Solvability of \mathfrak{p}-adic diagonal equations

by
Christopher M. Skinner (Princeton, N.J.)

1. Introduction. Let p be a prime, let \mathbb{Q}_{p} denote the p-adic numbers, and let K be a finite extension of \mathbb{Q}_{p}. One of the fundamental questions in the study of diophantine equations asks: when does an equation of the form

$$
\begin{equation*}
a_{1} x_{1}^{k}+\ldots+a_{s} x_{s}^{k}=0, \quad a_{i} \in K, k \geq 2 \tag{1}
\end{equation*}
$$

have a non-trivial solution over K ? (By "non-trivial solution" we mean a non-zero vector $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right) \in K^{s}$ satisfying (1).) When $K=\mathbb{Q}_{p}$, it is well known that it suffices to have $s \geq k^{2}+1$. More generally, suppose $k=p^{t} m,(m, p)=1, f$ is the residue class degree of K, and $d=\left(m, p^{f}-1\right)$. Birch [B] has shown that for any K, it suffices to have $s \geq(2 t+3)^{k}\left(d^{2} k\right)^{k-1}$. It is the purpose of this note to improve the result of Birch, by essentially reducing the exponent k to $\log k$. Specifically, we prove the following theorem.

ThEOREM. If $s \geq k\left((k+1)^{\max (2 t, 1)}-1\right)+1$, then any equation of the form (1) has a non-trivial solution over K. In particular, if $(k, p)=1$, then it suffices to have $s \geq k^{2}+1$.

If K is unramified over \mathbb{Q}_{p}, then it is possible to replace the $2 t$ of the Theorem with a constant. A proof of such a result is indicated in [D]. It is also possible to generalize the results of Schmidt [S] for simultaneous additive equations, at least in the case $(k, p)=1$. However, in order to keep our exposition as elementary as possible, we do not treat either of these problems in this paper.
2. Notation and preliminaries. In what follows, \mathfrak{O} is the ring of integers of $K, \mathfrak{p}=(\pi)$ is the maximal ideal of \mathfrak{O}, f is the residue class degree of K, e is the ramification index of p, and t and m are integers such that $k=p^{t} m$, with $(m, p)=1$. Also, L is the maximal unramified subfield

[^0]of K, and \mathfrak{o} is the ring of integers of L. Recall that $\left\{1, \pi, \ldots, \pi^{e-1}\right\}$ is an \mathfrak{o}-basis of \mathfrak{O}.

Clearly, we lose no generality by assuming that $a_{i} \in \mathfrak{O}$ for all i, so henceforth we shall do so.

We write $\Gamma(k)$ for the least positive integer such that if $s \geq \Gamma(k)$, then any equation of the form (1) is solvable non-trivially over K. We use $\Gamma_{1}(k)$ to denote the similar function for those equations of the form (1) with the additional restriction that $a_{i} \not \equiv 0 \bmod \pi$ for all i.

We write that \mathbf{x} is a "non-trivial solution $\bmod \pi^{n}$ " if $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right) \in$ \mathfrak{V}^{s} is a solution of (1) modulo π^{n} and if $x_{j} \not \equiv 0 \bmod \pi$ for some j. We let $\Phi(k, n)$ denote the least positive integer such that if $s \geq \Phi(k, n)$, then any equation of the form (1) has a non-trivial solution $\bmod \pi^{n}$.

Our first lemma reduces the proof of the Theorem to showing that $\Phi(k, e) \leq k+1$.

