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1. Introduction and main results. Whenever possible we keep the
notation of [1], [2]. N denotes the set of positive integers and N∗ is the set
of positive squarefree numbers. P = {p1, p2, . . .} = {2, 3, 5, . . .} denotes the
set of primes and ps denotes the sth prime.

For two numbers u, v ∈ N we write u | v (resp. u - v) iff u divides v (resp.
u does not divide v); [u, v] stands for the least common multiple of u and v;
(u, v) is the largest common divisor of u, v; and we say that u and v have a
common divisor if (u, v) > 1. 〈u, v〉 denotes the interval {x ∈ N : u ≤ x ≤ v}
and (u, v〉 denotes the left-open interval {x ∈ N : u < x ≤ v}.

For any set A ⊂ N let A(n) = A∩ 〈1, n〉 and |A| be the cardinality of A.
The set of multiples of A is

M(A) = {m ∈ N : a |m for some a ∈ A}.
For u ∈ N, u 6= 1, p+(u) (resp. p−(u)) denotes the largest (resp. the

smallest) prime factor of u.
For any y ∈ N, π(y) = |P(y)| denotes the counting function of primes.

For any subset of primes T ⊂ P, and u ∈ R+ we set

φ(u, T ) = {x ∈ N(u) : (x, p) = 1 for all p ∈ T}.
We note that always {1} ∈ φ(u, T ) for all T ⊂ P, u ≥ 1.

Finally, for a set A = {a1, . . . , am} of ordered numbers a1 < . . . < am
we also just write A = {a1 < . . . < am}.

P. Erdős and R. Graham (see [3], [4]) posed the following problem: Let
1 < a1 < . . . < ak = n, (ai, aj) 6= 1. What is the maximal value of k? We
denote it by g(n).

While in [3] the problem was stated unfortunately with many confusing
misprints, in [4] one can find the following conjecture: g(n) equals either
n/p−(n) or the number of integers of the form 2 · t, t ≤ n/2, (t, n)6= 1.
However, it is easy to find a counterexample for this assertion and we
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informed Erdős about this during his visit in Bielefeld in 1992. He then
came up with the following formulation:

Conjecture 1. Let n = qα1
1 . . . qαrr , αi ≥ 1, qi ∈ P, and q1 < . . . < qr.

Then
g(n) = max

1≤j≤r
|M(2q1, . . . , 2qj , q1 . . . qj) ∩ N(n)|.

We consider a more general and seemingly more natural problem: Let
Q = {q1 < . . . < qr} ⊂ P be any finite set of primes and let A = {a1 < . . .
< ak} ⊂ N(n) be a set such that for all 1 ≤ i, j ≤ k,

(1.1) (ai, aj) 6= 1

and

(1.2)
(
ai,

r∏

i=1

qi

)
> 1.

Denote by I(n,Q) the set of all such sets. We are interested in the quan-
tity

(1.3) f(n,Q) = max{|A| : A ∈ I(n,Q)}.
For special values of n, namely n = qα1

1 . . . qαrr for some αi ≥ 1, clearly
af(n,Q) = n and we get exactly the problem of Erdős–Graham.

Our problem can be viewed as being dual to that studied in [1], where
a specified set of primes is excluded as factors. Obviously, we can assume
that {2} 6∈ Q, because otherwise f(n,Q) = bn/2c is realized for the even
numbers ≤ n. Our main result is

Theorem 1. For every finite Q = {q1 < . . . < qr} ⊂ P and n ≥∏r
i=1 qi,

(1.4) f(n,Q) = max
1≤j≤r

|M(2q1, . . . , 2qj , q1 . . . qj) ∩ N(n)|.
In particular , Conjecture 1 is true.

We will also show (see Section 6) that the restriction on n in Theorem 1
cannot be ignored.

For given finite Q = {q1 < . . . < qr} ⊂ P let us look at our problem in the
infinite case, i.e. A = {a1 < a2 < . . .} ⊂ N satisfies (1.1) and (1.2). What
is maximal dQ of the asymptotic (upper) density of such A? Theorem 1
immediately yields

Corollary. For any finite Q = {q1 < . . . < qr} ⊂ P we have

dQ = max
1≤j≤r

1
2

(
1−

j∏

i=1

(
1− 1

qi

)
+

1
q1 . . . qj

)
.

Moreover, this maximum is assumed for a set possessing an asymptotic
density.
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It is also natural to formulate the problem for the squarefree case. We
define f∗(n,Q) as the maximal cardinality of sets A ⊂ N∗(n) satisfying (1.1)
and (1.2).

Theorem 2. For any finite Q = {q1 < . . . < qr} ⊂ P we have

f∗(n,Q) = max
1≤j≤r

|M(2q1, . . . , 2qj , q1 . . . qj) ∩ N∗(n)|.

We draw attention to the fact that here we have no restriction on n. The
proof of Theorem 2 is much easier than that of Theorem 1.

Moreover, Theorem 2 can easily be extended to much more general ob-
jects, namely to squarefree quasi-numbers (see [1]).

Sections 2, 3, and 4 provide auxiliary results for the proof of Theorem 1
(and sketch of proof of Theorem 2) in Section 5. We draw particular attention
to an auxiliary result in Section 3, which is stated as Theorem 3, because it
is of independent interest.

Finally, an example in Section 6 shows that (1.4) does not hold without
any condition on n. The reader is advised to look first at this example.

2. An auxiliary result for “left compressed sets”, “upsets”, and
“downsets”. Let O(n,Q) denote the set of all optimal sets of I(n,Q), i.e.

