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1. Introduction. For any x ≥ 1, let Fx = F[x] denote the sequence of
all irreducible fractions with denominator ≤ x, arranged in increasing order
of magnitude:

Fx = {%ν = bν/cν | 0 < bν ≤ cν ≤ x, (bν , cν) = 1}
(%1 = 1/[x], %Φ(x)−1 = 1− 1/[x]),

called the Farey series (sequence) of order x. As points on the unit interval,
they are placed symmetrically with respect to the midpoint 1/2.

It is convenient to supplement %0 = 0/1 = b0/c0 to Fx to form F ′x because
it is then easy to construct F ′x+1 from F ′x by just inserting all mediants
(bν + bν+1)/(cν + cν+1) of successive terms bν/cν , bν+1/cν+1 in F ′x between
them as long as cν + cν+1 ≤ x+ 1. E.g. from F ′2 = {0/1, 1/2, 1/1} we form
F ′3 = {0/1, 1/3, 1/2, 2/3, 1/1}. The number of terms in the Farey series of
order x is

#Fx = Φ(x) :=
∑

n≤x
ϕ(n) =

3
π2x

2 +O(x log x).

Here, ϕ(n) stands for the Euler function
∑
m≤n, (m,n)=1 1, the number of

integers ≤ n that are relatively prime to n, and is equal to the number of
terms in Fx whose denominator is n.

We put

δν = %ν − ν

Φ(x)
, ν = 0, . . . , Φ(x).

Hence
δΦ(x) = δ0 = 0, δ1 = 1/[x]− 1/Φ(x) etc.

The celebrated Riemann hypothesis (abbreviated as the RH hereafter)
to the effect that all nontrivial zeros of the Riemann zeta-function ζ(s) (s =
σ + it) lie on the critical line σ = 1/2 has been the driving force of the
developments of modern mathematics in general and of prime number theory

[351]
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in particular, and it is formulated in a number of ways. Let µ(n) denote the
Möbius function and let M(x) denote its summatory function:

M(x) =
∑

n≤x
µ(n).

Then the RH is equivalent to the estimate

(1) M(x) = O(x1/2+ε) for every ε > 0.

In the sequel ε will always be used in this context and the proviso “for every
ε > 0” will not be repeated. Another form which will be used in Section 5
is in terms of Chebyshev’s function

ψ(x) =
∑

n≤x
Λ(n) =

∑

pm≤x
log p,

with Λ(n) denoting the von Mangoldt function

Λ(n) =
{

log p, n = pm,
0, otherwise.

The RH is equivalent to the estimate

(2) ψ(x) = x+O(x1/2+ε).

There are many other conditions equivalent to the RH (cf. Kano [8]).
It has long been known that there is a close connection between the distri-
bution of Farey points and the RH, notably in view of the classical Franel
identity (Theorem 3 below) obtained first by Franel [3] and expounded then
by Landau [11], [12]. More recently there have appeared some other types
of results revealing the connection between Farey points and the RH, e.g.
power moments results in Corollary 2 to Proposition 1 due to Kopriva [9],
[10], Mikolás [14], [15] and Zulauf [21], which are, however, merely very
special cases of Mikolás’s general theorem for polynomials of degree ≤ 3
([14], Theorem 5). Huxley [6] has generalized Franel’s theorem to the case
of Dirichlet L-functions and Fujii [4], [5] has obtained another equivalent
condition to the RH in terms of Farey series. All the papers mentioned
above are concerned with conditions equivalent to the RH in terms of Farey
series.

On the other hand, Codecà [1] and Codecà and Perelli [2] have considered
the problem of estimating the error Ef (x) to be defined below under the
(weaker) RH.

That the Farey sequence is uniformly distributed mod 1 is easily seen
in Mikolás [14], p. 99 as follows. Arrange all Farey fractions in the order
of appearance in Fx to form the Farey sequence {xn}. Suppose the nth
term lies in Fx+1 − Fx. Then n = Φ(x) + O(x). On the other hand, the
number An(a, b) of terms among x1, . . . , xn that lie in a given subinterval
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[a, b] ⊂ [0, 1] is, by Corollary to Lemma 3,

An(a, b) = (b− a)Φ(x) +O(x log x) ∼ (b− a)n, x→∞.
Hence, by Weyl’s criterion, for every Riemann integrable function f on

(0, 1), we have

lim
x→∞

1
Φ(x)

Φ(x)∑
ν=1

f(%ν) =
1\
0

f(t) dt =: A,

so that the problem of estimating the error

Ef (x) :=
Φ(x)∑
ν=1

f(%ν)−AΦ(x),

or more generally, with 0 < ξ ≤ 1, estimating the short interval error

Ef (ξ, x) :=
∑

%ν≤ξ
f(%ν)− Φ(x)

ξ\
0

f(t) dt (Ef (1, x) = Ef (x))

would be interesting, and it would be all the more so if we could formulate
the RH in terms of Ef (x) for a wide class of functions f because then there
might be some hope to find means independent of the RH to estimate Ef (x)
directly, thereby providing a possible approach to the RH.

