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The two parameter hyperbola problem

by

G. Kuba (Wien)

1. Introduction. Consider a hyperbola

x2

a2 −
y2

b2
= 1

in the Euclidian x, y-plane with a, b > 0 and let R(a, b) be the number of
lattice points (of the standard lattice Z2) “between” the hyperbola and its
asymptotes, i.e.,

R(a, b) = #
{

(x, y) ∈ Z2

∣∣∣∣ 0 <
x2

a2 −
y2

b2
≤ 1
}
.

The aim of this paper is to develop an asymptotic expansion of R(a, b)
in terms of a and b (the major and minor axis of the hyperbola). In [7]
we considered the same problem for an ellipse, which turned out to be a
pure geometric lattice point problem. In contrast, for hyperbolas the lattice
point problem is to a large extent of arithmetic nature since the number
R(a, b) is finite if and only if the slope a/b of the asymptote is a rational
number. As a consequence, we must assume that a/b ∈ Q for the lattice
point problem to be well defined. Moreover, the magnitude of R(a, b) will
not only depend on the size of a and b, but also on the size of the numerator
p and the denominator q of the reduced fraction which is equal to a/b.
Another important difference to the ellipse problem is the fact that the
implication a1 ≥ a ∧ b1 ≥ b ⇒ R(a1, b1) ≥ R(a, b) does not hold for the
hyperbola.

In order to avoid expressions including all four quantities a, b, p, q which
cannot be interpreted in a meaningful way we will assume a, b to be integers.
Thus, we will investigate the behavior of the function R(a, b) for (a, b) ∈ N2.
The choice of N2 as parameter domain can in addition be justified by the
fact that {(a, b) ∈ R2 | a, b > 0 ∧ a/b ∈ Q} is both a null set and a set of
first category.

Thus, the objective of the present paper is a proof of the following result.
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Theorem. For arbitrary positive integers a, b let d = d(a, b) be the great-
est common divisor of a and b, a u b = min{a, b}, a t b = max{a, b}, and

R(a, b) = #
{

(x, y) ∈ Z2

∣∣∣∣ 0 <
x2

a2 −
y2

b2
≤ 1
}
.

Then as ab→∞,

R(a, b) ∼ 2ab log
ab

d
.

More precisely , the following asymptotic expansion holds:

R(a, b) = 2ab log
ab

d
+ (2γ − 1)ab+∆(a, b),

where γ = 0.577215 . . . is Euler’s constant and

(i) ∆(a, b)� (ab)23/73(a u b)50/73

d50/73
(log d(a t b))461/146

for d ≥ (a t b)19/25,

(ii) ∆(a, b)� (ab)23/73(a t b)50/73

d50/73
(log d(a u b))461/146

for (a u b)19/25 ≤ d < (a t b)19/25,

(iii) ∆(a, b)� ab

d3/2
for d < (a u b)19/25.

The �-constants are absolute.

2. Applications. In order to illustrate our Theorem, we give some ex-
amples of applications. First of all we consider the one parameter case where
the hyperbola problem is simply a generalized form of the divisor problem:

Corollary 1. For fixed p, q ∈ N and arbitrary k ∈ N, let (p; q) be the
greatest common divisor of p and q and

R(k) = #{(x, y) ∈ Z2 | 0 < (px+ qy)(px− qy) ≤ p2q2k2}.
Then

R(k) = 2pqk2 log
(

pq

(p; q)
k

)
+(2γ−1)pqk2+O(k46/73(log k)461/146) (k→∞).

P r o o f. With (a, b) = (kq, kp) we have d = k(p; q) and R(k) = R(a, b).

Another example where d � a or d � b is given in the following corollary.

Corollary 2. Let n,m, k be positive integers. Then as kn+m →∞,

R(kn, km) = 2(max{n,m})kn+m log k + (2γ − 1)kn+m +∆k,n,m,

where
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∆k,n,m � k
23
73 (n+m)((n+m)(log k))461/146

if 25(min{n,m}) ≥ 19(max{n,m}),
and

∆k,n,m � k
23
73 (n+m)+ 50

73 |n−m|((n+m)(log k))461/146

if 25(min{n,m}) < 19(max{n,m}).
The examples in Corollaries 1 and 2 belong to the most likely case where

the greatest common divisor d of a and b is large for large a and b. In the
following corollary we consider an extreme instance of the case where d is
bounded.

