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Asymptotic behaviour of some infinite products involving

prime numbers
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Hsien-Kuei Hwang (Taipei)

1. Introduction. Given an integer n ≥ 2, let ω(n) denote the number of
distinct prime factors of n in the decomposition of n into prime factors. Let
Q denote the set of square-free positive integers, namely, integers having no
repeated prime factors in their factorizations. The distribution of the values
of the arithmetic function ω(n) has received much attention in the literature
(cf. [15, 16, 7, 6, 17, 13]). In particular, the Sathe–Selberg formulae state
(cf. [16], [17, p. 231]):

(1)
1

x
#{n : 1 ≤ n ≤ x and ω(n) = m}

=
(log log x)m−1

(m − 1)! log x

(
G(r) + O

(
BG m

(log log x)2

))
,

(2)
1

x
#{n : 1 ≤ n ≤ x, n ∈ Q and ω(n) = m}

=
(log log x)m−1

(m − 1)! log x

(
F (r) + O

(
BF m

(log log x)2

))
,

uniformly for 1 ≤ m ≤ M log log x, for any fixed M > 0, where r =
(m − 1)/(log log x), G and F are entire functions defined by

G(z) =
1

Γ (z + 1)

∏

p prime

(
1 +

z

p − 1

)(
1 −

1

p

)z

,(3)

F (z) =
1

Γ (z + 1)

∏

p prime

(
1 +

z

p

)(
1 −

1

p

)z

,(4)

and BG := sup|z|≤M |G′′(z)|, BF being similarly defined. These two func-
tions are related by

zG(z) = F (z − 1)

as can easily be seen.

[339]
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The asymptotic behaviour of these two entire functions is of some inde-
pendent interest. Intuitively, such information sheds new light on the asymp-
totic natures of (1) and (2). Indeed, using Stirling’s formula for 1/Γ (z+1)
and formally differentiating both sides of (8) below with respect to z
leads to

F ′′(z)

F (z)
= (log z)2+2(log z)(log log z)+O(log z) (|z| → ∞, |arg z| ≤ π−ε),

a result that can be rigorously justified by the methods used in this paper.
Let N(x,m) denote the quantity on the left-hand side of (2). Then the
right-hand side of (2) can be further made explicit by (cf. [17, p. 240],
[8, p. 210])

N(x,m)=
(log log x)m−1

(m − 1)! log x
F (r)

(
1−

F ′′(r)(m − 1)

2F (r)(log log x)2
+ smaller order terms

)
.

Thus, as r = (m − 1)/(log log x) → ∞,

F ′′(r)(m − 1)

2F (r)(log log x)2
=

F ′′(r)r

F (r)log log x
∼

r(log r)2

log log x
,

the rightmost term is o(1) if and only if r = o((log log x)/(log log log x)2);
or, equivalently, m = o((log log x)2/(log log log x)2). This suggests that (2)
might still hold for m in this range. The justification of such a formal process
requires, of course, a further argument.

Likewise, we can “guess” the same type of result for the left-hand side
of (1), which is indeed true, as was shown by Hensley [6] (cf. also [7, 13]).

On the other hand, if we let F (z) =
∑

n≥0 αnzn, then the asymptotic
behaviour of αn as n → ∞ is closely related to that of F (z) as z → ∞ by
the formula

αn =
1

2iπ

L
|z|=r

z−n−1F (z) dz (r > 0),

especially when we apply the saddle-point method (cf. [3]).
The aim of this paper is to derive asymptotic expansions of F (z) as

|z| → ∞ and |arg z| < π. Since the asymptotic behaviour of the entire
function 1/Γ (z) is well known, it suffices to consider the series

(5) f(z) :=
∑

p prime

(
log

(
1 +

z

p

)
+ z log

(
1 −

1

p

))
(z 6= −p, p prime).

