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1. Introduction. We consider a form of degree n ≥ 3 with positive
rational integer coefficients

F (x, y) = axn − byn, a 6= b,

and the equation

axn − byn = c,

where c is a non-zero integer. Such forms have been studied by many authors.
The first result on such an equation is due to Thue [Th] and is a particular

case of his general theorem for the inequality

|G(x, y)| ≤ c,
where G(x, y) is an irreducible binary form of degree n ≥ 3 with rational
integer coefficients. This result was improved by Siegel [S] who proved the
following theorem.

Theorem A. The inequality

|F (x, y)| ≤ c,
where a, b, c are positive integers and n ≥ 3, has at most one solution in
positive co-prime integers x , y if

(ab)n/2−1 ≥ 4c2n−2
(
n
∏
p

p1/(n−1)
)n
,

where p runs through all the different prime factors of n.

Many authors followed this way; the results up to 1968 have been quoted
in Mordell’s book [M], Chap. 28.

The first effective result on Thue equations is due to Baker [B]. This
result has been sharpened several times. Concerning the special case studied
here, in [ST], Chap. 2, the following lower bound for F (x, y) is proved.

[287]
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Theorem B. There exist computable numbers C1 and C2 such that

|axn − byn| ≥ (max{|x|, |y|})n−C2 log n

for all rational integers n, x, y with n ≥ C1 and |x| 6= |y|.
This theorem implies a result due to Tijdeman [Ti]:

Corollary C. If abc 6= 0, n ≥ 0, x > 1 and y ≥ 0 are rational integers
satisfying

axn − byn = c,

then n is bounded by a computable number depending only on a, on b and
on c.

Here we only consider effective results which are variants of Theorem B
or Corollary C.

Theorem 1. Let

F (x, y) = axn − byn, a 6= b,

be a binary form of degree n ≥ 3, with positive integer coefficients a and b.
Put A = max{a, b, 3}. Then, for y > |x| and F (x, y) 6= 0, we have

|F (x, y)| ≥ |b|
1.1

yn · exp
{
−
(

2 + η

3
· U

2

λ
logA+

2(2 + η)
3

U + 1
)

log y
}

× exp{−θ(1 + h/λ)3/2(logA · log y)1/2}
× exp{−3.04h− 2U logA− 2.16 logA},

where

λ = log
(

1 +
logA
|log(a/b)|

)
,

h = max
{

5λ, log λ+ 0.47 + log
(

n

logA
+

1.5
log(max{y, 3})

)}
,

and

U =
4h
λ

+ 4 +
λ

h
, η =

1
223

, θ =
16
√

6(2 + η)
3

.

Theorem 2. Let n, F and A be defined as in Theorem 1. Suppose that

F (x, y) = c

with y > |x| > 0. Then

n ≤ max
{

3 log(1.5|c/b|), 7400
logA
λ

}
.

When λ is close to logA and c is not too large with respect to n, then
the previous inequality gives an absolute upper bound on n. This is exactly
the content of our main result:



A note on the equation axn − byn = c 289

Theorem 3. Consider the special binary form F (x, y) = (b+1)xn−byn,
b ≥ 1. Suppose that

(1) 0 < |F (x, y)| < min
{

(2n − 2)b, 2
3n

2b3
}
,

with

|x| 6= |y| and xy 6= 0.

Then xn and yn are necessarily of the same sign, thus we may suppose x
and y positive, and then

y > x > 1, y ≥ nb(y − x), and n < 600.

This may be the first time where an absolute upper bound is obtained
for the exponent of such a family of exponential diophantine equations.
Theorem 3 shows the power of Lemma 1 below, which contains all the known
refinements on estimates of linear forms in two logs of algebraic numbers
(except for the square for the term h). We use the fact that the logarithms
of the algebraic numbers appearing in the linear form are small; such a fact
was used for the first time in a paper by T. N. Shorey [Sh].

Theorem 3 is also a consequence of Waldschmidt’s estimates [W], but
Lemma 1 leads to smaller constants than [W].

2. Proof of Theorem 1. Consider a relation in rational integers x, y

axn − byn = c, n ≥ 3,

where a, b are positive rational integers and c is non-zero. Let A =
max{|a|, |b|, 3}.

Without loss of generality, we may suppose that |x| ≤ y. Theorem 1 is
trivially true if y = 1. For y = 2, considering the two cases a ≥ 2n−1b and
a < 2n−1b, it is easy to verify that Theorem 1 is true. Thus, we assume that
y ≥ 3. From the relation ∣∣∣∣

a

b

(
x

y

)n
− 1
∣∣∣∣ =

|c|
|b|yn ,

if |c| ≥ |b|yn/(4A) then Theorem 1 is true [the verification is easy], thus
we assume |c| < |b|yn/(4A) and then the “linear form” Λ := log(a/b) −
n log |y/x| satisfies the inequality |Λ| < 1.1|c/b| y−n.