Corollary 3. For relatively prime a, b ∈ N,

R(a, b) = 2ab log ab+O(ab).

In this case we cannot determine an estimate of the error term ∆(a, b)
which is better than the trivial O(ab).

3. Proof of the Theorem. Evaluation of the main term. In order
to calculate R(a, b) it is sufficient to count all lattice points in the domain

D(a, b) :=
{

(x, y) ∈ R2

∣∣∣∣ x, y > 0 ∧ 0 <
x2

a2 −
y2

b2
≤ 1
}
.

Then we have

R(a, b) = 4 #(D(a, b) ∩ Z2) + 2a.

The main idea now is to count the lattice points in D(a, b) along lines parallel
to the asymptote x/a− y/b = 0. For abbreviation, we put

â =
a

d
and b̂ =

b

d
,

where d is the greatest common divisor of a and b. Then the “counting”
lines are all lines gn,

gn : b̂x− ây = n with n = 1, 2, . . . , ab/d.

(For n = ab/d the vertex (a, 0) of the hyperbola is the only lattice point on
gn in D(a, b).)

Let Sn be the intersection point of gn with the x-axis and Tn be the
intersection point of gn with the hyperbola (bx− ay)(bx+ ay) = a2b2. Then
Sn = (n/b̂, 0) and the x-coordinate xn of Tn is given by

xn =
1
2b

(
dn+

a2b2

dn

)
.
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Now we can write

R1(a, b) := #(D(a, b) ∩ Z2) =
∑

1≤n≤ab/d
rn,

where rn is the number of all lattice points on the line gn between Sn
(excluded) and Tn (included).

In order to calculate rn, let x = x(n) be the unique solution of the
congruence

b̂x ≡ n (mod â)

in the interval 1 ≤ x ≤ â. Then for every x ∈ x(n) + âZ there is exactly one
integer y with (x, y) ∈ gn. Of course, x(n) only depends on the residue class
n+ âZ, so we will write x(n+ âZ) instead of x(n). Then we have

rn = #{k ∈ Z | n/b̂ < x(n+ âZ) + kâ ≤ xn}

=
[
xn − x(n+ âZ)

â

]
−
[
n

âb̂
− x(n+ âZ)

â

]
.

([ ] are the Gauss brackets.)
Now let ψ(·) be defined by

ψ(z) = z − [z]− 1/2 (z ∈ R).

Then we compute

R1(a, b) =
∑

1≤n≤ab/d

(
1

2âb

(
dn+

a2b2

dn

)
− n

âb̂

)
+ Ψ1(a, b)− Ψ2(a, b),

where

Ψ1(a, b) =
∑

1≤n≤ab/d
ψ

(
n

âb̂
− x(n+ âZ)

â

)
,

Ψ2(a, b) =
∑

1≤n≤ab/d
ψ

(
xn − x(n+ âZ)

â

)
.

The calculation of the main term of R1(a, b) is straightforward. We make
use of the well-known formulas (for the second see Fricker [2])

∑

1≤n≤N
n = N(N + 1)/2

and ∑

1≤n≤N

1
n

= logN + γ +
1

2N
+O(N−2),

and obtain

R1(a, b) =
ab

2
log

ab

d
+ γ

ab

2
− ab

4
+ Ψ1(a, b) − Ψ2(a, b) +O(1).
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In order to calculate Ψ1(a, b), we introduce two new parameters A and B.
Let A,B be integers satisfying Aâ+Bb̂ = 1. Then for every integer n,

x(n+ âZ) ≡ Bn (mod â).

Now, let y = y(n+ b̂Z) be the unique solution of the congruence ây ≡ n

(mod b̂) in the interval 1 ≤ y ≤ b̂. Then for every n,

y(n+ b̂Z) ≡ An (mod b̂),

and we obtain

n

âb̂
− x(n+ âZ)

â
≡ y(n+ b̂Z)

b̂
(mod 1).

