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0. Introduction. Elliptic curves have long been used as tools to prove
reciprocity laws. Eisenstein employed elliptic functions to prove cubic, bi-
quadratic, and octic reciprocity laws (we refer the reader to Cassels [C],
Hilbert [H], Weil [W1, W2, W3], and Ireland–Rosen [IrR] for references
to this work, work by Kummer, and related work by other 19th century
mathematicians). Fueter [F] in 1927 proved quadratic reciprocity over all
imaginary quadratic fields using the theory of complex multiplication of el-
liptic curves, and in 1961 Kubota derived cubic and biquadratic reciprocity
from the theory of complex multiplication as well [K1].

Kubota’s and Eisenstein’s proofs of cubic and biquadratic reciprocity
both used (in some guise) the distribution relation of genus one theta func-
tions that is crucial to the construction of elliptic units.

In this paper we continue the theme, deriving the quintic reciprocity law
(due first to Kummer) from the main theorems of complex multiplication of
abelian varieties applied to the Jacobian J of the curve C : y2 = x5 + 1/4.
Due to the lack of a distribution relation for higher genus theta functions,
little progress has been made in generalizing elliptic units to genus 2 curves
[BaBo, BoBa, Gra1, Gra2, Gra3]. However, the theorems of complex mul-
tiplication and the formal group at the origin of the Jacobian allow us
to evaluate products of a function evaluated at torsion points up to fifth
powers, which is insufficient for constructing units, but is sufficient for de-
riving a reciprocity law. Our proof was inspired by Kubota, who in [K2]
derived facts about products of functions of torsion points via reciprocity,
and we reverse his argument. Let ζ denote a primitive fifth root of 1. Our
proof involves studying Kummer extensions of Q(ζ) contained in division
fields of J , and, as in [K1], uses “Gauss’ Lemma” to obtain the reciprocity
law.
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In a paper where the main theorem is approaching its sesquicentennial,
it is not surprising that several of the lemmas are not new. We prove what
we easily can afresh, keeping our proof independent of more sophisticated
techniques. We hope the present work can be considered a small contribution
to the spirit of the Jugendtraum, and a demonstration of the growing utility
of the arithmetic of curves of genus 2.

Despite the fact that the `th power reciprocity law was proved by Kum-
mer for regular primes `, and was completely proved by Fürtwangler (and
that today it is a simple consequence of Artin reciprocity), it would be nice
to know whether other power reciprocity laws can be derived from the arith-
metic of rational images of Fermat curves. Shimura and Taniyama showed
that a special case of Stickelberger’s relation on ideal class groups can be
derived as a consequence of the theory of complex multiplication applied to
the Jacobians of these curves [ST, pp. 129–130].

In Section 1 we gather facts about Q(ζ), and state the reciprocity law.
In Section 2 we study the curve C and its Jacobian, recall facts from the
theory of complex multiplication of abelian varieties, and prove a bevy of
lemmas. In Section 3 we prove the reciprocity law.

1. Statement of the Theorem. Throughout we let ζ denote a primitive
fifth root of unity, and K = Q(ζ). Then (ζ − ζ2 − ζ3 + ζ4)2 = 5, so we will
set
√

5 = (ζ − ζ2 − ζ3 + ζ4). The ring of integers O = Z[ζ] of K is a unique
factorization domain, and its units are all of the form ±ζiεj , for integers
i, j, where

ε = −ζ2 − ζ3 =
1 +
√

5
2

is a fundamental unit in Q(
√

5). For i ∈ Z prime to 5, we let σi denote the
element of the Galois group Gal(K/Q) such that σi(ζ) = ζi. If π is a prime
of O, we let Oπ denote the completion of O at π, and Kπ the fraction field
of Oπ. We let λ = 1− ζ. Then λ generates the lone prime of O above 5, and
a computation shows

(1) ε ≡ 3 mod λ, −ε2 ≡ 1− λ2 mod λ3.

R e m a r k. That −ε2 should have such an expansion is part of a general
phenomenon for units in the `th cyclotomic field when ` is a regular prime
(see [H, Lemma 29]).

Lemma 1. (a) If α ∈ O is prime to λ, then there is an associate α′ of
α such that α′ ≡ 1 mod λ3.

(b) If α′ and α′′ are two associates ≡ 1 mod λ3, their ratio is a fifth
power of a unit in O.
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(c) Let n ∈ Z be prime to 5. Then any associate n∗ of n with n∗ ≡
1 mod λ3 is n times a fifth power of a unit in O.

P r o o f. (a) By (1), for some 0 ≤ i, j ≤ 1, (−1)iεjα ≡ 1 mod λ. Then for
some 0 ≤ k ≤ 4, ζk(−1)iεjα ≡ 1 mod λ2. From (1) again we see that for
some 0 ≤ l ≤ 4, α′ = ζk(−1)i+lεj+2lα ≡ 1 mod λ3.