Our main objective is to find equivalent conditions to the RH for a rather
wide class of functions, i.e. Kubert functions (for these cf. §5), as well as some
unexpected results for short intervals. From the point of view of the parity of
Kubert functions, the meaning of formulas (3) and (i) and (ii) in Corollary 2
to Proposition 1 is rendered very visible. Indeed, formula (3) is the sum of
the odd part fodd(x) := 1

2{f(x) − f(1 − x)} of the logarithmic function
log(1 − e2πix) over the whole range (cf. the formula in (i1) in Corollary to
Proposition 3), which is therefore trivial on account of the general formula
(cf. Mikolás [14], p. 108 in this regard)

2
Φ(x)−1∑
ν=1

fodd(%ν) =
Φ(x)−1∑
ν=1

{f(%ν)− f(1− %ν)} = 0,

while for the even part of f (f even(x) := 1
2{f(x) + f(1− x)})

2
∑

%ν≤1/2

f even(%ν) =
∑

%ν≤1/2

{f(%ν) + f(1− %ν)} =
Φ(x)−1∑
ν=1

f(%ν) + f(1/2).

Hence, for even f , the sum over the whole interval amounts to the sum over
1
2 -interval (%ν ≤ 1/2), whilst for odd f , only half (or shorter) interval results
are significant, in which regard Zulauf’s 1

2 -interval (%ν ≤ 1/2) result [21] in
Corollary 1 to Theorem 1 is noteworthy, but somehow natural because it
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may be that the half-interval still represents the distribution of Farey points
on the whole unit interval.

However, as the first aim in this paper we proceed still further and es-
tablish 1

3 -, 1
4 -results (Corollaries 2 and 3 to Theorem 1), which seem rather

remarkable in that in shorter intervals the Farey points still have some rel-
evance to the RH.

The second objective is to obtain conditions equivalent to the RH for
Kubert functions. Thus, we significantly extend the class of functions in
terms of which we can formulate conditions equivalent to the RH compared
to that considered by Mikolás [14]. From this standpoint, formula (i) in
Corollary 2 to Proposition 1 is nothing but the first formula (even part of
`2(x)) in Corollary 2 to Theorem 2. In fact, we have

Φ(x)∑
ν=1

B2(%ν) =
Φ(x)∑
ν=1

(
%2
ν −

1
3

)
−B1.

Likewise, formula (ii) in Corollary 2 to Proposition 1 readily follows from
Corollary 1(i) to Proposition 3:

Φ(x)∑
ν=1

(
%3
ν −

1
4

)
=

Φ(x)∑
ν=1

B3(%ν) +
3
2

Φ(x)∑
ν=1

B2(%ν) +
Φ(x)∑
ν=1

B1(%ν)

=
3
2
B2S(x) +

1
2
.

Finally, we will show that the well-known Franel formula has its origin
in the three-term relation for the generalized Dedekind sums.

Other conditions equivalent to the RH in the spirit of Mikolás [15] and
Mikolás–Sato [16] have been obtained by the second-named author and are
being prepared for publication.

We summarize our main contributions:

(i) Each of the estimates

∑

%ν≤1/3

(
%ν − h(1/3)

2Φ(x)

)
= O(x1/2+ε),

∑

%ν≤1/4

(
%ν − h(1/4)

2Φ(x)

)
= O(x1/2+ε)

is equivalent to the RH.
(ii) For σ ≥ 3/2 and any extended even Kubert function f ∈ Ks, the

estimate
Φ(x)∑
ν=1

f(%ν) = O(x1/2+ε)

is equivalent to the RH.
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(iii) Franel’s formula

Φ(x)∑
ν=1

δ2
ν =

1
12Φ(x)

( ∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)2

mn
− 1
)

is essentially a consequence of the three-term relation for the generalized
Dedekind sums.

Acknowledgements. The authors would like to thank Prof. Dr.
R. Sczech of Kyushu University and Rutgers University for enlightening
discussions about Dedekind sums.

2. Preliminaries

Lemma 1 (Ishibashi and Kanemitsu [7], Lemma 3). For any u ∈ N∪{0}
and any x→∞, let Lu(x) :=

∑
n≤x n

u. Then

Lu(x) =
1

u+ 1

u+1∑
r=0

(−1)r
(
u+ 1
r

)
Br(x)xu+1−r + ζ(−u),

where Br(x) = Br({x}) with Br(x) and {x} denoting the rth Bernoulli
polynomial and the fractional part of x, respectively.

Definition 1. For any s = σ + it ∈ C define

Ss(x) :=
∑

n≤x
(µ ∗N−s)(n) =

∑

n≤x
M

(
x

n

)
1
ns
,

where N−s(n) = n−s and ∗ means the Dirichlet convolution:

(f ∗ g)(n) =
∑

d|n
f(d)g

(
n

d

)
=
∑

dδ≤n
f(d)g(δ).

We make good use of the particular sum

S(x) := S1(x) =
∑

n≤x
M

(
x

n

)
1
n

subsequently.

Lemma 2 (Mikolás [14], Lemma 7). For each s with Re s ≥ 1/2, the
estimate Ss(x) = O(x1/2+ε) is equivalent to the RH.

P r o o f. For Re z > 1, the generating Dirichlet series for µ and N−s are
∞∑
n=1

µ(n)n−z = ζ(z)−1,

∞∑
n=1

N−s(n)n−z = ζ(z + s)
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respectively. Hence
∞∑
n=1

(µ ∗N−s)(n)n−z = ζ(z + s)ζ(z)−1.

