the least positive integer such that if s > I'(k), then
any equation of the form (1) is solvable non-trivially over K. We use I'1 (k)
to denote the similar function for those equations of the form (1) with the
additional restriction that a; # 0 mod 7 for all 7.

We write that x is a “non-trivial solution mod 7"” if x = (x1,...,2s) €
0% is a solution of (1) modulo 7™ and if z; # 0 mod « for some j. We let
&(k,n) denote the least positive integer such that if s > ®(k,n), then any
equation of the form (1) has a non-trivial solution mod 7™.

Our first lemma reduces the proof of the Theorem to showing that
P(k,e) <k +1.

LEMMA 1. (i) I'(k) < k(I (k) — 1) + 1.

(i) I1(k) < &(k, max(2et,1)).

(iii) @(k, (r + 1)e) < D(k,e)P(k,re) < D(k,e)"+L.

(iv) If &(k,e) < (k+ 1), then

I(k) < k((k+ 1)max@hD 1y 4 q,

Proof. (i) Write a; = 7"**¢b; with r; > 0, 0 < ¢; < k and (b;,7) = 1.

If s > k(c—1), then by the Box Principle at least ¢ of the ¢;’s are the same.

nm»

We may assume the corresponding i’s to be ¢ = 1,...,c. Thus it suffices to
find a non-trivial solution of the equation
(2) biah +boxk + .+ bt =0,  (b,7)=1.

That such a solution exists if ¢ > I'1 (k) is a consequence of the definition of
I (k).

(ii) Assume a; # 0 mod 7 for all 7. Put r» = max(1,2te). If s > &(k,r),
then by the definition of ®(k,r), there exists a non-trivial solution of (1)
mod 7". Let x = (1, ...,xs) be such a solution. We may assume that z; #Z 0
mod 7. Choose y2, ..., ys € 0 such that y; = x; mod 7". Letd =>_7_, a;yr.
Since a;x¥ +d = 0 mod 7", it follows from Hensel’s Lemma [La, II, Prop. 2]
that we can find y; € o such that y; = 1 mod n” and aly'f +d = 0. Thus
vy = (y1,---,Yc) is a non-trivial solution of (1).

(iii) Let h = ®(k,re), | = ®(k,e) and let

Fj(X]) = (Ijh+1f13§:h+1 + ...+ a(]"‘rl)hx?j—‘rl)h? j = 0, .. .,l — 1

Then (1) becomes

Fo(xo) + Fi(x1) + ... + Fi—1(x-1) Z ait; =
i=lh+1
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Thus, it suffices to find a non-trivial solution of

(3) Fo(x0) + ... 4+ Fi_1(x;-1) = 0 mod 7"+ Ve,

By definition of @(k, re) there exist non-trivial solutions y; of the [ equations
Fj(x;) =0mod "¢, j=0,...,1—1

Let f; = F}(y;). Substituting x; = ¢;y; in (3) we get the new equation

(4) foth 4 ...+ fi_1tf | =0 mod pr+be fi =0 mod 7"°.

From the definition of @(k,e) = [, (4) has a non-trivial solution t = (¢, ...
. 7t45(k:,e)—1)- Thus, y = (toyo, ce ,tqs(k’e)_ly@(k’e)_l, o,... ,0) € 0°is a
non-trivial solution of (1) modulo 7("+be,

(iv) This follows upon combining parts (i)—(iii). m

3. Some results about linear systems. Before we can prove that
&(k,e) < k+ 1, we need some facts about linear systems of a particular
type.

In this section, F' is an arbitrary field, and for any non-negative integers
a and b, M, ;(F) is the ring of matrices over F' of size a X b.

Let ¢,r, and n be positive integers, and let

(5a) A eM,, o (F), i=1,....¢c, j=1,...,4, 1, <,

be arbitrary matrices. We allow “empty” matrices (i.e. r; = 0). Consider
the block matrix

A O ... 0
(5b) A A21 A22 0 e 0
_Acl ... ACC

DEFINITION. We say that any matrix A of the form (5a,b) is (¢, r, n)-good
if

1. for each 7, the non-zero row vectors of A;; are linearly independent
over F', and

2. for each g, the gth row of (A;; A;2 ... Aj;) is non-zero iff the gth row
of A;; is non-zero.

Note that both conditions are trivially satisfied by matrices with r; = 0.
The following lemma partially motivates our use of the adjective “good.”

LEMMA 2. Suppose A is (c¢,r,n)-good with n > r, and suppose X =
(x1,...,2,) is a non-zero solution of the linear system

A11X =0.
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(For Ay1 empty, any X is a solution.) Then the linear system
(6) AY =0
has a solution Y = (y1,...,Yen) Such that y;, = x; fori=1,... n.

Proof. We will proceed by induction on ¢. The claim is trivially true
for ¢ = 1. Suppose ¢ > 1. Write

By O
A= .
(BQ Acc)
By is (¢ — 1,r,n)-good, so by hypothesis there exists a solution Y; =
(Y1, Y(e—1)n) of the linear system

BiY; =0

such that y; = 1 fori = 1,...,n. Let D = ByY;. It follows from Part 2
of the definition of a good matrix that the gth entry of D is zero if the gqth
row of A.. is zero. By Part 1 of the definition of a good matrix, the non-zero
rows of A.. are linearly independent. Thus, since n > r > rank(A..) the
linear system

AceYo=-D

has a solution in F. It follows that Y = (Y1, Y3) is the desired solution to

(6). m

Next, we consider a slightly more general system, though still of a very
special type. Again, let ¢, r, n be positive integers. Let

(&
(Ta)  Mi; € My n(F), i=1...,¢, j=1,...,c—i+1, Y ry<r
j=1

We allow empty matrices (i.e. r; = 0). Consider the block matrix

M 1 0 .. 0

M, o 0 ... 0

M. 0 0

(7b) M=| M My 0 0
MQ’C_l Ml,c—l 0 R 0

M,y M.y M5y ... My
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LEMMA 3. If M is any matriz of the form (7a,b), then there exists an
invertible matriz P such that M' = PM 1is (¢,r,n)-good.