Let H0 denote a certain truncated Hankel contour around the origin
(counter-clockwise) in the s-plane (see the next section for precise defini-
tion). Throughout this paper, the symbol ε always denotes a small positive
quantity whose value may vary from one occurrence to another. Our main
result is the following.
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Theorem 1. The function f satisfies

(6) −
f(z)

z + 1
=

1

2iπ

\
H0

πzs

(1 + s) sin πs
log(1/s) ds + R(z),

where the error term R satisfies

(7) R(z) ≪ exp

(
−

c log |z|

(log log |z|)2/3(log log log |z|)1/3

)
,

uniformly as |z| → ∞ and |arg z| ≤ π − ε, ε > 0, c > 0 being some absolute

constant. Moreover , R(z) ≪ |z|−1/2+ε under the Riemann hypothesis.

From (6), we deduce the following expansion. The symbol [zn]h(z) rep-
resents the coefficient of zn in the Taylor expansion of h.

Theorem 2. If |z| → ∞ in the region |arg z| ≤ π − ε, ε > 0, then f
satisfies

(8) −
f(z)

z + 1
= log log z − γ +

∑

1≤j<ν

cj(j − 1)!

(log z)j
+ O((log |z|)−ν),

uniformly with respect to z, where ν = 1, 2, . . . , γ is Euler’s constant and

the coefficients cj are defined by

cj := [zj ]
πz

(1 − z) sin πz
(9)

= 2
∑

0≤l≤[j/2]

(−1)l

(2l)!
(1 − 22l−1)B2lπ

2l (j = 0, 1, 2, . . .),

the Bl’s being Bernoulli numbers.

An alternative expression for cj is

(10) cj = j +
(−1)j

2
+

∑

l≥2

(−1)l

lj

(
1

l − 1
−

(−1)j

l + 1

)
(j = 0, 1, 2, . . .),

which is easily obtained by standard expansion of meromorphic functions
and is both exact and asymptotic (as j → ∞). In particular, c0 = c1 = 1,
c2 = c3 = 1+ 1

6
π2, c4 = c5 = 1+ 1

6
π2 + 7

360
π4. Obviously, cj is a polynomial

in π2 of degree [j/2] with positive coefficients.

Two closely related infinite products arise in the distribution of the num-
ber of distinct irreducible factors of a monic polynomial over a finite field
Fq (cf. [1, 19] and [8, Ch. 5]):
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G̃(z) =
∏

k≥1

((
1 +

z

qk − 1

)
e−z/qk

)Ik

,

F̃ (z) =
∏

k≥1

((
1 +

z

qk

)
e−z/qk

)Ik

,

where

(11) I(z) :=
∑

j≥1

Ijz
j =

∑

j≥1

µ(j)

j
log

1

1 − qzj
(|z| < 1/q),

the µ(j) being the Möbius function.

The asymptotic behaviours of log F̃ (z) and log G̃(z) can be treated by
the same approach.

Theorem 3. Let f̃(z) = log F̃ (z), z ∈ C \ (−∞,−q]. Then f̃ satisfies

−
f̃(z)

z
=

1

2iπ

\
H0

πzs

(1 + s) sin πs
log(1/s) ds + Kq − log log q(12)

+ O(|z|−1/2+ε)

= log log z + Kq − γ − log log q +
∑

1≤j<ν

cj(j − 1)!

(log z)j
(13)

+ O((log |z|)−ν),

uniformly as |z| → ∞ in the sector |arg z| ≤ π− ε, where ν = 1, 2, . . . , cj is

as in Theorem 2 and

Kq :=
∑

j≥2

µ(j)

j
log

1

1 − q1−j
.

As to the function G̃, since

log G̃(z) = log F̃ (z) +
∑

j≥1

Ij

(
log

(
1 +

z

qj − 1

)
− log

(
1 +

z

qj

))
,

and the Mellin transform of the last series exists in the strip −1 < ℜs < 0,
we conclude that the asymptotic behaviour of log G̃ is also characterized by
(12) and (13).