By partial summation we have

ζ(z + s)
ζ(z)

= z

∞\
1

Ss(x)
xz+1 dx.

If Ss(x) = O(x1/2+ε), then the integral is absolutely and uniformly conver-
gent for Re z > 1/2, and so it represents an analytic function for Re z > 1/2.
And so is ζ(z+s)/ζ(z), implying that ζ(z) has no zeros for Re z > 1/2, which
amounts to the RH.

From the RH in the form of (1) we immediately deduce the estimate for
Ss(x), thereby completing the proof.

Lemma 3 (Generalization of Lemma 4 of Mikolás [14] and of Lemma 2 of
Zulauf [21]). Let 0 < ξ ≤ 1 and let f(t) be defined at the points m/n ((m,n)
= 1, m ≤ n ≤ x). Then

h(ξ, f) :=
∑

%ν≤ξ
f(%ν) =

∑

n≤x
(µ ∗ Vξ)(n) =

∑

n≤x
M

(
x

n

)
Vξ(n),

where Vξ(n) :=
∑
k≤nξ f(k/n).

P r o o f. The proof runs along similar lines to those of Mikolás and Zulauf:

h(ξ, f) =
∑

n≤x

∑

m/n≤ξ
(m,n)=1

f

(
m

n

)
=
∑

n≤x

∑

m/n≤ξ
f

(
m

n

) ∑

d|(m,n)

µ(d)

=
∑

n≤x

∑

d|n
µ(d)

∑

m/n≤ξ
d|m

f

(
m

n

)

=
∑

dδ≤x
µ(d)

∑

m′/δ≤ξ
f

(
m′

δ

)

(on writing n = dδ, m = dm′ in the innermost sum)

=
∑

dδ≤x
µ(n)Vξ(δ) =

∑

n≤x
(µ ∗ Vξ)(n),

which completes the proof.

Corollary.

h(ξ) :=
∑

%ν≤ξ
1 =

∑

n≤x
M

(
x

n

)
[nξ].
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We note the following identities which are immediate consequences of
Lemma 3 and will be utilized very often without further mentioning:

S−1(x) =
∑

n≤x
M

(
x

n

)
n = Φ(x), S0(x) =

∑

n≤x
M

(
x

n

)
= 1.

3. Power moments

Proposition 1. For every k ∈ N ∪ {0} and 0 < ξ ≤ 1,
∑

%ν≤ξ
%kν =

1
k + 1

ξk+1Φ(x)

+
1

k + 1

k∑
r=1

(−1)r
(
k + 1
r

)
ξk+1−r∑

n≤x
M

(
x

n

)
1

nr−1Br(nξ)

+
(−1)k+1

k + 1

∑

n≤x
M

(
x

n

)
1
nk
Bk+1(nξ) + ζ(−k)Sk(x).

In particular ,

h(ξ) =
∑

%ν≤ξ
1 = ξΦ(x)−

∑

n≤x
M

(
x

n

)
{nξ}.

P r o o f. Since, by Lemma 3,

∑

%ν≤ξ
%kν =

∑

n≤x
M

(
x

n

) ∑

m≤nξ

(
m

n

)k
=
∑

n≤x
M

(
x

n

)
1
nk
Lk(nξ),

the assertion follows on substituting for Lk(nξ) from Lemma 1 and separat-
ing the terms with r = 0 and r = k + 1.

R e m a r k 1. Codecà [1] proves that for irrational ξ of infinite type, the
infimum of ξ such that E1(ξ, x) := h(ξ)− ξΦ(x) = O(xβ) is equal to 1 and
that if ξ 6= 1/2 is rational, then under the RH and the Lindelöf hypothesis
for some Dirichlet L-functions, one has E1(ξ, x) = O(x1/2+ε).

Corollary 1. For every k ∈ N ∪ {0},
Φ(x)∑
ν=1

(
%kν −

1
k + 1

)
=

1
k + 1

k∑
r=1

(−1)r
(
k + 1
r

)
BrSr−1(x).

This is because the 3rd and the 4th terms cancel each other in view of

(−1)k+1 Bk
k + 1

+ ζ(−k) = 0.
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In particular, for k = 0, this just says
∑Φ(x)
ν=1 1 = Φ(x), and for k = 1,

(3)
Φ(x)∑
ν=1

(
%ν − 1

2

)
=

1
2
.

Corollary 2 (Kopriva, Mikolás, Zulauf). Each of the following asser-
tions is equivalent to the Riemann hypothesis:

(i)
Φ(x)∑
ν=1

(
%2
ν −

1
3

)
= O(x1/2+ε),

(ii)
Φ(x)∑
ν=1

(
%3
ν −

1
4

)
= O(x1/2+ε).

P r o o f. From Corollary 1 to Proposition 1 we immediately deduce

(4)
Φ(x)∑
ν=1

(
%2
ν −

1
3

)
=

1
2

+
1
6
S(x),

and
Φ(x)∑
ν=1

(
%3
ν −

1
4

)
=

1
2

+
1
4
S(x),

which prove respectively (i) and (ii) on the basis of Lemma 2.