O(n,Q) =
{
A ∈ I(n,Q) : |A| = f(n,Q)

}

(see (1.3)). For any ps, pt ∈ P, ps < pt, we define the “left pushing” operation
Ls,t on subsets of N. For B ⊂ N let

B1 = {b ∈ B : b = b1p
α
t , (b1, pspt) = 1, α ≥ 1, (b1pαs ) 6∈ B}.

Then

Ls,t(B) = (B \B1) ∪̇B2,

where B2 = {c ∈ N : c = c1p
β
s , (c1, pspt) = 1, β ≥ 1, (c1p

β
t ) ∈ B1}. Clearly

(2.1) |Ls,t(B) ∩ N(n)| ≥ |B(n)| for every s, t, s < t, and n ∈ N.
For Q ⊂ P the set B ⊂ N is said to be left compressed with respect to Q if

(2.2) Ls,t(B) = B for all s, t, s < t, pt ∈ P \Q
and

(2.3) Ls,t(B) = B for all s, t, s < t, ps, pt ∈ Q.
For given Q ⊂ P, we denote by C(Q) the set of all subsets of N which are
left compressed with respect to Q.

Every finite set B ⊂ N can be transformed by finitely many operations
Ls,t, s < t, of the types (2.2) and (2.3) into a member of C(Q). Since these
operations preserve (1.1) and (1.2), we get with (2.1) the following result.
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Lemma 1. For any Q ⊂ P and n ∈ N,

O(n,Q) ∩ C(Q) 6= ∅.
Clearly any A ∈ O(n,Q) is an “upset”:

(2.4) A = M(A) ∩ N(n),

and it is also a “downset” in the following sense:

(2.5) for a ∈ A with a = pα1
i1
. . . pαtit and αi ≥ 1 also pi1 . . . pit ∈ A.

For every B ⊂ N we introduce the unique primitive subset P (B) ⊂ B
which has the properties

(2.6) b1, b2 ∈ P (B), b1 6= b2, implies b1 - b2 and B ⊂M(P (B)).

We know from (2.5) that for any A ∈ O(n,Q), P (A) consists only of square-
free numbers and that by (2.4),

(2.7) A = M(P (A)) ∩ N(n).

3. Auxiliary inequalities for sets of numbers with forbidden
prime factors. Let T ⊂ P with T = T1 ∪̇ T2, where

T1 ⊂ {p1, . . . , ps−1}, T2 = {pj1 , . . . , pjr}; ps < pj1 < . . . < pjr .

The sets T1 and T2 can be empty.

Lemma 2. Let s > 1 and suppose that

(3.1) r ≤ π(ps+`−1ps)− s− 2`+ 1 for all ` ≥ 1.

Then

(3.2) 2|φ(u, T )| ≤ |φ(ups, T )| for all u ∈ R+.

R e m a r k 1. A more special form of the lemma was proved (although it
was not stated explicitly) in our paper [1]. Actually, in [1] we proved (3.2)
for T2 = ∅. In this case we have r = 0 and the condition (3.1),

0 ≤ π(ps+`−1ps)− s− 2`+ 1 for all ` ≥ 1,

always holds. Indeed, since s > 1 we have ps ≥ 3 and thus the first inequality
in π(ps+`−1ps) ≥ π(3ps+`−1) ≥ 2π(ps+`−1), where the last inequality follows
from π(3x) ≥ 2π(x), which was shown in [1]. Thus for the quantity in
question

π(ps+`−1ps)− s− 2`+ 1 ≥ 2π(ps+`−1)− s− 2`+ 1

= 2(s+ `− 1)− s− 2`+ 1 = s− 1 > 0.

P r o o f o f L e m m a 2. (3.2) is equivalent to

(3.3) |φ(u, T )| ≤ |φ′(ups, T )|,
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where φ′(ups, T ) = φ(ups, T ) ∩ (u, ups〉. We introduce

Ψ(u, T ) = {a ∈ φ(u, T ) : p+(a) < ps or a = 1}
and for a ∈ Ψ(u, T ),

D(a) = {b ∈ φ(u, T ) : b = ad, p−(d) ≥ ps or d = 1}.
With these sets we can write φ(u, T ) as a disjoint union

φ(u, T ) =
.⋃

a∈Ψ(u,T )

D(a).

Next for a ∈ Ψ(u, T ) we introduce

D′(a) = {c ∈ φ′(ups, T ) : c = ad∗, p−(d∗) ≥ ps}.
Clearly these sets are disjoint and

φ′(ups, T ) ⊃
.⋃

a∈Ψ(u,T )

D′(a).

Sufficient for (3.3) is

(3.4) |D′(a)| ≥ |D(a)| for all a ∈ Ψ(u, T ).

From the definition of D(a) and D′(a) it follows that for T ∗ = {p1, . . . , ps−1}
∪ T2 we have |D(a)| = φ(u/a, T ∗), |D′(a)| = |φ′(ups/a, T ∗), and

φ′(ups/a, T ∗) = φ(ups/a, T ∗) \ φ(u/a, T ∗) = φ(ups/a, T ∗) ∩ (u/a, ups/a〉.
Thus we arrived at the following sufficient condition for (3.4):

(3.5) |φ(v, T ∗)| ≤ |φ′(vps, T ∗)| = |φ(vps, T ∗) \ φ(v, T ∗)| for all v ∈ R+.