While the leading term on the right-hand side of (8) may be derived by
Mertens’s formula (cf. [13, p. 239]), the methods developed here have wide
applications to other entire functions defined via infinite products issuing
from arithmetical functions or combinatorial structures: integers subject to
arithmetical constraints (cf. [14]), arithmetical semigroups under Axiom A#

(cf. [11, 12, 5]), the combinatorial schemes of Flajolet and Soria (cf. [5], [8,
Ch. 5]), “factorisatio numerorum” in arithmetical semigroups (cf. [10]), and
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the combinatorial scheme developed by the author (having an exponential
singularity) (cf. [8, Chs. 6, 9]), etc. Of these, an interesting example is the
random mapping patterns (cf. [5]) in which the integrand in question (when
applying the Mellin inversion formula) has both logarithmic and algebraic
singularities, thus successive terms in the asymptotic expansion are of order
(log z)−j/2 in lieu of (log z)−j .

To avoid technical complications, we content ourselves with the proof
of Theorems 1–3. The infinite products of G̃ and of F̃ (when taking loga-
rithm) are special classes of the so-called harmonic sums (see [4] for a general
introduction and survey).

2. The proof of the theorems

P r o o f o f T h e o r e m 1. Let π(x) =
∑

p≤x 1 denote the number of
primes ≤ x for x ≥ 2 and π(x) = 0 for x < 2. By writing f (defined in (5))
as a Stieltjes integral and by an integration by parts, we have

(14) f(z) = −z(z + 1)

∞\
2−

π(x)

x(x + 1)(x + z)
dx =: −z(z + 1)h(z),

say. Thus h is the Stieltjes transform of the function x 7→ π(x)/(x(x − 1)).
Observe that h can be written in the form

h(z) =

∞\
0

u(x)v

(
z

x

)
dx,

with v(x) = 1/(1 + x) and

u(x) =

{
π(x)

x2(x − 1)
for x ≥ 2,

0 for 0 ≤ x < 2.

Thus the Mellin transform of h satisfies

M [h; s] = M [v; s]M [u; 1 + s],

and h is expressible by the Parseval formula (cf. [20, Ch. 3]):

(15) h(z) =
1

2iπ

σ+i∞\
σ−i∞

z−sM [v; s]M [u; 1 + s] ds

for z 6∈ (−∞, 0], where z−s = exp(−s log z), log having its principal
value, and σ is any real number lying on the common strip of M [v; s] and
M [u; 1 + s]. It remains to find explicit representations for the Mellin trans-
forms of u and of v. Now, from the table of Mellin transforms in [20, p. 193],
we find

M [v; s] =
π

sin πs
(0 < ℜs < 1),
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and the Mellin transform M [u; 1 + s] is easily seen to exist in the half plane
ℜs < 1, since u(x) ≪ x−2(log x)−1 as x → ∞. Substituting these into (15)
and carrying out the change of variables s → −s yields

(16) h(z) =
1

2iπ

−1/2+i∞\
−1/2−i∞

−πzs

sin πs
M [u; 1 − s] ds.

Using the formula (cf. [18, §3.7])

∞\
2

π(x)

x(xs − 1)
dx =

log ζ(s)

s
(ℜs > 1),

ζ being Riemann’s zeta function, we have

M [u; 1 − s] =

∞\
2

π(x)

xs+2(x − 1)
dx =

log ζ(s + 2)

s + 2
+ ̟(s + 2),

for ℜs > −1, where

(17) ̟(s) =

∞\
2

(xs − x)π(x)

xs+1(xs − 1)(x − 1)
dx,

is regular and bounded for ℜs ≥ 1/2 + ε and satisfies ̟(1) = 0. Thus

(18) h(z) = I1 + I2,

where

I1 =
1

2iπ

−1/2+i∞\
−1/2−i∞

−πzs

(s + 2) sin πs
log ζ(s + 2) ds,

I2 =
1

2iπ

−1/2+i∞\
−1/2−i∞

−πzs

(s + 2) sin πs
̟(s + 2) ds.

The integrand of I2 having a removable singularity at s = −1, it follows, by
(17) and the absolute convergence of the integral, that

(19) |I2| ≪ |z|−3/2+ε (ε > 0).