4. Short interval results

Proposition 2. For any 0 < ξ ≤ 1 we have
∑

%ν≤ξ

(
%ν − h(ξ)

2Φ(x)

)
=

1
2
Φ(x)ξ2 − h(ξ)2

2Φ(x)
− ξ

∑

n≤x
M

(
x

n

)
B1(nξ)

+
1
2

∑

n≤x
M

(
x

n

)
1
n
B2(nξ)− 1

12
S(x),

where h(ξ) = h(ξ, x) counts the number of %ν ’s ≤ ξ as in Corollary to
Lemma 3.

P r o o f. This is nothing but Proposition 1 with k = 1, which reads
∑

%ν≤ξ
%ν =

1
2
Φ(x)ξ2 − ξ

∑

n≤x
M

(
x

n

)
B1(nξ)(5)

+
1
2

∑

n≤x
M

(
x

n

)
1
n
B2(nξ)− 1

12
S(x).

Subtracting
∑
%ν≤ξ h(ξ)/(2Φ(x)) from the left-hand side has the effect of

placing the second term on the right-hand side of the above formula.
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Lemma 4. (i) Define the odd part of Ss(x) by

Sodd
s (x) =

∑

n≤x
2 -n

M

(
x

n

)
1
ns
,

which we abbreviate as
∑

2 -nM
(
x
n

)
1
ns . Then

Sodd
s (x) = Ss(x)− 1

2s
Ss

(
x

2

)
.

(ii) (Telescoping series) For any 0 < c ≤ 1 and 1 < N ∈ N we have

Ss(x) =
∞∑
r=0

(∓c)r
(
Ss

(
x

Nr

)
± cSs

(
x

Nr+1

))
,

Snondiv
s (x) =

∞∑
r=0

(∓c)r
(
Snondiv
s

(
x

Nr

)
± cSnondiv

s

(
x

Nr+1

))
,

so that for β > 0 any of the estimates of the form

Snondiv
s (x) := Ss(x)− 1

Ns
Ss

(
x

N

)
= O(xβ),

Snondiv
s (x)± cSnondiv

s

(
x

N

)
= O(xβ)

is equivalent to the estimate Ss(x) = O(xβ).
(iii) Similar results hold for Chebyshev’s function ψ: The estimate

ψodd(x) := ψ(x)− 1
2
ψ

(
x

2

)
= O(xβ)

is equivalent to the estimate ψ(x) = O(xβ).

P r o o f. (i) follows on observing, after dividing Ss(x) into the even and
odd parts, that the even part is 1

2Ss(x/2).
(ii) The first formula is clear. Notice that it is a finite sum with

[log x/ logN ] = O(log x) terms. This last remark shows that the estimate
Ss(x)± cSs(x/N) = O(xβ) implies the estimate Ss(x) = O(xβ) since there
are O(log x) terms of order O(xβ), the reverse implication being trivial.
Similarly for Sodd

s (x). The proof of (iii) is similar to that of (ii).

Theorem 1. We have
∑

%ν≤ξ

(
%ν − h(ξ)

2Φ(x)

)
=

1
2
T (ξ, x) +O(1),

where

T (ξ, x) =
∑

n≤x
M

(
x

n

)
1
n
{nξ}({nξ} − 1).
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P r o o f. From Corollary to Lemma 3 we have, on using Lemma 3 of
Niederreiter [18],

h(ξ)2

2Φ(x)
=

1
2Φ(x)

(
ξ2Φ(x)2 − 2ξΦ(x)

∑

n≤x
M

(
x

n

)(
B1(nξ) +

1
2

))

+O

(
1
x2

(∑

n≤x

∣∣∣∣M
(
x

n

)∣∣∣∣
)2)

=
1
2
Φ(x)ξ2 − ξ

∑

n≤x
M

(
x

n

)
B1(nξ) +O(1).

Substituting this in the formula of Proposition 2 and putting together
the last two terms, we get the assertion.

R e m a r k 2. (i) Regarding the error term O(1) in the formula of Theo-
rem 1 we note the following. As a function of ξ it can be explicitly written
as

ξ

2
− 1

2Φ(x)
E1(ξ, x)2,

where E1(ξ, x) = h(ξ)− ξΦ(x) is the short interval error stated in Section 1
(with f(t) ≡ 1). Theorem 2 of Codecà [1] asserts that under the RH and the
Lindelöf hypothesis for certain Dirichlet L-functions, one has

E1(ξ, x) = O(x1/2+ε) or O(1) according as ξ 6= 1/2 or ξ = 1/2.

This seems to suggest that the error term cannot probably be replaced by
o(1).

(ii) From the identity

∑

%ν≤ξ
ν =

h(ξ)∑
ν=1

ν =
h(ξ)(h(ξ) + 1)

2
=

1
2
h(ξ) +

∑

%ν≤ξ

h(ξ)
2
,

it follows that
∑

%ν≤ξ
δν :=

∑

%ν≤ξ

(
%ν − ν

Φ(x)

)
=
∑

%ν≤ξ

(
%ν − h(ξ)

2Φ(x)

)
− h(ξ)

2Φ(x)

=
∑

%ν≤ξ

(
%ν − h(ξ)

2Φ(x)

)
+O(1).