We avoid the trivial cases v < 1, for which φ(v, T ∗) = ∅, and 1 ≤ v < ps,
for which |φ(v, T ∗)| = 1 and ps ∈ φ′(vps, T ∗). Hence we assume v ≥ ps and
introduce

F (v, T ∗) = {b ∈ φ(v, T ∗), b 6= 1 : bp+(b) ≤ v} ∪ {1}.
Then φ(v, T ∗) is a disjoint union

φ(v, T ∗) =
.⋃

b∈F (v,T∗)

τ(b) ∪ {1},

where τ(b) = {m ∈ N : m = pb; p ∈ P \ T ∗; p+(b) ≤ p ≤ v/b}. Hence for all
b ∈ F (v, T ∗),

(3.6) |τ(b)| = |{p ∈ P \ T ∗ : p+(b) ≤ p ≤ v/b}|
and

(3.7) |φ(v, T ∗)| =
∑

b∈F (v,T∗)

|τ(b)|+ 1,

where the 1 accounts for the element {1} ∈ φ(v, T ∗).
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On the other hand, we have

φ′(vps, T ∗) ⊃
.⋃

b∈F (v,T∗)

τ1(b) ∪ {pks},

where τ1(b) = {m1 ∈ N : m1 = pb, p ∈ P \ T ∗, v/b < p ≤ vps/b} and pks
satisfies v < pks ≤ vps for some k ∈ N.

It is easy to see that the sets {τ1(b)}, b ∈ F (v, T ∗), are disjoint and that
the element {pks} does not belong to any of them.

We have

(3.8) |τ1(b)| = |{p ∈ P \ T ∗ : v/b < p ≤ vps/b}|
for all b ∈ F (v, T ∗) and

(3.9) |φ′(vps, T ∗)| ≥
∑

b∈F (v,T∗)

|τ1(b)|+ 1,

where the 1 accounts for {pks}. From (3.7) and (3.9) it follows that sufficient
for (3.5) is

|τ1(b)| ≥ |τ(b)| for all b ∈ F (v, T ∗).

Let ps+`−1 ≤ v/b < ps+` for some ` ≥ 1. Then, from (3.6) and (3.8), we
have

|τ(b)| = |{p ∈ P \ T ∗ : p+(b) ≤ p ≤ v/b}| ≤ |{p ∈ P : ps ≤ p ≤ ps+`−1}| = `

and
|τ1(b)| = |{p ∈ P \ T ∗ : v/b < p ≤ vps/b}|

≥ |{p ∈ P \ T ∗ : ps+`−1 < p ≤ ps+`−1ps}|
= π(ps+`−1ps)− (s+ `− 1)− r1,

where r1 is the number of primes from T2 in the interval 〈ps+`, ps+`−1ps〉.
Since r1 ≤ r = |T2| we have

|τ1(b)| ≥ π(ps+`−1ps)− (s+ `− 1)− r.
Finally, using condition (3.1) we have established the sufficient condition

|τ1(b)| ≥ π(ps+`−1ps)− (s+ `− 1)− r ≥ ` ≥ |τ(b)|.
R e m a r k 2. Perhaps one can try to simplify condition (3.1) in Lemma 2

by finding min`∈N(π(ps+`−1ps)− 2`) for s ≥ 2. However, if the minimum is
achieved for ` = 1 (which seems most likely), then one has at least to prove
that between p2

s and psps+1 there are at least two primes, which seems
hopeless. For comparison let us recall that in 1904 Brocard conjectured that
between p2

s and p2
s+1, there are at least 4 primes and this remains unsolved

(see [5]).
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We need the following result, which is probably known to the experts
(in fact, it is an easy consequence of known results), but we were not able
to find it in the literature.

Lemma 3. pspt > pst for all s, t ∈ N except two cases, namely , s = 3,
t = 4, for which p3p4 = 5 · 7 = 35 < p12 = 37, and s = t = 4, for which
p4p4 = 7 · 7 = 49 < p16 = 53.

P r o o f. We use very sharp estimates of the size of primes, due to Rosser
and Schoenfeld [6]:

(3.10)
pn < n(logn+ log log n− 1/2) for n ≥ 20,

pn > n logn for n ≥ 1.

Using (3.10) one gets pspt > pst for all t ≥ s ≥ 12. For every s ≤ 11, we take
the exact value of ps and estimate, using (3.10), only primes pt and pst. For
example, let s = 4, p4 = 7, t ≥ 5. Since st ≥ 20 we can use (3.10) to get

(3.11) p4t < 4t(log 4t+ log log 4t− 1/2) and p4pt = 7pt > 7 · t log t.

From (3.11) we have 7pt > p4t for all t ≥ 25 and the cases 5 ≤ t ≤ 24
are verified by inspection using the list of primes. In the case s = t = 4 we
have the opposite inequality and this is one of the two exceptions specified
in the lemma. For other values of s ≤ 11 we have similar calculations.

We recall the definitions of the sets T1, T2, T in Lemma 2:

T1 ⊂ {p1, . . . , ps−1}, T2 = {pj1 , . . . , pjr}; ps < pj1 < . . . < pjr ;

and s > 1. We introduce

T3 = ({p1, . . . , ps−1} \ T1) ∪ {ps} = {pi1 , . . . , pit}, pi1 < . . . < pit = ps.

Theorem 3. Let s > 1 and consider the sets T1, T2, T3, T = T1 ∪ T2 of
primes as described above. Then for every u ∈ R+ with

(3.12) u ≥
∏
p∈T2

p∏
p∈T3

p
,

we have

(3.13) 2|φ(u, T )| ≤ |φ(ups, T )|.
P r o o f. In the light of Lemma 2 we can assume

(3.14) r > π(ps+`−1ps)− s− 2`+ 1 for some ` ≥ 1.

First let us show that from (3.14) one can get

(3.15) r > (s− 1)2.