On the other hand, estimates for linear forms in two logarithms produce
lower bounds for |Λ|. We use the following result from [LMN] (Théorème 2):

Lemma 1. Let α1, α2 be two positive real algebraic numbers. Consider

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive rational integers. Put D = [Q(α1, α2) : Q].
Suppose that logα1 and logα2 are linearly independent over Q. For any
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% > 1, take

h ≥ max
{
D

2
, 5λ, D

(
log
(
b1
a2

+
b2
a1

)
+ log λ+ 1.56

)}
,

ai ≥ (%− 1)|logαi|+ 2Dh(αi) (i = 1, 2),

and

a1 + a2 ≥ 4 max{1, λ}, 1
a1

+
1
a2
≤ min{1, λ−1},

where λ = log %. Then

log |Λ| ≥ − λa1a2

9

(
4h
λ2 +

4
λ

+
1
h

)2

− 2λ
3

(a1 + a2)
(

4h
λ2 +

4
λ

+
1
h

)

− 16
√

2a1a2

3

(
1 +

h

λ

)3/2

− 2(λ+ h)− log
(
a1a2

(
1 +

h

λ

)2)

+ λ/2 + log λ− 0.15.

R e m a r k. The result in [LMN] is proved under the stonger hypothesis
min{a1, a2} ≥ max{2, 2λ}, but the proof uses only the weaker conditions
stated in Lemma 1.

Theorem 1 is trivially true when n ≤ U + (2/3)U2(logA)/λ, moreover
h ≥ 5λ implies U ≥ 24.2, hence we may suppose

(2) n− 1 ≥ N logA
λ

with N = 300.

Now, we apply Lemma 1; here D = 1, b1 = n, b2 = 1, and α1 = |y/x|,
α2 = a/b. We have to choose

a1 ≥ 2 log y + (%− 1) log |y/x|, a2 ≥ 2 logA+ (%− 1)|log(a/b)|.
We choose

% = 1 +
logA
|log(a/b)| .

Then we can take

a2 = 3 logA.

Clearly, A/(A − 1) ≤ max{a/b, b/a} ≤ A, hence 1/A < |log(a/b)| ≤ logA.
Thus, λ = log % satisfies

log 2 ≤ λ = log
(

1 +
logA
|log(a/b)|

)
< log(1 +A logA).

An elementary study shows that λ < 1.39 logA. Notice also that

(3) log |y/x| ≥ − log
y − 1
y

>
1
y

and log |y/x| ≤ 1
n

(|Λ|+ log(a/b)),
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therefore

(4)
1
y
< log |y/x| ≤ 1

n

(
|log(a/b)|+ 1

3A

)
≤ εn|log(a/b)|,

where εn = ε =
4

3n
≤ 4

9
.

Thus
1
y

(%− 1) < (%− 1) log |y/x| ≤ ε logA.

Hence, it is legitimate to take

a1 = 2 log y + ε logA.

Now,
b1
a2

+
b2
a1

<
n

3 logA
+

1
2 log y

≤ 1
3

(
n

logA
+

1.5
log y

)
,

and we can take

h = max
{

5λ, log λ+ 0.47 + log
(

n

logA
+

1.5
log y

)}
.

The inequalities

% ≤ 1 + εny logA ≤ 2εny logA =
8

3n
· y logA ≤ 8λ

3N
· y (by (2))

lead to λ ≤ log λ+ log y − log(3N/8). Hence

λ ≤
(

1− log λ
λ

+
log(3N/8)

λ

)−1

log y ≤
(

1− 8
3eN

)−1

log y < 1.004 log y,

and a1 ≤ (2 + η) log y, where

η =
(

1− 8
3eN

)−1 4
3N

=
4e

3eN − 8
≤ 1.004 · 4

3N
< 0.0045.

Now it is clear that a1 and a2 satisfy the conditions of Lemma 1.
Then Lemma 1 leads to

log |Λ| ≥ − 2 + η

3
· U

2

λ
logA log y − 2(2 + η)

3
U log y − 2U logA

− θ (1 + h/λ)3/2(log y · logA)1/2

− 2h− 1.5λ+ log λ− 0.15− log(a1a2(1 + h/λ)2),

where

U =
4h
λ

+ 4 +
λ

h
and θ =

16
√

6(2 + η)
3

.

We have
3
2λ− log λ+ 0.15 ≤ 1.79 logA.
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The estimate a1a2 ≤ 3(1 + η) logA · log y implies

log(a1a2) ≤ 0.37 logA+ log y,

and (using the fact that x 7→ x−1 log(1 + x) is decreasing for x > 1), since
h ≥ 5λ, we have

λ

h
log(1 + h/λ) ≤ log 6

5
,

hence

2 log(1 + h/λ) ≤ 2 log 6
5
· h
λ
≤ 1.04h.

Collecting these estimates gives

(5) log |Λ| ≥ −2 + η

3
· U

2

λ
logA log y − 2(2 + η)

3
U log y − 2U logA

− θ(1 + h/λ)3/2(log y logA)1/2 − 3.04h− 2.16 logA− log y.