Hence the statement

max
0<ξ≤1

∣∣∣∣
∑

%ν≤ξ

(
%ν − h(ξ)

2Φ(x)

)∣∣∣∣ = O(x1/2+ε)
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is, via Landau’s theorem to the effect that

max
0<ξ≤1

∣∣∣
∑

%ν≤ξ
δν

∣∣∣ = O(x1/2+ε),

equivalent to the RH.

However, we can give the following stronger statements (i.e. with weaker
conditions) for short intervals.

Corollary 1 (Zulauf). We have
∑

%ν≤1/2

(
%ν − h(1/2)

2Φ(x)

)
= −1

8
Sodd(x) +O(1),

Sodd(x) = Sodd
1 (x) = S(x)− 1

2
S

(
x

2

)

and hence the estimate
∑

%ν≤1/2

(
%ν − 1

4

)
= O(x1/2+ε)

is equivalent to the Riemann hypothesis.

P r o o f. It suffices to compute the sum

T

(
1
2
, x

)
=
∑

n≤x
M

(
x

n

)
1
n

{
n

2

}({
n

2

}
− 1
)
,

which is easily done: Divide it into even and odd parts, and then notice
that the even part is 0, while the odd part is − 1

4S
odd
1 (x), which is given in

Lemma 4, thereby proving the first formula. Since in F ′x the terms %ν and
1 − %ν are placed symmetrically with regard to 1/2 and they are Φ(x) in
number, we derive that h(1/2) = 1

2Φ(x), which completes the proof.

R e m a r k 3. The formula of Theorem 1 seems to be the proper formu-
lation of a condition equivalent to the RH in terms of a short interval sum
of %ν ’s themselves since it gives not only a conceptually much simpler proof
of Zulauf’s theorem but also gives another short interval result:

Corollary 2. We have
∑

%ν≤1/3

(
%ν − h(1/3)

2Φ(x)

)
= −2

9

(
S(x)− 1

3
S

(
x

3

))
+O(1),

so that the estimate
∑

%ν≤1/3

(
%ν − h(1/3)

2Φ(x)

)
= O(x1/2+ε)

is equivalent to the RH.
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P r o o f. To prove the first formula, divide the sum

T

(
1
3
, x

)
=
∑

n≤x
M

(
x

n

)
1
n

{
n

3

}({
n

3

}
− 1
)

into three parts according to the residue classes modulo 3 to obtain

T

(
1
3
, x

)
= −2

9

∑

n6≡0 (mod 3)

M

(
x

n

)
1
n
.

Applying the same argument to S(x) we find that

∑

n 6≡0 (mod 3)

M

(
x

n

)
1
n

= S(x)− 1
3
S

(
x

3

)
,

which is an analogue of Lemma 3 in the case of modulo 3. This proves the
first formula.

The second formula follows from the first and Lemma 3(ii) with N = 3,
c = 1.

Corollary 3. We have
∑

%ν≤1/4

(
%ν − h(1/4)

2Φ(x)

)
= − 3

16

(
Sodd(x) +

2
3
Sodd

(
x

2

))
+O(1),

so that the estimate
∑

%ν≤1/4

(
%ν − h(1/4)

2Φ(x)

)
= O(x1/2+ε)

is equivalent to the RH.

P r o o f. Dividing into residue classes mod 4, we get

T

(
1
4
, x

)
= − 3

16

( ∑

n≡1 (mod 4)

+
∑

n≡3 (mod 4)

)

− 1
4

∑

2m−1≤x/2
M

(
x/2

2m− 1

)
1

2(2m− 1)

= − 3
16
Sodd(x)− 1

8
Sodd

(
x

2

)
,

implying the first formula.
The second formula follows if we apply Lemma 4(ii) with N = 2, c = 2/3.

R e m a r k 4. In Corollaries 2 and 3, the behavior of h(ξ) is more delicate
than in Corollary 1.
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(i) We have on the one hand,

h

(
1
3

)
=

1
3
Φ(x)−

∑

n≡1,2 (mod 3)

M

(
x

n

){
n

3

}

=
1
3
Φ(x)− 1

3

∑

n≡1 (mod 3)

M

(
x

n

)
− 2

3

∑

n≡2 (mod 3)

M

(
x

n

)
,

while on the other hand,

1 = S0(x) = S0

(
x

3

)
+

∑

n≡1,2 (mod 3)

M

(
x

n

)
= 1 +

∑

n≡1,2 (mod 3)

M

(
x

n

)
,

so that
∑

n≡1,2 (mod 3)

M

(
x

n

)
= 0.

This implies that

h

(
1
3

)
=

1
3
Φ(x)− 1

3

∑

n≡2 (mod 3)

M

(
x

n

)
.

We do not know how to treat the second term, and this leaves a subtle
ingredient in that if we just subtract the number 1/3, we could not get any
result.

(ii) Similarly,

h

(
1
4

)
=

1
4
Φ(x)− 1

2
Sodd

0

(
x

2

)
− 1

4

∑

n≡1 (mod 4)

M

(
x

n

)

− 3
4

∑

n≡3 (mod 4)

M

(
x

n

)
,

and
∑

n≡1,3 (mod 4)

M

(
x

n

)
= 0,

since Sodd
0 (x/2) = 0. Thus it follows that

h

(
1
4

)
=

1
4
Φ(x)− 1

2

∑

n≡3 (mod 4)

M

(
x

n

)
.