Lemma 1. (i) $\Gamma(k) \leq k\left(\Gamma_{1}(k)-1\right)+1$.
(ii) $\Gamma_{1}(k) \leq \Phi(k, \max (2 e t, 1))$.
(iii) $\Phi(k,(r+1) e) \leq \Phi(k, e) \Phi(k, r e) \leq \Phi(k, e)^{r+1}$.
(iv) If $\Phi(k, e) \leq(k+1)$, then

$$
\Gamma(k) \leq k\left((k+1)^{\max (2 t, 1)}-1\right)+1 .
$$

Proof. (i) Write $a_{i}=\pi^{r_{i} k+c_{i}} b_{i}$ with $r_{i} \geq 0,0 \leq c_{i}<k$ and $\left(b_{i}, \pi\right)=1$. If $s>k(c-1)$, then by the Box Principle at least c of the c_{i} 's are the same. We may assume the corresponding i 's to be $i=1, \ldots, c$. Thus it suffices to find a non-trivial solution of the equation

$$
\begin{equation*}
b_{1} x_{1}^{k}+b_{2} x_{2}^{k}+\ldots+b_{c} x_{c}^{k}=0, \quad\left(b_{i}, \pi\right)=1 . \tag{2}
\end{equation*}
$$

That such a solution exists if $c \geq \Gamma_{1}(k)$ is a consequence of the definition of $\Gamma_{1}(k)$.
(ii) Assume $a_{1} \not \equiv 0 \bmod \pi$ for all i. Put $r=\max (1,2 t e)$. If $s \geq \Phi(k, r)$, then by the definition of $\Phi(k, r)$, there exists a non-trivial solution of (1) $\bmod \pi^{r}$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$ be such a solution. We may assume that $x_{1} \not \equiv 0$ $\bmod \pi$. Choose $y_{2}, \ldots, y_{s} \in \mathfrak{o}$ such that $y_{i} \equiv x_{i} \bmod \pi^{r}$. Let $d=\sum_{i=2}^{s} a_{i} y_{i}^{k}$. Since $a_{1} x_{1}^{k}+d \equiv 0 \bmod \pi^{r}$, it follows from Hensel's Lemma [La, II, Prop. 2] that we can find $y_{1} \in \mathfrak{o}$ such that $y_{1} \equiv x_{1} \bmod \pi^{r}$ and $a_{1} y_{1}^{k}+d=0$. Thus $\mathbf{y}=\left(y_{1}, \ldots, y_{c}\right)$ is a non-trivial solution of (1).
(iii) Let $h=\Phi(k, r e), l=\Phi(k, e)$ and let

$$
F_{j}\left(\mathbf{x}_{j}\right)=a_{j h+1} x_{j h+1}^{k}+\ldots+a_{(j+1) h} x_{(j+1) h}^{k}, \quad j=0, \ldots, l-1 .
$$

Then (1) becomes

$$
F_{0}\left(\mathbf{x}_{0}\right)+F_{1}\left(\mathbf{x}_{1}\right)+\ldots+F_{l-1}\left(\mathbf{x}_{l-1}\right)+\sum_{i=l h+1}^{s} a_{i} x_{i}^{k}=0
$$

Thus, it suffices to find a non-trivial solution of

$$
\begin{equation*}
F_{0}\left(\mathbf{x}_{0}\right)+\ldots+F_{l-1}\left(\mathbf{x}_{l-1}\right) \equiv 0 \bmod \pi^{(r+1) e} . \tag{3}
\end{equation*}
$$

By definition of $\Phi(k, r e)$ there exist non-trivial solutions \mathbf{y}_{j} of the l equations

$$
F_{j}\left(\mathbf{x}_{j}\right) \equiv 0 \bmod \pi^{r e}, \quad j=0, \ldots, l-1 .
$$

Let $f_{j}=F_{j}\left(\mathbf{y}_{j}\right)$. Substituting $\mathbf{x}_{j}=t_{j} \mathbf{y}_{j}$ in (3) we get the new equation

$$
\begin{equation*}
f_{0} t_{0}^{k}+\ldots+f_{l-1} t_{l-1}^{k} \equiv 0 \bmod \pi^{(r+1) e}, \quad f_{j} \equiv 0 \bmod \pi^{r e} . \tag{4}
\end{equation*}
$$