(b) If α′ and α′′ are two such associates, their ratio is a unit, and hence
of the form

(2) (−1)i+l+mζkεj+2l+10m = (−1)iεjζk(−ε2)l(−ε10)m

for some 0 ≤ i, j ≤ 1, 0 ≤ k, l ≤ 4 and m ∈ Z. Since the ratio is congruent
to 1 mod λ3, and −ε10 ≡ 1 mod λ3, considering (2) sequentially mod λ, λ2,
and λ3, and applying (1) gives in turn that i = j = 0, that k = 0, and
that l = 0. Hence the ratio of the associates is a tenth power of a unit, so a
fortiori a fifth power.

(c) Since n4 ≡ 1 mod 5, and (n∗)4 ≡ 1 mod λ3 is an associate of n4, by
(b), (n/n∗)4 is the fifth power of a unit, so dividing by (n/n∗)5 shows that
(n∗/n) is the fifth power of a unit.

R e m a r k. The lemma is a special case of a general pattern for integers
in the `th cyclotomic field when ` is a regular prime. Compare (a) to the
proof of Theorem 157 in [H] and (b) to the proof of Theorem 156 in [H].

Given Lemma 1, we can make the following conventions: If π (or any
Greek letter) is a prime of O prime to λ, then we always assume that π ≡
1 mod λ3. We will set πi = σi(π), for i ∈ Z prime to 5, and so πi ≡ 1 mod λ3

and π = π1. Note that if π is a second degree prime, then by Lemma 1(b),
π1 and π4 differ by a fifth power, as do π2 and π3. If p ∈ Z is a fourth degree
prime on O, we will let p∗ denote an associate of p such that p∗ ≡ 1 mod λ3.
By Lemma 1(c), p and p∗ differ by a fifth power.

If ℘ = (π) is a prime of O prime to λ, and α ∈ O is prime to ℘, we define
the quintic power residue symbol(

α

℘

)
=
(
α

π

)

to be the fifth root of unity such that(
α

π

)
= α(N(π)−1)/5 mod π,

where N is the absolute norm. The symbol is extended to non-prime ideals
by the rule (

α

PQ
)

=
(
α

P
)(

α

Q
)
,

for ideals P,Q prime to λ, and α prime to PQ.
We can now state the laws of quintic reciprocity.
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Theorem (Kummer). Main Law of Quintic Reciprocity : If π and ν are
non-associate primes of O, both congruent to 1 mod λ3, then

(
ν

π

)
=
(
π

ν

)
.

Complementary Laws: If π is a prime of O with a λ-adic expansion

π ≡ 1 + aλ3 + bλ4 + cλ5 mod λ6,

with a, b, c ∈ Z/5Z, then
(
ζ

π

)
= ζa+b,(i)

(
ε

π

)
= ζa,(ii)

(
λ

π

)
= ζ−c.(iii)

R e m a r k. This is certainly not the standard way now to state quintic
reciprocity, but it is akin to the classical form of Kummer reciprocity with
the complementary laws worked out explicitly (see [H, Theorem 161]). It
is not hard to verify that it is equivalent to the law as given by Artin and
Hasse, and stated in [AT, pp. 172–173].

2. The curve and its Jacobian. Let C be the curve of genus 2 defined
by

(3) y2 = x5 + 1/4.

We let∞ denote the lone point at infinity on the normalization of this model.
The hyperelliptic involution I is given on this model by I(x, y) = (x,−y).
There is an embedding i of the group µ5 = 〈ζ〉 into the automorphism group
of C given by i(ζ) = [ζ], where [ζ](x, y) = (ζx, y).

Let M = K( 5
√

2). Then the field L = M(
√
λ) is totally ramified over (λ)

since it is the compositum of M and K(
√
λ), which are extensions of K of

relatively prime degree and which are both totally ramified over (λ). Let OL
be the ring of integers of L, Λ the lone prime of OL above (λ), and ` the
restriction of Λ to M .

Lemma 2. The curve C has good reduction at all primes of O prime
to λ. It obtains good reduction everywhere over L.

P r o o f. The model (3) has good reduction at all primes of O except 2
and (λ). Letting x = X, y = Y + 1/2 gives us the model

Y 2 + Y = X5,
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which has good reduction at 2. We now only have to show that over L, C has
a model with good reduction at Λ. Substituting x = λX− 5

√
1/4, y = λ5/2Y

into (3) gives us the model

Y 2 = X(X − 5
√

1/4)(X − (1 + ζ) 5
√

1/4)(X − (1 + ζ + ζ2) 5
√

1/4)(4)

× (X − (1 + ζ + ζ2 + ζ3) 5
√

1/4)

which has good reduction at Λ.

Let J be the Jacobian of C. Then there is an injection φ : C → J , given
by

P → cl(P −∞),
where cl denotes the divisor class map. The image of φ is a divisor Θ on J .
By the Riemann–Roch theorem, every point other than the origin on J can
be represented uniquely by a divisor of the form

P1 + P2 − 2∞, P2 6= I(P1),

for an unordered pair of points {P1, P2} on C. As a consequence, J is bi-
rationally equivalent to the symmetric product C(2), so functions on J can
be written as symmetric functions of a pair of points Pi = (xi, yi), i = 1, 2,
on C.