Indeed, from Lemma 3 we know that ps+`−1ps > p(s+`−1)s for all s, ` except
s = 3, ` = 2 and s = 4, ` = 1.
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Hence

π(ps+`−1ps) ≥ π(p(s+`−1)s) = s(s+ `− 1)

for all s, ` with the exceptions mentioned above. Therefore

r > π(ps+`−1ps)− s− 2`+ 1 ≥ s(s+ `− 1)− s− 2`+ 1 ≥ (s− 1)2

since s > 1. For s = 3, ` = 2 and s = 4, ` = 1 we verify (3.15) by inspection.
Now, for every u ∈ R+ by the inclusion-exclusion principle we have

|φ(u, T )| = buc −
∑

p∈T

⌊
u

p

⌋
+
∑
p<q
p,q∈T

⌊
u

pq

⌋
. . . ≤ u

∏

p∈T

(
1− 1

p

)
+ 2|T |−1

and

|φ(ups, T )| ≥ ups
∏

p∈T

(
1− 1

p

)
− 2|T |−1.

Hence, sufficient for (3.13) is

(3.16) u(ps − 2)
∏

p∈T

(
1− 1

p

)
≥ 3 · 2|T |−1 for all u ≥

∏
p∈T2

p∏
p∈T3

p
.

Since |T | = s− t+ r, (3.16) is equivalent to

(3.17) (ps − 2)

∏
p∈T2

p∏
p∈T3

p

∏

p∈T1∪T2

(
1− 1

p

)

= (ps − 2)

∏
p∈T2

(p− 1)∏s
i=1 pi

∏

p∈T1

(p− 1) ≥ 3 · 2r · 2s−t−1.

Since |T1| = s− t, we observe that
∏

p∈T1

(p− 1) ≥ 2s−t−1

and sufficient for (3.17) is

(3.18) (ps − 2)

∏
p∈T2

(p− 1)∏s
i=1 pi

≥ 3 · 2r.

Now, if s ≥ 3, then

(ps − 2)

∏
p∈T2

(p− 1)∏s
i=1 pi

= (ps − 2)
(pj1 − 1) . . . (pjr − 1)

p1 . . . ps

> (ps − 2)(pjs+1 − 1) . . . (pjr − 1)

> (ps − 2)(pjs+1 − 1)r−s ≥ (ps − 2) · 16r−s > 3 · 2r,
since pj1 ≥ 7, pjs+1 ≥ 17 and we know that r ≥ (s− 1)2 + 1 (see (3.15)).
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So, it remains to show the validity of (3.13) only for the case s = 2. From
(3.15) we know that r ≥ 2 and, if r > 2, we have in (3.18)

(pj1 − 1)(pj2 − 1) . . . (pjr − 1)
2 · 3

≥ (5− 1)(7− 1)(11− 1) . . . (pjr − 1)
6

≥ 3 · 2r.

Hence, we can assume r = 2. However, the formula (3.18) does not hold in
this case for instance for pj1 = 5, pj2 = 7:

(5− 1)(7− 1)
6

6≥ 3 · 22 = 12.

In the case s = r = 2 we have to estimate the quantities |φ(u, T )| and
|φ(3u, T )| more accurately.

We have to consider two cases: t = 1 and t = 2, where t = |T3|. We
are going to prove (3.13) only for t = 1 (the case t = 2 is similar, actually
even simpler). We have to prove that for q1, q2 with 5 ≤ q1 < q2 and T =
{2, q1, q2}, 2|φ(u, T )| < |φ(3u, T )| holds provided that u ≥ q1q2/3. We have

|φ(3u,T )| − 2|φ(u, T )|
= b3uc −

⌊
3u
2

⌋
−
⌊

3u
q1

⌋
−
⌊

3u
q2

⌋
+
⌊

3u
2q1

⌋

+
⌊

3u
2q2

⌋
+
⌊

3u
q1q2

⌋
−
⌊

3u
2q1q2

⌋
− 2buc+ 2

⌊
u

2

⌋
+ 2
⌊
u

q1

⌋
+ 2
⌊
u

q2

⌋

− 2
⌊
u

2q1

⌋
− 2
⌊
u

2q2

⌋
− 2
⌊

u

q1q2

⌋
+ 2
⌊

u

2q1q2

⌋

=
(
b3uc −

⌊
3u
2

⌋
− 2buc+ 2

⌊
u

2

⌋)

−
(⌊

3u
q1

⌋
−
⌊

3u
2q1

⌋
− 2
⌊
u

q1

⌋
+ 2
⌊
u

2q1

⌋)

−
(⌊

3u
q2

⌋
−
⌊

3u
2q2

⌋
− 2
⌊
u

q2

⌋
+ 2
⌊
u

2q2

⌋)

+
(⌊

3u
q1q2

⌋
−
⌊

3u
2q1q2

⌋
− 2
⌊

u

q1q2

⌋
+ 2
⌊

u

2q1q2

⌋)
.

Now we use the following inequalities (which can be easily verified):

x− 1 < x− 5
6
< b6xc − b3xc − 2b2xc+ 2bxc

≤ x+
5
6
< x+ 1 for all x ∈ R+
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to get

|φ(3u, T )| − 2|φ(u, T )| > u

(
1− 1

2

)(
1− 1

q1

)(
1− 1

q2

)
− 4

=
u(q1 − 1)(q2 − 1)

2q1q2
− 4 ≥ (q1 − 1)(q2 − 1)

6
− 4 ≥ 0,

since u ≥ q1q2/3 and 5 ≤ q1 < q2.

R e m a r k s. 3. We note that (3.13) does not always hold if we ignore the
restriction on u. For example, for T = {2, 5, 7}, s = 2, u = 3 we have

2|φ(3, T )| = 2|{1, 3}| = 4 6≤ |φ(p2 · 3, T )| = |φ(9, T )| = |{1, 3, 9}| = 3.

4. If u is sufficiently large, u > u(ε), then the coefficient 2 in (3.13) of
the theorem (in Lemma 2 as well) clearly can be changed to ps − ε, for any
ε > 0.