Since |Λ| ≤ 1.1|c/b|y−n, we get

|c| ≥ |b|
1.1

yn exp
{
−
(

2 + η

3
· U

2

λ
logA+

2(2 + η)
3

U + 1
)

log y
}

× exp{−θ(1 + h/λ)3/2(log y · logA)1/2}
× exp{−3.04h− 2U logA− 2.16 logA},

which ends the proof of Theorem 1.

3. Proof of Theorem 2. We keep the notations of the proof of The-
orem 1. We may suppose that (2) holds with N = 7300 and that n ≥
3 log(1.5|c/b|). Then |c| < |b|yn/2/1.5, |Λ| < 1.5|c/b|y−n and

log |Λ| ≤ −n log y + log(1.5|c/b|) ≤ −(n/2) log y.

Since Λ = log(a/b)− n log(y/|x|), we have

n log(y/|x|)− 1
yn/2

≤ log(a/b),

where

log(y/|x|) ≥ − log
y − 1
y
≥ 1
y
,

thus (n − 1)/y ≤ log(a/b). This implies y ≥ (n − 1)/ logA and, as above,
λ ≤ 1.004 log y.

Recall that

h = max
{

5λ, log λ+ 0.47 + log
(

n

logA
+

1.5
log y

)}
.
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Notice that

log λ+ 0.47 + log
(

n

logA
+

1.5
log y

)

≤ λ

e
+ 0.47 + log(3/2) + log

(
y +

1.5
log y

)
< 5.02 log y,

thus, in any case, h ≤ 5.02 log y.
Using (5) and log |Λ| ≤ −(n/2) log y and (3), we get

n

2
≤ 2 + η

3
U2 logA

λ
+

2(2 + η)
3

U + 2U
logA
log y

+ θ (1 + h/λ)3/2
( logA

log y

)1/2
+ 3.04 · 5.02 + 2.16

logA
log y

+ 1,

which implies

n

2
≤ 2 + η

3
U2 logA

λ
+

2(2 + η)
3

U + 2.01U
logA
λ

(6)

+ θ
√

1.01(1 + h/λ)3/2
( logA

λ

)1/2
+ 16.27 + 2.17

logA
λ

.

Now, we distinguish two cases:

(i) h ≤ 12.5λ,

(ii) h = log λ+ 0.47 + log
(

n

logA
+

1.5
log y

)
> 12.5λ.

In case (i), U = 44.1 and, applying (6) we get n ≤ 7000(logA)/λ.
In case (ii),

h ≤ 0.47 + log
(

nλ

logA
+ 1.52

)
< 1.053L,

where L = log(nλ/ logA), and (6) implies

n

2
≤ 16.27 +

2 + η

3

(
4.212L
λ

+ 4.1
)2 logA

λ
+

4.01
3

(
4.212L
λ

+ 4.08
)

(7)

+ 2.01
(

4.212L
λ

+ 4.08
)

logA
λ

+ θ
√

1.004
(

1 +
1.053L
λ

)3/2

.

Since λ ≥ log 2,

1
2
nλ

logA
≤ 22.7 +

2 + η

3
(6.077L+ 4.08)2 +

4.01
3

(3.84L+ 5.7)(8)

+ 2.01(6.077L+ 4.08) + θ
√

1.41(1 + 1.52L)3/2.

Finally, (8) implies nλ/ logA < 7400, which concludes the proof of Theo-
rem 2.
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4. Proof of Theorem 3. Now we consider the special case a = b + 1,
and we put F (x, y) = c. Then

(∗) (b+ 1)xn− byn = c, b ≥ 1, with 0 < |c| < min
{

(2n−2)b, 2
3n

2b3
}
.

If xn and yn are of opposite signs (with |x| 6= |y| and xy 6= 0) then (∗) is
impossible. Thus we may suppose that x and y are positive. Then the upper
bound on |c| implies y > x > 1.

Put y = x+ t (thus t ≥ 1). Then

(b+ 1)xn − b(x+ t)n = xn − bt
(
nxn−1 +

(
n

2

)
xn−2t+ . . .+ tn−1

)
= c,

and the condition on c leads to xn − btnxn−1 > 0. Thus,

(9) y ≥ nbt+ 2.

We suppose n ≥ 500, then y > 500 (a−1). We have |c/b|y−n < 2
3 (nb)2y−n ≤

2
3y
−(n−2), hence |Λ| < y−(n−2) and now inequality (5) implies

n− 2 ≤ 2 + η

3
· U

2

λ
logA+

2(2 + η)
3

U + 2U
logA
log y

+ θ(1 + h/λ)3/2
(

logA
log y

)1/2

+ 3.04
h

log y
+ 4.

In the present case,

λ = log
(

1 +
A

log(a/(a− 1))

)
.

Then the proof is almost the same as that of Theorem 2. Considering sepa-
rately the cases a = 2, 3, . . . , 10, and a > 10, we get n < 600.
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