5. Kubert functions

Definition 2. For a fixed complex number s, let Ks denote the complex
vector space of all continuous functions f : (0, 1)→ C satisfying the Kubert



364 S. Kanemitsu and M. Yoshimoto

identity

(∗s) f(x) = ms−1
m−1∑

k=0

f

(
x+ k

m

)

for every m ∈ N and every x ∈ (0, 1).

Lemma 5 (Milnor [17], Theorem 1). We have dimCKs = 2 and Ks
is spanned by one even element (f(1 − x) = f(x)) and one odd element
(f(1− x) = −f(x)). For s 6= −1,−2, . . . the space Ks is spanned by two lin-
early independent functions `s(x) and `s(1− x), the polylogarithms of com-
plex exponential argument `s(x) =

∑∞
n=1 e

2πinx/ns, σ > 1, x ∈ R (also for
Imx > 0, s ∈ C), while for s 6= 0, 1, 2, . . . , Ks is spanned by two linearly in-
dependent functions ζ1−s(x) and ζ1−s(1−x), with the Hurwitz zeta-function
ζs(x) =

∑∞
n=0 1/(n+ x)s (σ > 1).

Lemma 6 (Milnor [17], Lemma 7). If a function f : (0, 1) → C satis-
fies the Kubert identities (∗s) with s 6= 1, then by choosing f(0) appropri-
ately , it extends uniquely to a function f : R/Z → C satisfying (∗s). In
particular , if f ∈ Ks with σ > 1, then the extension is also continuous;
for f(x) = `s(x) (σ > 1) the appropriate choice is f(0) = ζ(s), while for
f(x) = ζ1−s(x) (σ < 0), it is f(0) = ζ(1− s).

For the polylogarithm function see also Lewin [13] and Yamamoto [20].

Proposition 3. (i) For every n ∈ N and every f : R/Z → C satisfying
(∗s) with s 6= 1, we have

Φ(x)∑
ν=1

f(n%ν) = f(0)
∑

m≤x
M

(
x

m

)
(m,n)s

ms−1 .

(ii) For the same f as in (i),

f(0)
∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)s

(mn)s−1 =
∑

n≤x
M

(
x

n

)
1
ns

Φ(x)∑
ν=1

f(n%ν)

=
Φ(x)∑
µ,ν=1

f(%µ − %ν).

(iii) For f(x) = log |2 sinπx|, an even function in K1, we have

−
Φ(x)−1∑
ν=1

`1(%ν) =
Φ(x)−1∑
ν=1

log |2 sinπ%ν | = ψ(x),

where ψ denotes Chebyshev’s function.
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P r o o f. (i) Write d = (m,n). Then by (∗s) with x = 0,
∑

k modm

f

(
nk

m

)
=

∑

k modm

f

(
(n/d)k
m/d

)
= d

∑

k modm/d

f

(
k

m/d

)

= d

(
m

d

)1−s
f(0) =

ds

ms−1 f(0).

Now, by Lemma 3, the LHS of the formula in our proposition is
∑

m≤x
M

(
x

m

) ∑

k modm

f

(
nk

m

)
,

and the assertion follows.
(ii) By (∗s)

f(n%ν) = ns−1
n−1∑
m=0

f

(
%ν +

m

n

)
= ns−1

n∑
m=1

f

(
%ν − m

n

)
.

Hence
∑

n≤x
M

(
x

n

)
1

ns−1 f(n%ν) =
Φ(x)∑
µ=1

f(%ν − %µ)

in view of Lemma 3. Summing over ν, the LHS [RHS] of this equality gives
the leftmost [rightmost] member of the displayed formula, on using the for-
mula in (i).

(iii) For f(x) = log |2 sinπx| = log |1− e2πix| we have the modified form
of (∗s):

m−1∑

k=1

f(k/m) = logm.

This is formula (10) of Milnor [17], and is deduced trivially as there from
the decomposition

1 + t+ . . .+ tm−1 =
m−1∏

k=1

(t− e2πik/m)

(also follows from the Gauss multiplication formula for Γ in logarithmic
form and the reciprocity relation). Hence

Φ(x)−1∑
ν=1

log |2 sinπ%ν | =
∑

m≤x
M(x/m) logm.

Noting that

logm =
∑

d|m
Λ(d) =

∑

d≤m
g(d/m)
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with

g

(
d

m

)
=
{
Λ(d), d | m,
0, otherwise,

we infer from Lemma 3 that

∑

m≤x
M

(
x

m

)
logm =

Φ(x)∑
ν=1

g(n%ν) =
∑

m≤x

m∑

d=1
(d,m)=1

g

(
m

n

)
=
∑

n≤x
Λ(n),

thereby completing the proof of (iii).

Corollary. (i1) For s ∈ N ∪ {0},
Φ(x)∑
ν=1

Bs(n%ν) = Bs
∑

m≤x
M

(
x

m

)
(m,n)s

ms−1 ,

and in particular ,
Φ(x)∑
ν=1

Bs(%ν) = BsSs−1(x).