When the characteristic of our base field is not 2, we will take the model
for J described in [Gra4]. The divisor 3Θ is very ample, so the 9-dimensional
complete linear system L(3Θ) defines an embedding of J into P8. A basis
for L(2Θ) is given by 1 and the even functions

(5)

X22 = x1 + x2, X12 = −x1x2,

X11 =
(x1x2)2(x1 + x2) + 1

2 − 2y1y2

(x1 − x2)2 .

A basis for L(3Θ) is then obtained by including the even function

X = 1
2 (X11X22 −X2

12),

and the odd functions

(6)
X222 =

y1 − y2

x1 − x2
, X122 =

x1y2 − x2y1

x1 − x2
, X112 =

x2
2y1 − x2

1y2

x1 − x2
,

X111 =
y2(3x4

1x2 + x3
1x

2
2 + 1)− y1(3x4

2x1 + x3
2x

2
1 + 1)

(x1 − x2)3 .

The action of µ5 on C extends naturally to J to give us an embedding
i : O → End(J), which we write as i(α) = [α]. For any isogeny [α] ∈ End(J)
we let J [α] denote its kernel. We also let J [α]′ denote the non-trivial elements
of J [α].

From (5) and (6) we get: [ζ]X22 = ζX22, [ζ]X12 = ζ2X12, [ζ]X11 =
ζ3X11, [ζ]X = ζ4X, and [ζ]X111 = ζ2X111.
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In [Gra4] it was shown that

t1 =
−X11

X111
, t2 =

−X
X111

,

are odd functions which span the cotangent space of J at the origin, and
that if π ∈ O is any prime of odd residue characteristic, then t1 and t2
form a set of parameters for the formal group at the origin defined over the
completion Oπ. Since

(7) [ζ]t1 = ζt1, [ζ]t2 = ζ2t2,

we find that the CM-type of J is Φ = {σ1, σ2}, and that for any α ∈ O,

[α]t1 = αt1 + (d◦ ≥ 2), [α]t2 = σ2(α)t2 + (d◦ ≥ 2),

as endomorphisms of the formal group, where (d◦ ≥ n) denotes a power
series all of whose terms have total degree at least n.

Lemma 3. For any α ∈ O,

[α]t1 = αt1 − 1
3 (σ2(α)3 − α)t32 + (d◦ ≥ 4),

[α]t2 = σ2(α)t2 + (d◦ ≥ 4).

P r o o f. The result is trivial for α = 0, and follows from (7) for α = −ζ
since both t1 and t2 are odd. It now suffices to show that if the lemma holds
for both α, β ∈ O, then it holds for both (i) α+β, and (ii) αβ. We take these
in turn. For (i) we need the cubic terms of the expansions of s∗ti, i = 1, 2,
where s : J×J → J is the group morphism. An algorithm for computing this
is given in [Gra4], and was carried out in [Gra2]. The resulting calculation
in [Gra2] gives us

s∗t1 = u1 + v1 − u2v2(u2 + v2) + (d◦ ≥ 4),

s∗t2 = u2 + v2 + (d◦ ≥ 4),

where (u1, v1) and (u2, v2) are corresponding pairs of parameters at the
origin on 2 copies of J . So

[α+ β]t1 = [α]t1 + [β]t1 − [α]t2[β]t2([α]t2 + [β]t2) + (d◦ ≥ 4)

= αt1 − 1
3 (σ2(α)3 − α)t32 + βt1 − 1

3 (σ2(β)3 − β)t32
− σ2(α)σ2(β)σ2(α+ β)t32 + (d◦ ≥ 4)

= (α+ β)t1 − 1
3 (σ2(α+ β)3 − (α+ β))t32,

and

[α+ β]t2 = [α]t2 + [β]t2 + (d◦ ≥ 4) = σ2(α)t2 + σ2(β)t2 + (d◦ ≥ 4),
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as desired. As for (ii), we note

[αβ]t1 = [α]([β]t1) = α(βt1 − 1
3 (σ2(β)3 − β)t32)

− 1
3 (σ2(α)3 − α)(σ2(β)t2)3 + (d◦ ≥ 4)

= αβt1 − 1
3 (σ2(αβ)3 − αβ)t32 + (d◦ ≥ 4),

and
[αβ]t2 = [α]([β]t2) = α(βt2) + (d◦ ≥ 4).

Lemma 4. (a) Let π prime to λ be any first or second degree prime
of O. Then the only primes of O which ramify in K(J [π])/K are (π1),
(π2), and (λ).

(b) The extension L(J [π])/L is unramified at Λ.

P r o o f. (a) If ν is a prime of O prime to λ, then by Lemma 2, C and
hence J has good reduction at ν. If the action of π on the cotangent space
of J at the origin is invertible mod ν, then [π] is étale mod ν, and hence ν is
unramified in K(J [π]). From the CM-type we see that the action of [π] on
the cotangent space is invertible mod ν if (ν) is different from (π1) and (π2).