To evaluate the integral I1, we use the following zero-free region for ζ(s+2)
(cf. [9]):

σ ≥ −1 −
c

(log |t|)2/3(log log |t|)1/3
(s = σ + it, |t| ≥ t0 > ee, c > 0),

in which log ζ(s + 2) satisfies the estimate

(20) log ζ(σ + 2 + it) ≪ (log |t|)2/3(log log |t|)1/3.
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We now take a large positive number T > t0 and a small quantity 0<δ<1/2
and set

a = −1 + (log |z|)−1 and b = −1 − c(log T )−2/3(log log T )−1/3.

Move the line of integration of I2 to the contour C shown in Figure 1. The
integration contour C consists of 7 parts described as follows:

C1 = (a−i∞, a−iT ], C2 = [a−iT, b−iT ], C3 = {s : s = b+it;−T ≤ t≤−δ},

H−1 = H−1(T, δ)

= [b − iδ,−1 − iδ] ∪ {s : s = δeiθ,−π/2 ≤ θ ≤ π/2} ∪ [−1 + iδ, b + iδ],

C4 = {s : s = b+it; δ ≤ t ≤ T}, C5 = [b+iT, a+iT ], C6 = [a+iT, a+i∞).

Fig 1. The contour C

For convenience, let Jk denote the integral

Jk :=
1

2iπ

\
Ck

−πzs

(s + 2) sin πs
log ζ(s + 2) ds

for k = 1, 2, . . . , 6.
From (20) and the bound

−πzσ+it

sin π(σ + it)
≪ |z|σe−(π+θz)|t| (−π + ε ≤ θz = arg z ≤ π − ε),

we deduce the following estimates:
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J1 + J6 =
1

2π

\
|t|≥T

−πza+it

(a + 2 + it) sin π(a + it)
log ζ(a + 2 + it) dt

≪ |z|ae−(π+θz)T ,

J2 + J5 ≪
|z|a

log |z|
e−(π+θz)T ,

J3 + J4 =
1

2π

\
δ≤|t|≤T

−πzb+it

(b + 2 + it) sin π(b + it)
log ζ(b + 2 + it) dt ≪ |z|b.

Thus, letting

JH =
1

2iπ

\
H−1

−πzs

(s + 2) sin πs
log ζ(s + 2) ds,

we have

(21) I1 = JH + R0(z),

where

R0(z) ≪ |z|ae−(π+θz)T + |z|b ≪ |z|−1e−(π+θz)T + |z|b.

Taking

T =
c log |z|

(π + θz)(log log |z|)2/3(log log log |z|)1/3
,

so as to balance the two error terms of R0, we obtain the estimate (compare
(7))

(22) R0(z) ≪ |z|−1 exp

(
−

c log |z|

(log log |z|)2/3(log log log |z|)1/3

)
.

It remains to evaluate the integral JH which can be decomposed into
two parts:

JH =
1

2iπ

\
H−1

−πzs

(s + 2) sin πs
log(1/(s + 1)) ds

+
1

2iπ

\
H−1

−πzs

(s + 2) sin πs
log((s + 1)ζ(s + 2)) ds,

where the integrand of the second integral is regular on the path of the
integration and single-valued along the cut; it is therefore regular inside the
contour H−1. By Cauchy’s theorem,

(23)
1

2iπ

\
H−1

−πzs

(s + 2) sin πs
log((s + 1)ζ(s + 2)) ds ≪ |z|b,

which is of the same order as R0(z).
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Collecting the above results we obtain (6) by (14), (16), (18), (19), (21)–
(23) and

1

2iπ

\
H−1

−πzs

(s + 2) sin πs
log(1/(s + 1)) ds =

1

2iπ

\
H0

πzs−1

(s + 1) sin πs
log(1/s) ds,

H0 being the translated contour of H−1 from −1 to the origin.
Finally, from the above proof, it is obvious that R0(z) ≪ |z|−3/2+ε under

the Riemann hypothesis (cf. [18, Ch. XIV]); or, equivalently, the error term
R(z) in (6) satisfies R(z) ≪ |z|−1/2+ε.

This completes the proof of Theorem 1.