4. Further preparations: Lemmas 4, 5, 6. For given Q ⊂ P and any
b ∈ N let p+(b,Q) denote the maximal prime from P\Q which occurs in the
prime decomposition of b (in the case Q = ∅ we always have p+(b, φ) =
p+(b)). If b is completely composed of primes from Q or b = 1, then
p+(b,Q) = 1. Further, let A ⊂ N(n) be such that P (A), the primitive subset
of A, consists only of squarefree numbers and let A = M(P (A))∩N(n). For
given Q ⊂ P, we define

(4.1) p+(P (A), Q) = max
a∈P (A)

p+(a,Q).

We consider Li,j(A) = A′, where i < j and pj ∈ Q implies pi ∈ Q. One can
easily verify the following statement.

Lemma 4. p+(P (A), Q) ≥ p+(P (A′), Q).

Let A ∈ O(n,Q)∩C(Q) for some Q = {q1, . . . , qr}, 2 < q1 < . . . < qr and
n ∈ N. We know (see Lemma 1) that such a set A always exists. Let P (A) be
the primitive subset of A and p+(P (A), Q) = ps for some ps ∈ (P\Q)∪{1}.
We write P (A) in the form P (A) = R0 ∪̇R1 ∪̇ . . . ∪̇Rs, where

(4.2) R0 = {a ∈ P (A) : p+(a,Q) = 1}
and

Ri = {a ∈ P (A) : p+(a,Q) = pi}, 1 ≤ i ≤ s.
We note that some of the Ri can be empty, but not Rs.

Since A is optimal, we know that A = M(P (A)) ∩ N(n), which can be
written in the form

A = M(P (A)) ∩ N(n) = (M(R0 ∪̇ . . . ∪̇Rs−1) ∪̇K(Rs)) ∩ N(n),
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where K(Rs) = (M(Rs) \M(R0 ∪ . . .∪Rs−1))∩N(n), i.e. K(Rs) is the set
of those elements of A which are not divisible by any b ∈ R0 ∪ . . . ∪Rs−1.

Let s > 1 and Rs = R0
s ∪̇R1

s, where

(4.3) R0
s = {b ∈ Rs : 2 | b}, R1

s = Rs \R0
s,

and K(Rs) = K0(Rs) ∪̇K1(Rs), where

(4.4) K0(Rs) = {a ∈ K(Rs) : 2 | a}, K1(Rs) = K(Rs) \K0(Rs).

Finally, let

(4.5) Gis = {m ∈ N : mps ∈ Ris}, i = 0, 1.

Lemma 5. Let A ∈ O(n,Q)∩C(Q), let the sets Ki(Rs), Ris, G
i
s, i = 0, 1,

be defined as above, and let s > 1. Then

(1) b - a for all b ∈ Ris, a ∈ K1−i(Rs), i = 0, 1,
(2) Ki(Rs) = M(Ris) \M(R0 ∪ . . . ∪Rs−1), i = 0, 1,
(3) Gis ∈ I(n,Q), i = 0, 1 (defined in the introduction),
(4) (R0 ∪ . . . ∪Rs−1 ∪Gis) ∈ I(n,Q), i = 0, 1.

P r o o f. (1) Obviously, b - a for all b ∈ R0
s and a ∈ K1(Rs). Suppose b | a

for some b ∈ R1
s, a ∈ K0(Rs). Then b

ps
· 2 | a as well, because 2 - b and 2 | a.

However b
ps
· 2 ∈ A, because A is left compressed with respect to Q and

ps 6∈ Q, ps > 2, 2 - b. Hence b
ps
· 2 ∈ M(R0 ∪ . . . ∪ Rs−1), because ps - bps · 2.

Therefore a 6∈ K(Rs), becuase b
ps
· 2 | a. This is a contradiction.

(2) follows from (1).
(3) Clearly G0

s ∈ I(n,Q), because all elements of G0
s are even and ps 6∈ Q.

Let us show that G1
s ∈ I(n,Q) as well. Suppose to the contrary that there

exist b1, b2 ∈ G1
s with (b1, b2) = 1. We have b1ps, b2ps ∈ R1

s (see definition
of G1

s and R1
s). However, since R1

s ⊂ A, A is left compressed with respect to
Q and ps 6∈ Q, ps > 2, 2 - b1, 2 - b2, we conclude 2b1 ∈ A as well. Hence 2b1,
psb2 ∈ A and at the same time (2b1, psb2) = 1, which is a contradiction.

(4) This is trivial.

Finally, we need an auxiliary result concerning the set K(Rs). Let a be
any element of K(Rs). It can be uniquely written in the form

(4.6) a = pα1
i1
. . . pαtit · q

β1
j1
. . . qβ`j` a3,

where pi1 < . . . < pit = ps < qj1 < . . . < qj` ; αi, βi ≥ 1, qji ∈ Q, p−(a3) >
ps, p | a3 implies p ∈ P \Q or a3 = 1. We note that {qj1 , . . . , qj`} = ∅ is also
possible.

Lemma 6. Let A ∈ O(n,Q) ∩ C(Q) with p+(p(A), Q) = ps, s > 1, and
let a ∈ K(Rs) be an element of the form (4.6). Then
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(1) a′ = p
α′1
i1
. . . p

α′t
it
· qβ′1j1 . . . q

β′`
j`
a′3 ∈ K(Rs) if a′ ≤ n, α′i ≥ 1, β′i ≥ 1 and

a′3 either equals 1 or satisfies p−(a′3) > ps and p | a′3 implies p ∈ P \Q.
(2) For every integer b ∈ N of the form b = pγ1

i1
. . . p

γt−1
it−1
· qδ1j1 . . . qδ`j` · b′ we

have b 6∈ A if γi ≥ 0, δi ≥ 0 and b′ either equals 1 or satisfies p−(b′) > ps
and p | b′ implies p ∈ P \Q.