(b) This follows as in (a), since by Lemma 2, J obtains good reduction
over L at Λ.

The following lemma is a special case of a general theorem of Greenberg
[Gre, Theorem 1]. We give an elementary proof which suffices in our case.

Lemma 5. All points of J [λ3] are rational over K.

P r o o f. We will show that Q = (1,
√

5/2) − ∞, which is rational over
K, is a primitive [λ3]-torsion point. The theorem then follows because all
complex multiplications are defined over K, and J [λ3] is generated as an
O-module by Q.

To compute the order of Q, we first note that if P = (0, 1/2)−∞, then
[ζ]P = P , so P is a primitive [λ]-torsion point. It is straightforward to check
that the divisor of the function

y − (ζ + 1)x2 − ζ4x+ 1/2

on C is

I(P ) + (1,
√

5/2) + 2(ζ,−
√

5/2) + (ζ2,
√

5/2)− 5∞,
so

[(1− ζ)2]Q = [1− ζ]((1,
√

5/2) + (ζ,−
√

5/2)− 2∞)

= (1,
√

5/2) + 2(ζ,−
√

5/2) + (ζ2,
√

5/2)− 4∞ = P.

So Q is a primitive [λ3]-torsion point, as desired.
We will keep the notation P = (0, 1/2) − ∞ and Q = (1,

√
5/2) − ∞

throughout.
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Lemma 6. Let π prime to λ be a prime in O, and J̃ be the reduction of
J mod π. Then 125 |#J̃(O/(π)).

P r o o f. This follows directly from Lemma 5: by Lemma 2, J has good
reduction at π, so the λ-power torsion remains distinct mod π.

Having found the CM-type of J , we can deduce various consequences of
the theory of complex multiplication. We refer the reader to [L] or [Gra5].
Recall that the reflex type of J is Φ′ = {σ−1

1 , σ−1
2 } = {σ1, σ3}, and the

reflex norm of an element α ∈ K is NΦ′(α) = ασ3(α). From Proposition 1.5
of [Gra5], we know that J is simple. Since Θ defines a polarization over K,
and i(O) ⊆ End(J) are all defined over K, the triple (J, i, Θ) is defined over
K. Then if E is a Riemann form corresponding to Θ, since J is simple, E
is necessarily “admissible” in the parlance of complex multiplication. As a
consequence (J, i, Θ) is of type (K,Φ,O, E) with respect to Θ, so we may
apply the main theorems of complex multiplication. In particular, since the
full ring of integers O of K embeds into End(J), the complex multiplica-
tion is “principal,” and we can apply Theorems and Corollaries 1.1–1.6 of
Chapter 4 of [L].

Lemma 7. Let π prime to λ be a prime in O, and J̃ be the reduction of
J mod π. Then the endomorphism [π1π3] induces the Frobenius on J̃ .

P r o o f. By Theorem 1.2 on p. 86 of [L], the Frobenius on J̃ is induced
by an endomorphism [α]. By Corollary 1.3 on p. 88 of [L], α = uNΦ′(π1),
where u is a unit of O of absolute value 1 in every complex embedding,
and so is a root of unity. Since π1π3 ≡ 1 mod λ2, to show u = 1 it suffices
to show that α ≡ 1 mod λ2. In fact, α ≡ 1 mod λ3. Indeed, by Lemma
6, 125 |#J̃(O/(π)), and by Theorem 1.6 on p. 92 of [L], the characteristic
polynomial of the Frobenius is fα(X) =

∏4
i=1(X − σi(α)). Then by [M,

p. 144], #J̃ = fα(1) = N(1− α), so we conclude that λ3 | 1− α, so u = 1.

R e m a r k. It follows from work of Weil that the roots of the characteristic
polynomial of Frobenius mod π are given by Jacobi sums [W4], and Iwasawa
showed that Jacobi sums are congruent to 1 mod λ3 ([Iw]). Therefore the
only place where we needed the theorems of complex multiplication in the
proof of Lemma 7 was to show that the Frobenius mod π was induced by [α]
for some α ∈ O, but this too can be argued directly (see [Gre, pp. 352–353]).

Throughout, for a prime π of O, we will let

δ = δ(π) =
∏

u∈J[π]′
t1(u).

Lemma 8. Let π prime to λ be a first or second degree prime in O. Then

(a) ord(π1) δ = 1,
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and

(b) ord(π2) δ = 3.

P r o o f. (a) The CM-action on the cotangent space at the origin shows
that [π1] is not étale mod π1, so J [π1] is in the kernel of reduction mod π1.
Hence J [π1] corresponds to points in the formal group at the origin. So for
any point u ∈ J [π1], we have that (t1(u), t2(u)) is a solution of

(8)
0 = [π1]t1 = π1t1 + (d◦ ≥ 2),

0 = [π1]t2 = π2t2 + (d◦ ≥ 2).