Since ψ(·) is a periodic function with period 1, the sum Ψ1(a, b) becomes a
sum over a complete set of residues mod b̂, repeated a times. We obtain

Ψ1(a, b) =
∑

1≤n≤ab̂
ψ

(
y(n+ b̂Z)

b̂

)
= a

∑

1≤n≤b̂

(
ψ

(
n

b̂

))
= −a

2
.

Thus we derive

R(a, b) = 2ab log
ab

d
+ (2γ − 1)ab− 4Ψ2(a, b) +O(1).

The estimation of Ψ2(a, b) now concludes the proof of the Theorem.

4. Estimation of Ψ2. First, we want to get rid of the deranging term
x(n+ âZ)/â in Ψ2(a, b). We substitute x(n+ âZ)/â by Bn/â. Then we have

Ψ2(a, b) =
∑

1≤n≤ab/d
ψ

(
1

2âb

(
dn+

a2b2

dn

)
− Bn

â

)
.

In order to compute this sum, we divide n into residue classes mod â as well
as into residue classes mod b̂ and make use of the equation

∑

1≤n≤ab/d
F (n) =

∑

1≤m≤â

∑

0≤l<b
F (lâ+m) =

∑

1≤m≤b̂

∑

0≤l<a
F (lb̂+m),

which holds for every function F defined on {1, 2, . . . , ab/d}.
Furthermore, we note that

1
2âb

(
dn+

a2b2

dn

)
− Bn

â
=

1

2ab̂

(
a2b2

dn
− dn

)
+
An

b̂
.

Therefore

Ψ2(a, b) =
∑

1≤m≤â
Ψ∗m(a, b) =

∑

1≤m≤b̂
Ψ∗∗m (a, b),
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where

Ψ∗m(a, b) =
∑

0≤l<b
ψ(fm(l)) and Ψ∗∗m (a, b) =

∑

0≤l<a
ψ(gm(l)),

with

fm(t) =
(

1
2âb

(
a2b2

dât+ dm
+ dât+ dm

)
− Bm

â

)
,

gm(t) =
(

1

2ab̂

(
a2b2

db̂t+ dm
− db̂t− dm

)
+
Am

b̂

)
.

In order to establish clauses (i) and (ii), we make use of an essential tool
from Huxley’s “Discrete Hardy–Littlewood Method” in the shape presented
in Huxley [3] and [4]. The following lemma is a combination of Huxley [4],
Theorem 3 and Theorem 4:

Lemma 1. Let M,M ′ and T be positive real parameters satisfying M ≤
M ′ < 2M and M ≤ C1T

83/146(log T )−63/292 with a constant C1. Fur-
thermore, let F (t) be a four times continuously differentiable function on
1 ≤ t ≤ 2 satisfying

F ′(t), F ′′(t), F (3)(t), F ′(t)F (3)(t)−3(F ′′(t))2, F ′′(t)F (4)(t)−3(F (3)(t))2 6= 0

for all 1 ≤ t ≤ 2. Then
∑

M≤k≤M ′
ψ

(
T

M
F

(
k

M

))
� T 23/73(log T )315/146.

The �-constant depends on C1 and on the range of values taken by the
derivatives of F .

To verify (iii), we use van der Corput’s classical estimate of ψ-sums:

Lemma 2 (see van der Corput [1]). Let f be a real-valued function, twice
continuously differentiable on [a, b] ⊂ R. Furthermore, let f ′′ be monotonic
and nonzero on [a, b]. Then

∑

a≤k≤b
ψ(f(k))�

b\
a

|f ′′(t)|1/3 dt+ |f ′′(a)|−1/2 + |f ′′(b)|−1/2,

where the �-constant is absolute.

In order to estimate Ψ∗m(a, b) for every m = 1, . . . , â, we put β = b − 2
and

f(t) := fm(t) =
d

2b
t+

1
2
· ab

ât+m
+
d2m

2ab
− Bm

â
(0 < t ≤ β).
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Then

Ψ∗m(a, b) =
β∑

l=1

ψ(f(l)) +O(1).