P r o o f. (1) Since a ∈ K(Rs) ⊂ A, we have m | a for some m ∈ P (A) and
hence m | pi1 . . . pit · qj1 . . . qj` , because p+(P (A), Q) = ps and m ∈ P (A)
implies m ∈ N∗. Therefore all integers of the form in (1) belong to our
set A. However, every m ∈ P (A) with m | a must belong to Rs, otherwise
a 6∈ K(Rs), and this completes the proof of (1).

(2) If for some b ∈ N of the form in (2) we have b ∈ A, then m′ | b for
some m′ ∈ R0∪ . . .∪Rs−1 (m′ 6∈ Rs, because ps - b). Since A is a “downset”,
p+(R0 ∪ . . .∪Rs−1, Q) ≤ s− 1 and since p−(b′) > ps, p | b′ implies p ∈ P \Q
or b′ = 1, we have m′ | pi1 . . . pit−1 · qj1 . . . qj` as well, and hence m′ | a, which
is a contradiction to a ∈ K(Rs).

Let

Z = {a∗ ∈ K(Rs) ∩ N∗ : a∗ = pi1 . . . pit · qj1 . . . qj` , pi1 < . . . < pit

= ps < qj1 < . . . < qj` , qji ∈ Q}
and for a∗ ∈ Z, let E(a∗) denote the set of all integers a′ of the form (1) in
Lemma 6 with a′ ≤ n. Lemma 6(1) immediately yields

(4.7) K(Rs) =
.⋃

a∗∈Z
E(a∗).

Finally, from Lemma 5(1) and (4.7) we have

(4.8) Ki(Rs) =
⋃

a∗∈Zi
E(a∗), i = 0, 1,

where Zi = Z ∩Ki(Rs), i = 0, 1.

5. Proof of Theorem 1. Let Q = {q1, . . . , qr}, 2 < q1 < . . . < qr,
n ∈ N, n ≥ ∏r

i=1 qi and let O(n,Q) be the set of all optimal sets. For
every B ∈ O(n,Q) we consider P (B) the primitive, generating subset of
B : B = M(P (B)) ∩ N(n).

Let
ps = min

B∈O(n,Q)
p+(P (B), Q),

where p+(P (B), Q) is defined in (4.1), and ps ∈ (P\Q)∪{1}. Let O1(n,Q) =
{B ∈ O(n,Q) : p+(P (B), Q) = ps}. Our first step is to prove

(5.1) ps ≤ 2.

From Lemmas 1 and 4 it follows that O1(n,Q) ∩ C(Q) 6= ∅.
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Let A ∈ O1(n,Q) ∩ C(Q) and suppose, contrary to (5.1), that ps ≥ 3,
i.e. s ≥ 2. Let P (A) = R0 ∪ R1 ∪ . . . ∪ Rs, where the Ri’s are described in
(4.2). We also use the sets Ris, G

i
s,K

i(Rs) (see (4.3), (4.4)). We consider the
following two sets:

Ai = M(R0 ∪ . . . ∪Rs−1 ∪Gis) ∩ N(n), i = 0, 1.

From Lemma 5 we know that A0, A1 ∈ I(n,Q) and we are going to prove
that at least one of the inequalities |A0| ≥ |A| or |A1| ≥ |A| holds. Suppose

(5.2) |K1(Rs) ∩ N(n)| ≥ |K0(Rs) ∩ N(n)|
(the opposite case is symmetrically the same), and let us prove that

(5.3) |A1| = |M(R0 ∪ . . . ∪Rs−1 ∪G1
s) ∩ N(n)| ≥ |A|.

Let
K∗ = (M(G1

s) \M(R0 ∪ . . . ∪Rs−1)) ∩ N(n).
In the light of (5.2), sufficient for (5.3) is

(5.4) |K∗| ≥ 2|K1(Rs)|.
From (4.8) we know that

(5.5) K1(Rs) =
⋃

a∗∈Z1

E(a∗),

where

Z1 = {a∗ ∈ K1(Rs) ∩ N∗ : a∗ = pi1 . . . pit · qj1 . . . qj` , pj1 < . . . < pit

= ps < qj1<. . .<qj` , qji ∈ Q}
and

E(a∗) = {a ≤ n : a = pα1
i1
. . . pαtit · q

β1
j1
. . . qβ`j` · a3, αi ≥ 1, βi ≥ 1, p−(a3) > ps,

p | a3 ⇒ p ∈ P \Q or a3 = 1, and a∗ = pi1 . . . pit · qj1 . . . qj` ∈ Z1}.
It is easy to see that one can write

(5.6) E(a∗) = {a ≤ n : a = a∗ · a′3, a′3 ∈ φ(n/a∗, T )},
where T = ({p1, . . . , ps} \ {pi1 , . . . , pit})∪ ({q ∈ Q : q > ps} \ {qj1 , . . . , qj`}).
Hence

(5.7) |E(a∗)| = |φ(n/a∗, T )|
for every a∗ ∈ Z1 and T = T (a∗), as described in (5.6).