Since π is first or second degree, π2 is invertible in Oπ1 , so by the implicit
function theorem, we can solve for t2 in terms of t1; that is, there is a power
series f(t1) ∈ Oπ1 [[t1]] such that t2 = f(t1) identically solves (8). Therefore
there must be N(π) distinct values of t1(u). Of course, (t1(u), t2(u)) is also
a solution of

0 = g(t1, t2) := [π1π3]t1 = π1π3t1 + (d◦ ≥ 2).

We know by Lemma 7 that [π1π3]t1 ≡ tN(π)
1 mod π1, so if we plug t2 = f(t1)

into g, we get

0 = h(t1) := g(t1, f(t1)) = π1π3t1 + (d◦ ≥ 2) ≡ tN(π)
1 mod π1.

By the π1-adic Weierstrass Preparation Theorem, h(t1) = j(t1)u(t1), where
u is a unit power series with constant coefficient 1, and j(t1) is a distin-
guished polynomial, i.e., j(t1) =

∑N(π)
i=1 ait

i
1, where we know

a1 = π1π3, ai ≡ 0 mod π1, 1 ≤ i ≤ N(π)− 1, aN(π) ≡ 1 mod π1.

Therefore the roots of j are precisely the t1(u), u ∈ J [π1], and
∏

u∈J[π1]′
t1(u) = π1π3/aN(π)

(since N(π) is odd), where π3/aN(π) is a unit in Oπ1 .
(b) Likewise, [π1] is not étale mod π2, so we also know that J [π1] is in

the kernel of reduction mod π2, and such points are solutions to

(9) 0 = [π1]t1 = π1t1 + (d◦ ≥ 2), 0 = [π1]t2 = π2t2 + (d◦ ≥ 2).

So now we can find a power series f ′(t2) ∈ Oπ2 [[t2]] such that t1 = f ′(t2)
identically solves (9). Therefore there must be N(π) distinct values of t2(u),
u ∈ J [π1]. Again, (t1(u), t2(u)) is also a solution of

0 = g′(t1, t2) := [π1π2]t2 = π2π4t2 + (d◦ ≥ 2) ≡ tN(π)
2 mod π2.

So if we plug t1 = f ′(t2) into g′, we get

0 = h′(t2) := g′(f ′(t2), t2) = π2π4t2 + (d◦ ≥ 2) ≡ tN(π)
2 mod π2.
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Again by the π2-adic Weierstrass Preparation Theorem, h′(t2) =
j′(t2)u′(t2), where u′ is a unit power series which has constant coefficient 1,
and j′(t2) is a distinguished polynomial. So j′(t2) =

∑N(π)
i=1 a′it

i
2, where now

a′1 = π2π4, a′i ≡ 0 mod π2, 1 ≤ i ≤ N(π)− 1, a′N(π) ≡ 1 mod π2.

The roots of j′ are precisely the t2(u), u ∈ J [π1], and j′(t2)/t2 is an irre-
ducible Eisenstein polynomial of degreeN(π)−1. We deduce thatKπ2(J [π1])
is totally ramified over π2, and that t2(u) is a uniformizer for the prime P2

in Kπ2(J [π1]) for any u ∈ J [π1]′. By Lemma 3,

f ′(t2) =
1

3π1
(π3

2 − π1)t32 + (d◦ ≥ 4),

so ordP2 t1(u) = 3 for any u ∈ J [π1]′, and ord(π2) δ = 3.

Lemma 9. Let J̃ be the reduction of J over L taken modΛ. The Frobe-
nius on J̃ is induced by one of the endomorphisms [±√5] on J .

P r o o f. As in the proof of Lemma 7, the Frobenius is induced by some
[α], where (α) = (NΨ ′(Λ)), and where Ψ ′ is the reflex type on L induced
by Φ′ on K. In addition, α has absolute value

√
N(λ) in every complex

absolute value. Since (λ) is totally ramified in L, (NΨ ′(Λ)) = (NΦ′(λ)), so
once again, α = uλσ3(λ), where u is a root of unity. Now mod Λ, the model
(4) reduces to

Y 2 = X(X − 5
√

1/4)(X − 2 5
√

1/4)(X − 3 5
√

1/4)(X − 4 5
√

1/4).

So the Weierstrass points are rational mod Λ, and hence so is J [2]. Therefore
16 |#J(OL/Λ) = N(1− α), and since 2 remains prime in O, 2 | 1− α. So if
u = ±ζi, 0 ≤ i ≤ 4, we have

α = ±ζi(1− ζ)(1− ζ3) = −± ζi−3
√

5 ≡ 1 mod 2.

But
√

5 ≡ 1 mod 2, so i = 3, and α = ±√5.

Lemma 10. Let R ∈ J [5] be any point such that [1− ζ]R = Q, and

f =
(ζ + ζ2 − ζ3 − ζ4)X12/2 + (ζ2 − ζ3)X2

22/2
(1 + ζ2)X12X222 + 2ζX112

− (ζ2 + ζ3)X22X112 +X12X122

(1 + ζ2)X12X222 + 2ζX112
.

Then

(a) ε2 = f([2]R)5.
(b) For all z ∈ J , f(z + P ) = ζ2f(z).