(i2) For σ > 1,
Φ(x)∑
ν=1

`s(n%ν) = ζ(s)
∑

m≤x
M

(
x

m

)
(m,n)s

ms−1 ,

and in particular ,
Φ(x)∑
ν=1

`s(%ν) = ζ(s)Ss−1(x).

(ii)

ζ(s)
∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)s

(mn)s−1 =
Φ(x)∑
µ,ν=1

`s(%µ − %ν),

and in particular ,

ζ(2)
(

12Φ(x)
Φ(x)∑
ν=1

δ2
ν + 1

)
= ζ(2)

∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)2

mn

=
Φ(x)∑
µ,ν=1

`2(%µ − %ν) = π2
Φ(x)∑
µ,ν=1

B2(%µ − %ν).

Theorem 2. (i) For Re s = σ ≥ 3/2, the estimate
Φ(x)∑
ν=1

`s(%ν) = O(x1/2+ε)

is equivalent to the RH.
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(ii) For σ ≥ 3/2 and any f ∈ Ks that is not odd (and so at least for any
even f ∈ Ks) write its extension given in Lemma 6 again by f . Then the
estimate

Φ(x)∑
ν=1

f(%ν) = O(x1/2+ε)

is equivalent to the RH.

P r o o f. (i) is an immediate consequence of Corollary (i2) and Lemma 2.
(ii) We express f ∈ Ks as a linear combination of `s(x) and `s(1− x):

f(x) = c1`s(x) + c2`s(1− x).

Then the assumption amounts to c1 + c2 6= 0. From Corollary (i2) it follows
that

Φ(x)∑
ν=1

`s(%ν) =
Φ(x)∑
ν=1

`s(1− %ν) = ζ(s)Ss−1(x),

so that
Φ(x)∑
ν=1

f(%ν) = ζ(s)(c1 + c2)Ss−1(x).

Now the result follows from Lemma 2.

Corollary 1. We have
Φ(x)∑
ν=1

ζ1−s(%ν) = ζ(1− s)Ss−1(x),

so that for σ ≥ 3/2, s 6= 3, 5, . . . the estimate

Φ(x)∑
ν=1

ζ1−s(%ν) = O(x1/2+ε)

is equivalent to the RH.

We follow Lewin [13] to define the Clausen functions:

Cl2k(θ) =
∞∑
n=1

sinnθ
n2k , Cl2k+1(θ) =

∞∑
n=1

cosnθ
n2k+1 .

Then, recursively,

Cl2k+1(θ) = ζ(2k + 1)−
θ\
0

Cl2k(θ) dθ, Cl2k(θ) =
θ\
0

Cl2k−1(θ) dθ,
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and in particular we have the Clausen integral

Cl2(θ) = −
θ\
0

log |2 sin(θ/2)| dθ (Cl1(θ) = − log |2 sin(θ/2)|).

For k ∈ N we have the Fourier expansion

`k(x) =
∞∑
n=1

cos 2πnx
nk

+ i

∞∑
n=1

sin 2πnx
nk

=
(2πi)k−1

k!

[
(−1)(k−1)/2k!

(2π)k−1 Clk(2πx)− πiBk(x)
]
.

Corollary 2 (cf. Milnor’s table [17]). For each k ∈ N each of the
following is equivalent to the RH :

Φ(x)∑
ν=1

B2k(%ν) = O(x1/2+ε),
Φ(x)∑
ν=1

Cl2k+1(%ν) = O(x1/2+ε).

R e m a r k 5. Milnor uses the notation Λ(πx) = − Tπx0 log |2 sin θ| dθ,
which is 1

2Cl2(2πx). Also, in Yamamoto’s notation [20], Ak(x) is related
to Clk(x) by

Ak(x) =
(−1)(k−1)/2k!

(2π)k−1 Clk(2πx).

Proposition 4. We have
∑

%ν<1/2

log tanπ%ν =
1
2

(
ψ(x)− ψ

(
x

2

))
− 1

2
log 2,

and so the estimate
∑

%ν<1/2

log tanπ%ν − x/4 = O(x1/2+ε)

is equivalent to the RH. Similar formulas hold for cotangents.

P r o o f. From the well-known formulas
n−1∏
r=1

tan
r

2n
π = 1,

n∏
r=1

tan
r

2n+ 1
π =
√

2n+ 1,

we deduce that
∑

r<n/2

log tan
r

n
π =

{
1
2 logn, 2 -n,
0, 2 |n.
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Hence by Lemma 3,
∑

%ν<1/2

log tanπ%ν =
∑

n≤x
M

(
x

n

)
1
2

logn−
∑

n≤x
M

(
x

2n

)
1
2

log 2n

=
1
2

∑

x/2<n≤x
M

(
x

n

)
log n− 1

2
log 2

=
1
2

(
ψ(x)− ψ

(
x

2

))
− 1

2
log 2,

thereby completing the proof of Lemma 4 and (2). For the cotangent function
we have

∑

%ν<1/2

log cotπ%ν = −1
2

(
ψ(x)− ψ

(
x

2

))
+

1
2

log 2.

6. Franel’s theorem. In this section we will show that Franel’s cele-
brated formula has its origin in the three-term relation for the generalized
Dedekind sums (Lemma 8).