P r o o f o f T h e o r e m 2. To evaluate the asymptotic behaviour of the
integral

J :=
1

2iπ

\
H0

πzs

(s + 1) sin πs
log(1/s) ds

as |z| → ∞ in the sector |arg z| ≤ π−ε, we start from the Laurent expansion
(cf. (9))

π

(1 + s) sinπs
=

1

s
+

∑

1≤j<ν

(−1)jcjs
j−1 + ̺ν(s) (s 6= 0, |s| < 1),

for any ν = 1, 2, . . . , where ̺ν is analytic in the unit circle and satisfies
̺ν(s) ≪ |s|ν−1 there. Substituting this expansion into J yields

J =
1

2iπ

\
H0

zs

s
log(1/s) ds +

∑

1≤j<ν

(−1)jcj
1

2iπ

\
H0

sj−1zs log(1/s) ds + Yν(z),

where

Yν(z) =
1

2iπ

\
H0

̺ν(s)zs log(1/s) ds (ν = 1, 2, . . .).

By Hankel’s representation of the entire function 1/Γ (s) (cf. [17, p. 205])
and by extending the integration contour H0 to −∞ ± iδ, we deduce, for
any fixed α ∈ R,

1

2iπ

\
H0

zs

sα
log(1/s) ds = (log z)α−1

(
log log z

Γ (α)
+

Γ ′(α)

Γ (α)2

)
+ O(|z|b+1).

Using the relations (cf. [2, p. 15]) Γ ′(1) = −γ and (cf. [2, p. 46])

Γ ′(−k)

Γ 2(−k)
= (−1)k−1k! (k = 0, 1, 2, . . .),

we obtain

J = log log z − γ +
∑

1≤j<ν

cj(j − 1)!

(log z)j
+ O

(
|z|b+1

∑

1≤j<ν

cj(j − 1)!
)

+ Yν(z).
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Now, by (10), cj ≪ j, it follows that

|z|b+1
∑

1≤j<ν

cj(j − 1)! ≪ ν! |z|b+1 ≪ |z|b+1 ≍ |R(z)|,

and it remains to estimate Yν for which the change of variables w = s log z
gives

Yν(z) =
1

2iπ

\
H′

0

̺ν

(
w

log z

)
ew(log log z − log w)

dw

log z
,

where H′
0 is the transformed contour of H0. The function ̺ν being regular

in the unit circle, we deduce

1

2iπ

\
H′

0

̺ν

(
w

log z

)
ewdw ≪ |z|b+1.

Now take δ = (log |z|)−1. By the definition of H0 and the estimate ̺ν(s) ≪
|s|ν−1, we obtain

−1

2iπ

\
H′

0

̺ν

(
w

log z

)
ew log w

log z
dw

≪

|1+b|log |z|\
0

|− σ + iδ|ν−1

(log |z|)ν
e−σ |log(σ2 + δ2)|dσ + δν

≪ (log |z|)−ν .

Finally, (9) follows from the expansion (cf. [2, Eq. (5), p. 51])

z

sin z
= 2

∑

j≥0

(−1)j B2j

(2j)!
(1 − 22j−1)z2j (|z| < π).

This completes the proof.

P r o o f o f T h e o r e m 3 (sketch). By definition,

f̃(z) =
∑

k≥1

Ik

(
log

(
1 +

z

qk

)
−

z

qk

)
,

the right-hand side is a harmonic sum (cf. [4]) and its Mellin transform (cf.
[20, p. 193]) is given by

M [f̃ ; s] =
π

s sinπs
I(qs) (−2 < ℜs < −1).
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Thus

f̃(z) =
1

2iπ

−3/2+i∞\
−3/2−i∞

πz−s

s sinπs
I(qs) ds.

Using the expansion (cf. (11))

I(qs) = log
1

1 − q1+s
+ Kq + O(|1 + s|) (s ∼ −1),

and proceeding along the same lines as above (with much simpler analysis),
we deduce the estimates (12) and (13).
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[17] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres,
Institut Elie Cartan, Université de Nancy I, Nancy, 1990.
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