Proof. We will proceed again by induction on c¢. There is an invertible )
such that QM ; = (N(l)’1 ), where the rows of N ; are non-zero and linearly
independent. Suppose that Vi ; has v rows, so that QM ; has ry — v zero

rows. For every k=1,... ¢,

N ... N N
(8) QMyg1 My—11 ... My;) = ( k,1 2,1 171> .

Niy ... Nj; 0

Thus, there exists an invertible matrix P; such that

Ny 0 0
Ny

M o

Ml,c 0 0

N2,1 N171 0 0

(9) M= Ns1 Nay 7
Ms o M o
M1 My 0 0
Neq Ne—in Ne2a ... Nig
0 0 0

where there are r; — v rows of zeros at the bottom. Put
Nia
Ri,l: {1171 , Z‘:l,...,C—l7
M; 2
Ri,j:Mi,j—l-l, t=1,....,c—1, j=2,...,c—1.

Let v; = (number of rows of R; ;). Then by (8) and the definition of M, we
see that

c—1 c
(10) Zvj:ergr.
j=1 j=1
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Put
R, 0 0
Ry 0 0
Rl,c—l 0 . 0
p—| Rei  Rua 0 ... 0
RZ’C_Q RLC_Q 0 e 0
Re11 Re—21 Re—z1 ... Ru
Then
R 0
PlM = * Nl,l
0 0

From (10) it follows that R is of the form (7a,b) with ¢ replaced by ¢ — 1.
By the induction hypothesis, there exists an invertible P, such that P> R is
(¢ —1,7r,n)-good. Then

PBRR 0
<F(;2 ?) PlM = * N171
0 0

This is clearly (¢, r,n)-good, and we have found the desired P. m

4. Proof of the Theorem. By Lemma 1, we need only show that any
equation of the form
(11) a1zt + ...+ a2z =0mod 7, a; €O,

has a non-trivial solution mod 7¢, provided s > k + 1.
For any = € © we have

r=xo+x T+ ...+ 2w, x5 €0.

Put ¢ = [e/p']. Then
t t
o =ab 427 4.+ a2 7 mod x°.

Write
e—1 e—1
a; :Zaid'ﬂj, ZT; :in,jﬂj-
Jj=0 Jj=0

By the above comments, to solve (11) for k = pt it is sufficient to solve the
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system

S
t
g ai7oxf70 = 0 mod p,
i=1

S pt
g i pt—1%; o = 0 mod p,

i=1
S S
' '
E QiptTi o+ E a;,02; 1 = 0 mod p,
(12) i=1 i=1

S S
t t
p pt _
E Qiopt—125 0 + E Qjpt—1L; 1 = 0 mod p,
i=1 i=1

S S S
t t t
p p p
E Qi (c+1)pt—1T5 0 T E Qicpt—1Tiq + o+ E aipt—17; . = 0 mod p,
i=1 i=1 i=1

over o. Here a; ; =0 if j > e.

LEMMA 4. If s > k+1, then any system of the form (12) has a non-trivial
solution such that

(i) zj0 #Z 0 mod p for some j.
(ii) xj,0 is an m-th power mod p for all j.

Proof. Since p is unramified in L, L(p) = o/(p) is a finite field of
characteristic p. Thus, x — 2P is an automorphism of L(p). Therefore, to

solve (12) it suffices to solve the associated linear system (i.e. replace azf’ j
with y; ;) over the field L(p). We wish to find a solution such that y; o is an
mth power for i =1,...,s.

Observe that the matrix of coefficients of (12) is in the form of (7a,b),
with ¢ replaced by ¢ + 1, r = p', and n = s. By Lemma 3, (12) is equiva-
lent via elementary row operations to a system whose coefficient matrix is
(c+1,p', s)-good. Suppose this new matrix is given by

B 0 ... 0
By By 0 ... 0|, BjjeM,, (L(p), r<p"

Xx * * *x *
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By the Thereom of Chevalley~Warning [Se, I, Thm. 3|, if s > p'm = k,
then the system B;;Y; = 0 has a non-trivial solution over L(p), say Y1 =
(y1,-..,Ys), such that each y; is an mth power. By Lemma 2 this can be
extended to a solution Y of the linear system associated with (12). By the
remarks in the first paragraph of this proof, Y corresponds to a solution of
(12). =

The proof of the Theorem now follows upon combining Lemma 1 with
the following lemma.

LEMMA 5. For any k, an equation of the form (11) has a non-trivial
solution mod 7€ provided s > k + 1. Therefore, ®(k,e) < k + 1.

Proof. By the previous lemma and the comments preceding it, we can
find z1,...,xs, not all zero modulo 7, such that

alxﬁ’t +...+ asxls’t = 0 mod 7°,
and
=y, modm, i=1,...,s.
Since (m,p) = 1, it follows from Hensel’s Lemma that for each i we can

find z; € O such that 2" = z; mod 7°. Thus z = (21,...,2s) is the desired
solution of (11). m
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