From the definition of $\Phi(k, e)=l$, (4) has a non-trivial solution $\mathbf{t}=\left(t_{0}, \ldots\right.$ $\left.\ldots, t_{\Phi(k, e)-1}\right)$. Thus, $\mathbf{y}=\left(t_{0} \mathbf{y}_{0}, \ldots, t_{\Phi(k, e)-1} \mathbf{y}_{\Phi(k, e)-1}, 0, \ldots, 0\right) \in \mathfrak{o}^{s}$ is a non-trivial solution of (1) modulo $\pi^{(r+1) e}$.
(iv) This follows upon combining parts (i)-(iii).
3. Some results about linear systems. Before we can prove that $\Phi(k, e) \leq k+1$, we need some facts about linear systems of a particular type.

In this section, F is an arbitrary field, and for any non-negative integers a and $b, \mathbf{M}_{a, b}(F)$ is the ring of matrices over F of size $a \times b$.

Let c, r, and n be positive integers, and let

$$
\begin{equation*}
A_{i j} \in \mathbf{M}_{r_{i}, n}(F), \quad i=1, \ldots, c, j=1, \ldots, i, r_{i} \leq r \tag{5a}
\end{equation*}
$$

be arbitrary matrices. We allow "empty" matrices (i.e. $r_{i}=0$). Consider the block matrix

$$
A=\left(\begin{array}{ccccc}
A_{11} & 0 & & \ldots & 0 \tag{5b}\\
A_{21} & A_{22} & 0 & \ldots & 0 \\
\vdots & & & & \vdots \\
A_{c 1} & & \ldots & & A_{c c}
\end{array}\right)
$$

Definition. We say that any matrix A of the form (5a,b) is (c, r, n)-good if

1. for each i, the non-zero row vectors of $A_{i i}$ are linearly independent over F, and
2. for each q, the q th row of $\left(A_{i 1} A_{i 2} \ldots A_{i i}\right)$ is non-zero iff the q th row of $A_{i i}$ is non-zero.

Note that both conditions are trivially satisfied by matrices with $r_{i}=0$. The following lemma partially motivates our use of the adjective "good."

Lemma 2. Suppose A is (c, r, n)-good with $n>r$, and suppose $\mathbf{X}=$ $\left(x_{1}, \ldots, x_{n}\right)$ is a non-zero solution of the linear system

$$
A_{11} \mathbf{X}=\mathbf{0}
$$

(For A_{11} empty, any \mathbf{X} is a solution.) Then the linear system

$$
\begin{equation*}
A \mathbf{Y}=\mathbf{0} \tag{6}
\end{equation*}
$$

has a solution $\mathbf{Y}=\left(y_{1}, \ldots, y_{c n}\right)$ such that $y_{i}=x_{i}$ for $i=1, \ldots, n$.
Proof. We will proceed by induction on c. The claim is trivially true for $c=1$. Suppose $c>1$. Write

$$
A=\left(\begin{array}{cc}
B_{1} & 0 \\
B_{2} & A_{c c}
\end{array}\right)
$$

B_{1} is $(c-1, r, n)$-good, so by hypothesis there exists a solution $\mathbf{Y}_{1}=$ $\left(y_{1}, \ldots, y_{(c-1) n}\right)$ of the linear system

$$
B_{1} \mathbf{Y}_{1}=\mathbf{0}
$$

such that $y_{1}=x_{1}$ for $i=1, \ldots, n$. Let $\mathbf{D}=B_{2} \mathbf{Y}_{1}$. It follows from Part 2 of the definition of a good matrix that the q th entry of \mathbf{D} is zero if the q th row of $A_{c c}$ is zero. By Part 1 of the definition of a good matrix, the non-zero rows of $A_{c c}$ are linearly independent. Thus, since $n>r \geq \operatorname{rank}\left(A_{c c}\right)$ the linear system

$$
A_{c c} \mathbf{Y}_{2}=-\mathbf{D}
$$

has a solution in F. It follows that $\mathbf{Y}=\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)$ is the desired solution to (6).