P r o o f. Let z = P1+P2−2∞ be a generic point of J , where Pi = (xi, yi),
i = 1, 2, are points of C. Set [1 − ζ]z = P3 + P4 − 2∞, where Pi = (xi, yi),
i = 3, 4, and let y′ = y − 1/2. Then there is a function g ∈ K(z)(J) with
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divisor P1 +P2 + [ζ]I(P1) + [ζ]I(P2) + I(P3) + I(P4)− 6∞, and so g has the
form y′ − ax3 − bx2 − cx − d, for some a, b, c, d ∈ K(z). The zeros of g are
also roots of

h(y′) =
4∏

i=0

(y′ − aζ3ix3 − bζ2ix2 − cζix− d).

The lead term of h (in terms of the pole at ∞) is contributed by −a5x15 =
−a5(y′)3(y′ + 1)3, so is −a5(y′)6. The constant term of h is −d5. So the
product of the 6 roots of h is d5/a5, so

d5/a5 = y′(P1)y′(P2)y′([ζ]I(P1))y′([ζ]I(P2))y′(I(P3))y′(I(P4))

= (y1 − 1/2)(y2 − 1/2)(y1 + 1/2)(y2 + 1/2)(y3 + 1/2)(y4 + 1/2).

Hence

(10) (y3 + 1/2)(y4 + 1/2) = (−d/aX12(z))5.

A computation with Cramer’s rule shows that −d/aX12 = f . Specializing
z = [2]R, (10) gives us (a), since (y1 + 1/2)(y2 + 1/2)(2[Q]) = ε2. As for (b),
we first note that f(z+P )/f(z) is a fifth root of 1 independent of the choice
of z ∈ J . Specializing z = w = S −∞, for S = (x, y) a generic point on C,
gives f(w) = −ζ4x. (One divides the numerator and denominator of f by
X22X222, and uses the fact (proved in [Gra4]) that X12/X22, X122/X222, and
X112/X222 evaluated at w are −x, −x, and x2, respectively.) Likewise, using
the expressions (5) and (6), specializing z = w + P gives f(w + P ) = −ζx.
Hence f(w + P )/f(w) = ζ2.

R e m a r k s. 1. What we have computed, in essence, is the Weil pairing
w(P,R) between P and R. The function (y1 − 1/2)(y2 − 1/2) has as divisor
5 times Θ translated by P minus 5Θ. So (y1− 1/2)(y2− 1/2)([5]z) = F (z)5,
for some function F . We can take F (z) = f([5/λ]z) as above, and then for
any z where the functions are defined,

w(P,R) =
F (z +R)
F (z)

=
f([5/λ](z +R))

f([5/λ]z)
=
f([5/λ]z − P )
f([5/λ]z)

= ζ3.

2. A much more involved calculation shows that if we set

r = −(1/5)
4∑

i=0

ζiX12(R+ [i]P ),

then also r5 = ε2 (see [Gra3]).
3. That K(J [5]) = K(ε1/5) is a special case of Theorem 4 of [Gre].

3. Proof of the Theorem

Proposition. Let π prime to λ be any first or second degree prime
of O. There is an m ∈ Z, determined only up to multiples of 5, such that
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K((2mδ)1/5)/K is unramified at (λ). Such m are determined by the property

24m ≡ π1π
3
2 mod λ5.

Furthermore, for some non-zero β ∈ K,

δ = π1π
3
2β

5.

P r o o f. Let S be a fifth-set of J [π]′, that is, a subset such that S, [ζ]S,
[ζ2]S, [ζ3]S, [ζ4]S are mutually disjoint and have J [π]′ as their union. Then
since t1([ζ]u) = ζt1(u), if we set γ =

∏
u∈S t1(u), we have γ5 = δ, so K(δ1/5)

is contained in K(J [π]). Then by Lemmas 4 and 8 and Kummer theory, we
know that

δ = ±ζiεjλkπ1π
3
2β

5,

for some non-zero β ∈ K, where 0 ≤ i, j, k ≤ 4. By Lemma 2, J has
good reduction over L at Λ, so L(δ1/5)/L is unramified at Λ. Comparing
ramification degrees shows that M(δ1/5)/M is also unramified at `. Now if E
is the compositum of two cyclic quintic extensions L = K(21/5) and K(δ1/5),
then E is a Galois extension of K with Galois group Z/5Z×Z/5Z. Therefore
if G is the inertia group in Gal(E/K) of any prime above λ, and EG is its
fixed field, then EG/K is a cyclic quintic extension of K unramified over λ,
and necessarily of the form K((2mδ)1/5) for some 0 ≤ m ≤ 4. Immediately
we see that k = 0. This means that the splitting field of x5 −±ζiεjπ1π

3
22m

over the local field Kλ is unramified. We now follow a standard argument
to find i and j: by (1), ±ζiεjπ1π

3
22m ≡ ±3j2m mod λ, and setting x =

y +±3j2m, we have that the splitting field of

y5 +±3j2m5y4 + 32j22m+15y3 +±33j23m+15y2

+ 34j24m5y +±35j25m −±ζiεjπ1π
3
22m

is unramified over Kλ. Comparing the order of y5 and α = 35j25m −
ζiεjπ1π

3
22m at any prime of K((2mδ)1/5) above λ, we see that since λ |α, we

must have λ5 |α. Taking α mod λ2 shows that i = 0. Then taking α mod λ3

shows j = 0. Hence 24m ≡ π1π
3
2 mod λ5, and δ = ±π1π

3
2β

5, so without loss
of generality, we can absorb the sign into the choice of β and get our result.