We note that

f ′(t) =
d

2b
− âab

2(ât+m)2 , f ′′(t) =
â2ab

(ât+m)3 ,

f (3)(t) = − 3â3ab

(ât+m)4 , f (4)(t) =
12â4ab

(ât+m)5 ,

and observe that f ′(t), f ′′(t), f (3)(t) 6= 0 for all t ∈ ]0, β]. Furthermore, we
see that for 0 < t ≤ β,

f ′(t)f (3)(t)− 3(f ′′(t))2 = −3aâ3(aâb2 + d(ât+m)2)
2(ât+m)6 6= 0,

and

f ′′(t)f (4)(t)− 3(f (3)(t))2 = − 15a2â6b2

(ât+m)8 6= 0.

The sum Ψ∗m(a, b) may now be written as

Ψ∗m(a, b) =
∑

1≤j<J
Sj +O(1)

with

Sj =
∑

Mj≤k<Mj+1

ψ(f(k)) (1 ≤ j < J),

where (Mj)1≤j≤J is a geometric series, Mj = 2jM1, MJ = β + 1, and
1/2 ≤M1 < 1.

Now we apply Lemma 1 to each Sj . Let

M = Mj , M ′ = −[−2M ]− 1, T = db and F (u) =
M

T
f(Mu).

Then F (u) satisfies all conditions of Lemma 1. In addition we have |F (r)(u)|
� 1 for 1 ≤ u ≤ 2 and r = 1, 2, 3, 4.

Furthermore, we note that for b ≤ d83/63−ε (which is true if d ≥ b19/25)
the condition M ≤ C1T

83/146(log T )−63/292 is fulfilled for all M ∈
{M1, . . . ,MJ}.

Thus, all conditions of Lemma 1 are satisfied, and we obtain

Sj � (db)23/73(log db)315/146 (j = 1, . . . , J − 1).

Observing that J � log b we derive

Ψ∗m(a, b)� (db)23/73(log db)1+315/146,
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and this leads to

Ψ2(a, b)� a

d
(db)23/73(log db)461/146 =

ab23/73

d50/73
(log db)461/146,

provided that d ≥ b19/25.
The sums Ψ∗∗m (a, b) from the second representation of Ψ2(a, b) can be

treated in an analogous way. We derive

Ψ∗∗m (a, b)� (da)23/73(log da)461/146 for d ≥ a19/25.

Consequently, we also have

Ψ2(a, b)� a23/73b

d50/73
(log da)461/146 if d ≥ a19/25.

Both estimates put together yield clauses (i) and (ii) of the Theorem.
The estimation of Ψ2(a, b), with the help of van der Corput’s method

(Lemma 2), is straightforward. We obtain

Ψ2(a, b) =
∑

1≤m≤â
Ψ∗m(a, b)� ab1/3

d2/3
log

ab

d
+

ab

d3/2
,

and

Ψ2(a, b) =
∑

1≤m≤b̂
Ψ∗∗m (a, b)� a1/3b

d2/3
log

ab

d
+

ab

d3/2
.

We combine both estimates and substitute log ab
d by (ab)ε. Then as ab→∞,

Ψ2(a, b)� (ab)1/3+ε(a u b)2/3

d2/3
+

ab

d3/2
.

Note that the second term dominates the first if and only if d(a u b)6ε/5 <
(a t b)4/5−6ε/5. And this condition is surely fulfilled for d < (a u b)19/25 if
we put ε = 5

12

(
4
5 − 19

25

)
.

This proves clause (iii) of the Theorem.

R e m a r k. A direct (and better) estimation of the sum Ψ2(a, b) without
splitting up the interval of summation 1 ≤ n ≤ ab/d into residue classes (as
in Huxley and Watt [6], p. 162) seems impracticable. Huxley had a similar
difficulty in the Corrigenda: “Exponential sums and lattice points II” [5].
What makes the problem difficult is the deranging term Bn/â. Even van
der Corput’s method (Lemma 1) where linear terms are negligible is of no use
because the linear term Bn/â contains the parameter B from Aâ+Bb̂ = 1.
Obviously, the parameter B depends uncontrollably on the basic parameters
a, b, d. The only way to get rid of this problem is, as we have done it, to sum
over subintervals where the term Bn/â is constant modulo 1.
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