Next, we consider a slightly more general system, though still of a very special type. Again, let c, r, n be positive integers. Let

$$
\begin{equation*}
M_{i, j} \in \mathbf{M}_{r_{j}, n}(F), \quad i=1, \ldots, c, j=1, \ldots, c-i+1, \sum_{j=1}^{c} r_{j} \leq r \tag{7a}
\end{equation*}
$$

We allow empty matrices (i.e. $r_{j}=0$). Consider the block matrix

$$
M=\left(\begin{array}{ccccc}
M_{1,1} & 0 & & \ldots & 0 \tag{7b}\\
M_{1,2} & 0 & & \ldots & 0 \\
\vdots & \vdots & & & \vdots \\
M_{1, c} & 0 & & \ldots & 0 \\
M_{2,1} & M_{1,1} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
M_{2, c-1} & M_{1, c-1} & 0 & \ldots & 0 \\
\vdots & & & & \vdots \\
M_{c, 1} & M_{c-1,1} & M_{c-2,1} & \ldots & M_{11}
\end{array}\right) .
$$

Lemma 3. If M is any matrix of the form (7a,b), then there exists an invertible matrix P such that $M^{\prime}=P M$ is (c, r, n)-good.

Proof. We will proceed again by induction on c. There is an invertible Q such that $Q M_{1,1}=\binom{N_{1,1}}{0}$, where the rows of $N_{1,1}$ are non-zero and linearly independent. Suppose that $N_{1,1}$ has ν rows, so that $Q M_{1,1}$ has $r_{1}-\nu$ zero rows. For every $k=1, \ldots, c$,

$$
Q\left(M_{k, 1} M_{k-1,1} \ldots M_{1,1}\right)=\left(\begin{array}{cccc}
N_{k, 1} & \ldots & N_{2,1} & N_{1,1} \tag{8}\\
N_{k, 1}^{*} & \ldots & N_{2,1}^{*} & 0
\end{array}\right) .
$$

Thus, there exists an invertible matrix P_{1} such that

$$
P_{1} M=\left(\begin{array}{ccccc}
N_{1,1} & 0 & & \ldots & 0 \tag{9}\\
N_{2,1}^{*} & & & & \\
M_{1,2} & & & & \\
\vdots & \vdots & & & \vdots \\
M_{1, c} & 0 & & \ldots & 0 \\
N_{2,1} & N_{1,1} & 0 & \ldots & 0 \\
N_{3,1}^{*} & N_{2,1}^{*} & & & \\
M_{2,2} & M_{1,2} & & & \\
\vdots & \vdots & \vdots & & \vdots \\
M_{2, c-1} & M_{1, c-1} & 0 & & 0 \\
\vdots & \vdots & & & \vdots \\
N_{c, 1} & N_{c-1,1} & N_{c-2,1} & \ldots & N_{1,1} \\
0 & 0 & \ldots & \ldots & 0
\end{array}\right) \text {, }
$$

where there are $r_{1}-\nu$ rows of zeros at the bottom. Put

$$
\begin{gathered}
R_{i, 1}=\left(\begin{array}{c}
N_{i, 1} \\
N_{i+1,1}^{*} \\
M_{i, 2}^{*}
\end{array}\right), \quad i=1, \ldots, c-1, \\
R_{i, j}=M_{i, j+1}, \quad i=1, \ldots, c-1, \quad j=2, \ldots, c-i .
\end{gathered}
$$

Let $v_{j}=\left(\right.$ number of rows of $\left.R_{i, j}\right)$. Then by (8) and the definition of M, we see that

$$
\begin{equation*}
\sum_{j=1}^{c-1} v_{j}=\sum_{j=1}^{c} r_{j} \leq r \tag{10}
\end{equation*}
$$