P r o o f o f t h e M a i n L a w. Let π and v be non-associate primes of
O which are prime to λ.

C a s e 1: π and ν are both fourth degree primes. In this case π = p∗,
ν = v∗, for some rational primes p and v, both necessarily congruent to
either 2 or 3 mod 5. We note that
(
v

p

)
≡ v(p4−1)/5 ≡ (v(p−1))(p3+p2+p+1)/5 ≡ (1)(p3+p2+p+1)/5 ≡ 1 mod p,
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so by Lemma 2,
(
ν

π

)
=
(
v

p

)
= 1 =

(
p

v

)
=
(
π

ν

)
.

C a s e 2: π or ν is a first or second degree prime. Assume now without
loss of generality that π is a first or second degree prime. We can assume
that either (π2) and (ν1) are distinct, or, if not, reversing the roles of π and
ν, that (ν2) and (π1) are distinct, unless π is second degree and (ν) = (π2).
But then by Lemma 2,

(
π1

π2

)
=
(
π4

π3

)
=
(
π1

π2

)σ4

=
(
π1

π2

)4

,

so
(
π1
π2

)
= 1 =

(
π2
π1

)
. So in what follows we will assume without loss of

generality that (π2) and (ν1) are distinct.
As in the proof of the Proposition, let S be a fifth-set of J [π]′, and

γ =
∏
u∈S t1(u), so that γ5 = δ. Hence if σν is the Frobenius over ν in the

extension K(γ)/K, then by the Proposition,
(
π1π

3
2

ν

)
=
γσν

γ
=

∏
u∈S t1(ν1ν3u)∏
u∈S t1(u)

,

by Lemma 7. Let ψ : O/(π) → J [π] be the map ψ(a) = [a]u, and T =
ψ−1(S). By Gauss’ Lemma (say the version in [K2]) we have

∏
u∈S t1(ν1ν3u)∏
u∈S t1(u)

= ζi ≡
∏
a∈T ν1ν3a∏
a∈T a

≡ (ν1ν3)(N(π)−1)/5 mod π,

so (
π1π

3
2

ν1

)
=
(
ν1ν3

π1

)
.

Now elementary manipulations give us
(
ν1ν3

π1

)
=
(
π1π

3
2

ν1

)
=
(
π1

ν1

)(
π2

ν1

)3

(11)

=
(
π1

ν1

)(
π2

ν1

)σ3

=
(
π1

ν1

)(
π1

ν3

)
=
(
π1

ν1ν3

)
.

C a s e 2(i): ν is a fourth degree prime. Assume that ν = v∗, where v ∈ Z
is a fourth degree prime. Then ν1 and ν3 are both associates of v, and
applying Lemma 1 and (11) we get

(
π1

ν1

)2

=
(
π1

ν1ν3

)
=
(
ν1ν3

π1

)
=
(
ν1

π1

)2

,

so
(
π1
ν1

)
=
(
ν1
π1

)
.
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C a s e 2(ii): ν is a first or second degree prime. With both π and ν first
or second degree primes, we can use (11) symmetrically. From (11) we get

(12)
(
ν1

π1

)(
ν3

π1

)
=
(
ν1ν3

π1

)
=
(
π1π

3
2

ν1

)
=
(
π1π2

ν1

)(
π2

2

ν1

)
.

Now since σ3(π2) = π1, we can apply (11) to (12) with the roles of π and ν
taken by ν1 and π2, and get

(13)
(
π1π2

ν1

)(
π2

ν1

)2

=
(

ν1

π1π2

)(
π2

ν1

)2

=
(
ν1

π1

)(
ν1

π2

)(
π2

ν1

)2

=
(
ν1

π1

)(
ν3

π1

)σ2
(
π2

ν1

)2

=
(
ν1

π1

)(
ν3

π1

)2(
π2

ν1

)2

.

Equating expressions in (12) and (13) and dividing by
(
ν1
π1

)(
ν3
π1

)
gives us

1 =
(
ν3

π1

)(
π2

ν1

)2

=
(
ν3

π1

)((
π1

ν3

)σ2
)2

=
(
ν3

π1

)(
π1

ν3

)4

,

so

(14)
(
ν3

π1

)
=
(
π1

ν3

)
.

Since ν (and hence ν3) was arbitrary, we can replace ν3 in (14) by ν1 to get
our result.