Now, for any a∗ ∈ Z1, a∗ = pi1 . . . pit · qj1 . . . qj` , pi1 < . . . < pit =
ps < qj1 < . . . < qj` , qji ∈ Q, we consider the integer b∗ = a∗/ps =
pi1 . . . pit−1 · qj1 . . . qj` and the set

E∗(b∗) = {b ≤ n : b = pγ1
i1
. . . p

γt−1
it−1
· qδ1j1 . . . qδ`j` · b3, γi, δi ≥ 1, p−(b3) ≥ ps,

p | b3 ⇒ p ∈ P \Q or b3 = 1}.
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One can write

E∗(b∗) = {b ≤ n : b = b∗b′3, b
′
3 ∈ φ(n/b∗, T )},

where T is the same as in (5.6). Hence

(5.8) |E∗(b∗)| = |φ(n/b∗, T )| = |(nps/a∗, T )|.
From the definitions of E(a∗) and E∗(b∗) we know that for every a∗ ∈ Z1

and b∗ = a∗/ps,

(5.9) E∗0 (b∗) = E(a∗),

where E∗0 (b∗) = {b ∈ E∗(b∗) : ps | b}, and that (by Lemma 6(2))

(5.10) (E∗(b∗) \ E∗0 (b∗)) ∩A = ∅.
Hence, in the light of (5.5)–(5.10), sufficient for (5.4) is

(5.11) |E∗(b∗)| ≥ 2|E(a∗)| for every a∗ ∈ Z1, b∗ = a∗/ps,

which by (5.7) and (5.8) is equivalent to

(5.12) |φ(nps/a∗, T )| ≥ 2|φ(n/a∗, T )|
for T = ({p1, . . . , ps} \ {pi1 , . . . , pit}) ∪ ({q ∈ Q : q > ps} \ {qj1 , . . . , qj`}),
a∗ = pi1 . . . pitqj1 . . . qj` ; pi1 < pi2 < . . . < pit = ps < qj1 < . . . < qj` , qji∈ Q.

Now we are in a position to apply Theorem 3 to show the validity of
(5.12). The sets T1, T2, T3 of primes in Theorem 3 are now

T1 = {p1, . . . , ps} \ {pi1 , . . . , pit}
= {p1, . . . , ps−1} \ {pi1 , . . . , pit−1} (pit = ps),

T2 = {q ∈ Q : q > ps} \ {qj1 , . . . , qj`}, and T3 = {pi1 , . . . , pit}.
The condition (3.12), i.e. u ≥ ∏p∈T2

p/
∏
p∈T3

p, also holds, because n ≥∏
q∈Q q yields

u =
n

a∗
=

n

pi1 . . . pit · qj1 . . . qj`
≥

∏
q∈Q q

pi1 . . . pit · qj1 . . . qj`
≥
∏
q∈T2

q∏
p∈T3

p
.

This proves (5.12) and consequently (5.3):

|A1| = |M(R0 ∪ . . . ∪Rs−1 ∪G1
s) ∩ N(n)| ≥ |A|.

Hence A1 ∈ O(n,Q), because A ∈ O(n,Q) and A1 ∈ I(n,Q). Obviously,
P (A′) ⊂ R0∪. . .∪Rs−1∪G1

s. Therefore p+(P (A′), Q) < ps, which contradicts
the definition ps = minB∈O(n,Q) p

+(P (B), Q). This proves (5.1).
Since for every B ∈ O1(n,Q) we have bi ∈ P (B) it follows that either

p - bi for all p ∈ P \Q or 2 | bi, but p - bi, p ∈ P \ (Q ∪ {2}). Let

qt = min
B∈O1(n,Q)

p+(P (B), φ),
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and let

O2(n,Q) = {B ∈ O1(n,Q) : p+(P (B), φ) = qt}.
Again, it is easy to see that O2(n,Q)∩C(Q) 6= ∅. Let A ∈ O2(n,Q)∩C(Q).
We write P (A) in the form

P (A) = S1 ∪̇ . . . ∪̇ St,
where Si = {b ∈ p(A) : p+(b) = qi}, 1 ≤ i ≤ t ≤ r.

We are going to prove that P (A) = {q1} if t = 1, and P (A) = {2q1, . . .
. . . , 2qt, q1 . . . qt} if t > 1, and this is equivalent to the statement (1.4) of
Theorem 1.

If t = 1, then clearly P (A) = {q1} and the theorem is true. Hence we
assume t > 1. We observe that {qt} 6∈ S1, because otherwise {q1} ∈ S1 as
well, since A ∈ C(Q) and hence (qt, q1) = 1 in contradiction to A ∈ I(n,Q).
Let us assume that

(5.13) 2qt 6∈ St.
Since A ∈ O2(n,Q) ⊂ O1(n,Q), (5.13) means that every integer a ∈ St has
at least two different primes from the set Q in its prime decomposition (one
of these primes is of course qt).

Let us prove that the assumption (5.13) is false. We take a similar ap-
proach as for proving (5.1). Let St = S0

t ∪̇S1
t , where S0

t = {a ∈ St : qt−1 | a},
S1
t = St \ S0

t , and

V it = {m ∈ N : mqt ∈ Sit}, i = 0, 1.

Under assumption (5.13) it can be shown that

Ai = M(S1 ∪ . . . ∪ St−1 ∪ V it ) ∩ N(n) ∈ I(n,Q), i = 0, 1.

Using the approach described in the first part of this section it can be proved
that at least one of the inequalities

(5.14) |A0| ≥ |A|, |A1| ≥ |A|
holds. We mention that only a very special case of Lemma 2 has been used
and not Theorem 3. We also note that here we do not need a restriction on
n like n ≥∏q∈Q q.

It can be seen that (5.14) contradicts A ∈ O2(n,Q) and hence the as-
sumption (5.13) is false. Therefore 2qt ∈ St for A ∈ O2(n,Q) ∩ C(Q) and
P (A) = S1 ∪ . . . ∪ St.

However, from 2qt ∈ St ⊂ A ∈ O2(n,Q) ∩ C(Q) it follows that 2q1, . . .
. . . , 2qt−1 ∈ A as well and that qi 6∈ A for all qi ∈ Q. Hence 2q1, 2q2, . . . , 2qt ∈
P (A).