Put

$$
R=\left(\begin{array}{ccccc}
R_{1,1} & 0 & & \ldots & 0 \\
R_{1,2} & 0 & & \ldots & 0 \\
\vdots & \vdots & & & \vdots \\
R_{1, c-1} & 0 & & \ldots & 0 \\
R_{2,1} & R_{1,1} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
R_{2, c-2} & R_{1, c-2} & 0 & \ldots & 0 \\
\vdots & & & & \vdots \\
R_{c-1,1} & R_{c-2,1} & R_{c-3,1} & \ldots & R_{11}
\end{array}\right) .
$$

Then

$$
P_{1} M=\left(\begin{array}{cc}
R & 0 \\
* & N_{1,1} \\
0 & 0
\end{array}\right)
$$

From (10) it follows that R is of the form ($7 \mathrm{a}, \mathrm{b}$) with c replaced by $c-1$. By the induction hypothesis, there exists an invertible P_{2} such that $P_{2} R$ is ($c-1, r, n$)-good. Then

$$
\left(\begin{array}{cc}
P_{2} & 0 \\
0 & I
\end{array}\right) P_{1} M=\left(\begin{array}{cc}
P_{2} R & 0 \\
* & N_{1,1} \\
0 & 0
\end{array}\right)
$$

This is clearly (c, r, n)-good, and we have found the desired P.
4. Proof of the Theorem. By Lemma 1, we need only show that any equation of the form

$$
\begin{equation*}
a_{1} x_{1}^{k}+\ldots+a_{s} x_{s}^{k} \equiv 0 \bmod \pi^{e}, \quad a_{i} \in \mathfrak{O}, \tag{11}
\end{equation*}
$$

has a non-trivial solution $\bmod \pi^{e}$, provided $s \geq k+1$.
For any $x \in \mathfrak{O}$ we have

$$
x=x_{0}+x_{1} \pi+\ldots+x_{e-1} \pi^{e-1}, \quad x_{i} \in \mathfrak{o} .
$$

Put $c=\left[e / p^{t}\right]$. Then

$$
x^{p^{t}} \equiv x_{0}^{p^{t}}+x_{1}^{p^{t}} \pi^{p^{t}}+\ldots+x_{c}^{p^{t}} \pi^{c p^{t}} \bmod \pi^{e} .
$$

Write

$$
a_{i}=\sum_{j=0}^{e-1} a_{i, j} \pi^{j}, \quad x_{i}=\sum_{j=0}^{e-1} x_{i, j} \pi^{j} .
$$

By the above comments, to solve (11) for $k=p^{t}$ it is sufficient to solve the
system

$$
\begin{aligned}
& \sum_{i=1}^{s} a_{i, 0} x_{i, 0}^{p^{t}} \equiv 0 \bmod p \\
& \quad \vdots \\
& \sum_{i=1}^{s} a_{i, p^{t}-1} x_{i, 0}^{p^{t}} \equiv 0 \bmod p \\
& \sum_{i=1}^{s} a_{i, p^{t}} x_{i, 0}^{p^{t}}+\sum_{i=1}^{s} a_{i, 0} x_{i, 1}^{p^{t}} \equiv 0 \bmod p \\
& \quad \vdots \\
& \sum_{i=1}^{s} a_{i, 2 p^{t}-1} x_{i, 0}^{p^{t}}+\sum_{i=1}^{s} a_{i, p^{t}-1} x_{i, 1}^{p^{t}} \equiv 0 \bmod p \\
& \quad \vdots \\
& \sum_{i=1}^{s} a_{i,(c+1) p^{t}-1} x_{i, 0}^{p^{t}}+\sum_{i=1}^{s} a_{i, c p^{t}-1} x_{i, 1}^{p^{t}}+\ldots+\sum_{i=1}^{s} a_{i, p^{t}-1} x_{i, c}^{p^{t}} \equiv 0 \bmod p,
\end{aligned}
$$

over \mathfrak{o}. Here $a_{i, j}=0$ if $j \geq e$.
LEMMA 4. If $s \geq k+1$, then any system of the form (12) has a non-trivial solution such that
(i) $x_{j, 0} \not \equiv 0 \bmod p$ for some j.
(ii) $x_{j, 0}$ is an m-th power $\bmod p$ for all j.