In our proof of the complementary laws, we will let π prime to λ be a
prime of O with a λ-adic expansion

π ≡ 1 + aλ3 + bλ4 + cλ5 mod λ6,

with a, b, c ∈ Z/5Z.

P r o o f o f C o m p l e m e n t a r y L a w (i). It follows easily from the
definition of the power residue symbol that

(
ζ
π

)
= ζ(N(π)−1)/5. To compute

this, we need only compute N(π) mod λ5. But since π ≡ 1 mod λ3 it is
easy to see that mod λ5, N(π) is just 1 + T (aλ3 + bλ4), where T denotes
the trace from K to Q. Since T (1) = 4, T (ζi) = −1 for i = 1, 2, 3, 4, it is
easy to see that T (λ3) = T (λ4) = 5. Hence (N(π) − 1)/5 ≡ a + b mod 5,
and

(
ζ
π

)
= ζa+b.

P r o o f o f C o m p l e m e n t a r y L a w (ii). As in Lemma 10, we let
R ∈ J [5] be any point such that [1− ζ]R = Q. Since f([2]R)5 = ε2, we have

(15)
(
ε2

π

)
=
f([2]R)σπ

f([2]R)
,

where σπ is the Frobenius attached to π in the extension K(J [5])/K. By
Lemma 7, f([2]R)σπ = f([π1π3][2]R). Since R is λ4-torsion, we only have to
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compute [π1π3] mod λ4. Since π1 ≡ 1 + aλ3 mod λ4, it follows readily that
π3 ≡ 1+2aλ3 mod λ4, and hence π1π3 ≡ 1+3aλ3 mod λ4. Since [λ3]R = P ,

f([π1π3][2]R) = f([2]R+ [6a]P ) = f([2]R)ζ12a,

by Lemma 10(b). Hence f([2R])σπ/f([2]R) = ζ2a. Combining this with (15)
gives

(
ε2

π

)
= ζ2a, so

(
ε
π

)
= ζa.

R e m a r k. A different proof of complementary law (ii) can be based on
the second remark following Lemma 10.

P r o o f o f C o m p l e m e n t a r y L a w (iii). As in the Proposition, there
is an m (determined only up to multiples of 5) such that K((2mδ)1/5)/K
is unramified over λ, and such m are determined by the property that
24m ≡ π1π

3
2 mod λ5. Let σλ be the Frobenius attached to λ in the ex-

tension K((2mδ)1/5)/K. Let γ be as in the proof of the Proposition. Then
there is an prolongation τΛ of σλ in the Galois group of L(γ)/K which is
the Frobenius over Λ in the extension L(γ)/L. So we have

(16)
((2mδ)1/5)σλ

(2mδ)1/5
=
γτΛ

γ
=
(±√5

π1

)
,

by Gauss’ Lemma and Lemma 9. Let ((2mδ)1/5)σλ/(2mδ)1/5 = ζj . We will
compute j directly from the definition of the Frobenius. From our λ-adic
expansion of π = π1, we get sequentially

π2 ≡ 1 + 3aλ3 + (b− 2a)λ4 + (a− 2b+ 2c)λ5 mod λ6,

π3
2 ≡ 1− aλ3 + (3b− a)λ4 + (3a− b+ c)λ5 mod λ6,

π1π
3
2 ≡ 1 + (−b− a)λ4 + (3a− b+ 2c)λ5 mod λ6.

Since 24 ≡ 1+2λ4−λ5 mod λ6, we can takem = 2(b+a), and get 24m ≡ π1π
3
2

mod λ5, and

(17) 2−4mπ1π
3
2 ≡ 1 + (2c+ b)λ5 mod λ6.

So let 2−4mπ1π
3
2 = 1 + dλ5, so that by (17), d ≡ 2c + b mod λ. Let α be a

fifth root of 2−4mπ1π
3
2 , so by (16), ζj = ασλ/α. We are trying to compute σλ

in the splitting field of x5− 2−4mπ1π
3
2 . Letting z = (x− 1)/λ, the extension

is generated over K by β = (α− 1)/λ, a root of

(18) z5 + (5/λ)z4 + (10/λ2)z3 + (10/λ3)z2 + (5/λ4)z − d = 0.

Since 5/λ4 ≡ −1 mod λ, we deduce from (18) that mod λ, β5 = β + d, so
σλ is the automorphism that sends β → β + d mod λ. Since β = (α− 1)/λ,
we get

(19)
ζjα− 1

λ
≡ α− 1

λ
+ d mod λ.
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Since 1 ≡ 2−4mπ1π
3
2 ≡ α5 ≡ ασλ ≡ ζjα ≡ α mod λ, (19) gives us

d ≡ ζj − 1
1− ζ ≡ −j mod λ.

Hence

(20)
(√

5
π1

)
= ζ−b−2c.

Since
√

5 = −ζ4ελ2, (20) and the first two complementary laws give us

ζ−b−2c =
(
ζ

π1

)4(
ε

π1

)(
λ

π1

)2

= ζ4a+4b+a
(
λ

π1

)2

,

so (
λ

π1

)
= ζ−c.
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