Let a ∈ P (A) and a 6= 2qi, i = 1, . . . , t. Since p+(a) ≤ qt (A ∈ O2(n,Q)),
it follows that 2 - a for otherwise 2qi | a for some i ≤ t, which is impossible,
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because P (A) is primitive. Therefore 2 - a and a = q1 . . . qt, because other-
wise (a, 2qi) = 1 for some i ≤ t. Hence P (A) = {2q1, . . . , 2qt, q1 . . . qt} and
Theorem 1 is proved.

P r o o f o f T h e o r e m 2. Since the proof is very similar (and much
easier) than the proof of Theorem 1, we will give only a sketch.

We repeat all steps up to formula (5.4) (proof of which was the most dif-
ficult part of Theorem 1) and observe that (5.4) trivially holds for squarefree
numbers without any restriction on n. The situation is similar with formula
(5.14) (which was the second main step in the proof of Theorem 1).

6. Example of Q ⊂ P and n <
∏
q∈Q q for which the conclusion

of Theorem 1 does not hold. We take Q ⊂ P as follows:

Q = {q1, q2, . . . , qr−1, qr} = {5, 7, . . . , pr+1, qr},
i.e. qi = pi+2, i = 1, 2, . . . , r − 1, and qr is a prime specified in (6.3) below.
We also assume that

(6.1) qr−1 = pr+1 > 1000.

Let

(6.2) n = 2 · 3 · 11 ·
r−1∏

i=1

qi.

Finally, for qr ∈ P we take any prime satisfying

(6.3)
n

2000
< qr <

n

1000
.

The existence of such primes follows from Bertrand’s postulate. We use the
abbreviation

Hj = M{2q1, 2q2, . . . , 2qj , q1 . . . qj} ∩ N(n), j = 1, . . . , r.

We are going to prove that for the specified Q ⊂ P and n, the conclusion of
Theorem 1 does not hold, i.e.

(6.4) f(n,Q) > max
1≤j≤r

|Hj |.

We show first that

(6.5) max
1≤j≤r

|Hj | = max{|Hr−1|, |Hr|}.

Since 2
∏r−1
i=1 qi | n, it is easy to see that

|Hj | = n · 1
2

(
1−

j∏

i=1

(
1− 1

qi

)
+

1
q1 . . . qj

)
for all 1 ≤ j ≤ r − 1



Sets of integers with pairwise common divisor 275

and that |H2| < . . . < |Hr−1|. This proves (6.5), because

|H1| = 1
5
n <

1063
5005

n = |H4|
and trivially r − 1 ≥ 4 (see (6.1)).

Clearly, to prove (6.4), it is sufficient to find a set A ∈ I(n,Q) for which

|A| > max
1≤j≤r

|Hj | = max{|Hr−1|, |Hr|}.

We choose A as follows:

A = M{2q1, 2q2, . . . , 2qr−1, 2 · 3 · qr, 3 · q1 . . . qr−1} ∩ N(n).

Obviously, A ∈ I(n,Q) and we have to show that

(6.6) |A| > |Hr−1|
and

(6.7) |A| > |Hr|.
We consider first the set Hr−1 \A. Since

Hr−1 = M{2q1, . . . , 2qr−1, q1q2 . . . qr−1} ∩ N(n),

the set Hr−1 \A consists only of integers of the form

aq1q2 . . . qr−1 ≤ n = 2 · 3 · 11 · q1 . . . qr−1 = 66q1 . . . qr−1

and (a, 6) = 1, because for (a, 6) 6= 1 we have aq1 . . . qr−1 ∈ A. There are
exactly 22 integers a with a ≤ 66 and (a, 6) = 1. Hence

|Hr−1 \A| = 22.

Now we consider the set A\Hr−1. It is clear that all integers of the form
2α · 3β · qr ≤ n, α ≥ 1, β ≥ 1, are in A \Hr−1. We verify that there are 24
integers of the form 2α · 3β < 1000, α ≥ 1, β ≥ 1 and since 1000qr < n (by
(6.3)) we conclude that |A\Hr−1| ≥ 24 > |Hr−1\A| = 22. This proves (6.6).

To prove (6.7) we compare the cardinalities of Hr \A and A \Hr. Since
Hr = M{2q1, 2q2, . . . , 2qr−1, 2qr, q1 . . . qr} ∩N(n) = M{2q1, . . . , 2qr} ∩N(n)
(because q1 . . . qr > n), Hr \A consists only of integers of the form

(6.8) 2 · qr · b ≤ n,
where b is not divisible by any of the primes 3, q1, . . . , qr−1. Since qr >
n/2000 (see (6.3)), we conclude from (6.8) that b < 1000. However, since
qr−1 > 1000 (see (6.1)), we have b ∈ {1, 2, . . . , 29} and hence

|Hr \A| ≤ 10.

Now we consider the set A \Hr. It consists of the integers of the form

3 · q1 . . . qr−1 · c ≤ n = 66q1 . . . qr−1,
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where 2 - c. There are exactly 11 such integers c ≤ 22. Hence

|A \Hr| = 11 > 10 = |Hr \A|
and this proves (6.7).

7. Directions of research. We think that our methods are applicable
to other number theoretical extremal problems.

A first question is how f(n,Q) can be characterized if Q is an infinite
set of primes. Perhaps more demanding is the problem of finding a common
generalisation of the problem analysed in this paper and its in dual in [1]:

For (finite) sets Q1, Q2 ⊂ P, Q1∩Q2 = ∅, and n ∈ N, what is the maximal
cardinality k of sets A = {a1 < . . . < ak} ⊂ N(n) satisfying (ai, aj) 6= 1,
(ai,

∏
q∈Q1

q) 6= 1, and (ai,
∏
q∈Q2

q) = 1 for all i, j?
Instead of requiring that no two numbers of A are relatively prime one

can require that no ` numbers are pairwise relatively prime.
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