Proof. Since p is unramified in $L, L(p)=\mathfrak{o} /(p)$ is a finite field of characteristic p. Thus, $x \mapsto x^{p^{t}}$ is an automorphism of $L(p)$. Therefore, to solve (12) it suffices to solve the associated linear system (i.e. replace $x_{i, j}^{p^{t}}$ with $y_{i, j}$) over the field $L(p)$. We wish to find a solution such that $y_{i, 0}$ is an m th power for $i=1, \ldots, s$.

Observe that the matrix of coefficients of (12) is in the form of (7a,b), with c replaced by $c+1, r=p^{t}$, and $n=s$. By Lemma $3,(12)$ is equivalent via elementary row operations to a system whose coefficient matrix is $\left(c+1, p^{t}, s\right)$-good. Suppose this new matrix is given by

$$
\left(\begin{array}{ccccc}
B_{11} & 0 & & \ldots & 0 \\
B_{21} & B_{22} & 0 & \ldots & 0 \\
* & * & * & * & *
\end{array}\right), \quad B_{i j} \in \mathbf{M}_{r_{i}, s}(L(p)), r_{i} \leq p^{t}
$$

By the Thereom of Chevalley-Warning [Se, I, Thm. 3], if $s>p^{t} m=k$, then the system $B_{11} \mathbf{Y}_{1}=\mathbf{0}$ has a non-trivial solution over $L(p)$, say $\mathbf{Y}_{1}=$ $\left(y_{1}, \ldots, y_{s}\right)$, such that each y_{i} is an m th power. By Lemma 2 this can be extended to a solution \mathbf{Y} of the linear system associated with (12). By the remarks in the first paragraph of this proof, \mathbf{Y} corresponds to a solution of (12).

The proof of the Theorem now follows upon combining Lemma 1 with the following lemma.

LEMMA 5. For any k, an equation of the form (11) has a non-trivial solution $\bmod \pi^{e}$ provided $s \geq k+1$. Therefore, $\Phi(k, e) \leq k+1$.

Proof. By the previous lemma and the comments preceding it, we can find x_{1}, \ldots, x_{s}, not all zero modulo π, such that

$$
a_{1} x_{1}^{p^{t}}+\ldots+a_{s} x_{s}^{p^{t}} \equiv 0 \bmod \pi^{e}
$$

and

$$
x_{i} \equiv y_{i}^{m} \bmod \pi, \quad i=1, \ldots, s
$$

Since $(m, p)=1$, it follows from Hensel's Lemma that for each i we can find $z_{i} \in \mathfrak{O}$ such that $z_{i}^{m} \equiv x_{i} \bmod \pi^{e}$. Thus $\mathbf{z}=\left(z_{1}, \ldots, z_{s}\right)$ is the desired solution of (11).

References

[B] B. J. Birch, Diagonal equations over \mathfrak{p}-adic fields, Acta Arith. 9 (1964), 291-300.
[D] M. M. Dodson, Some estimates for diagonal equations over \mathfrak{p}-adic fields, ibid. 40 (1981), 117-124.
[La] S. Lang, Algebraic Number Theory, Springer, 1986.
[S] W. Schmidt, The solubility of certain p-adic equations, J. Number Theory 19 (1984), 63-80.
[Se] J.-P. Serre, A Course in Arithmetic, Springer, 1973.
Department of Mathematics
Princeton University
Princeton, New Jersey 08544
U.S.A.

E-mail: cmcls@math.princeton.edu

[^0]: The author was supported by an N.S.F. Graduate Fellowship and, during a visit to the University of Michigan, by the David and Lucile Packard Foundation.