Lemma 7.
Φ(x)∑
ν=1

B1(a%ν)B1(b%ν) =
∑

c≤x
M

(
x

c

) c∑

k=1

B1

(
ak

c

)
B1

(
bk

c

)
.

P r o o f. This follows from Lemma 3 with ξ = 1 and f(t) = B1(at)B1(bt):

LHS =
∑

c≤x
M

(
x

c

)
V1(c) =

∑

c≤x
M

(
x

c

)∑

k≤c
f

(
k

c

)
.

Lemma 8 (The three-term relation). For any natural numbers a, b, c let

s11

(
a b

c

)
:=

c∑

k=1

B1

(
ak

c

)
B1

(
bk

c

) (
= s11

(
b a

c

))

denote a modification of Mikolás’s generalized Dedekind sum. Then

s11

(
a b

c

)
+ s11

(
b c

a

)
+ s11

(
c a

b

)

=
1
12

(
(a, b)2

ab
c+

(b, c)2

bc
a+

(c, a)2

ca
b

)
+

(a, b, c)
2

.

P r o o f. The proof closely follows the pattern of that of Sczech’s Satz 1
[19] and we will state analogues of his results that are needed for the proof.
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The analogue of formula (9): For real x, y, z with x+ y + z = 0,

2{B1(x)B1(y) +B1(y)B1(z) +B1(z)B1(x)}+B2(x) +B2(y) +B2(z)

=
{

2, x, y ∈ Z,
0, otherwise.

Then we put x = u1 − u2, y = u3 − u1, z = u2 − u3.
The analogue of formula (10): For real independent variables uj ,

j mod 3,

(10′)
∑

jmod 3

B2(uj − uj+1)− 2
∑

jmod 3

B1(uj − uj+1)B1(uj − uj−1)

=





0, x, y, z ∈ R− Z,
−1, x, y, z ∈ Z,
2B1(y), z ∈ Z, x, y ∈ R− Z.

Put uj = (rj + zj)/cj , rj mod 3, zj ∈ R. Then the analogue of the first
formula on p. 530 of [19] (with z = (0, 0, 0)) is

∑

rl(cl)
l=1,2,3

B2

(
rj
cj
− rj+1

cj+1

)
=

(cj , cj+1)2

6cjcj+1
cj−1,

while the second formula on p. 530 (with z = (0, 0, 0)) is

∑

rl(cl)
l=1,2,3

B1

(
uj − rj+1

cj+1

)
B1

(
uj − rj−1

cj−1

)
= s

(
cj+1 cj−1

cj

)
.

Thus the analogue of Satz 1 (with z = (0, 0, 0)) is

1
6

(
(a, b)2

ab
c+

(b, c)2

bc
a+

(c, a)2

ca
b

)
− 2
{

s11

(
a b

c

)
+ s11

(
b c

a

)
+ s11

(
c a

b

)}

=
∑

rl(cl)
l=1,2,3

{ 0,
−1,
2B1(y),

where on the RHS the same conditions as in (10′) should apply.
We now digress slightly from Sczech and calculate the RHS. Considering

the summation condition, we have by the distribution property

∑

rl(cl), l=1,2,3
z∈Z

B1

(
r3

c3
− r1

c1

)
= −1

2
(c1, c2, c3).
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Further,
∑

rl(cl), l=1,2,3
x,y∈R−Z, z∈Z

B1

(
r3

c3
− r1

c1

)

=
∑

rl(cl), l=1,2,3
z∈Z

B1

(
r3

c3
− r1

c1

)
−

∑

rl(cl), l=1,2,3
x,y,z∈Z

B1

(
r3

c3
− r1

c1

)

= − 1
2

(c1, c2, c3) +
1
2

(c1, c2, c3) = 0

since
∑

rl(cl), l=1,2,3
x,y,z∈Z

B1

(
r3

c3
− r1

c1

)
= B1

∑

h mod (c1,c2,c3)

1 = −1
2

(c1, c2, c3),

which shows incidentally that the sum
∑
rl(cl), l=1,2,3, x,y,z∈Z(−1) is

−(c1, c2, c3). This completes the proof.

Theorem 3 (Franel’s formula). We have the identity
Φ(x)∑
ν=1

δ2
ν =

1
12Φ(x)

( ∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)2

mn
− 1
)
.

P r o o f. First note that by Proposition 1 we have

δν = %ν − ν

Φ(x)
= %ν − 1

Φ(x)
h(%ν) =

1
Φ(x)

(∑

n≤x
M

(
x

n

)
B1(n%ν) +

1
2

)
,

whence it follows that
Φ(x)∑
ν=1

δ2
ν =

1
Φ(x)2

∑

a≤x

∑

b≤x
M

(
x

a

)
M

(
x

b

) Φ(x)∑
ν=1

B1(a%ν)B1(b%ν)

+
1

Φ(x)2

∑

n≤x
M

(
x

n

) Φ(x)∑
ν=1

B1(n%ν) +
1

4Φ(x)
.

Since by Corollary 1(i) to Proposition 3, the second term becomes

− 1
2Φ(x)2

∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n),

the main ingredient is the first term, which can be transformed further using
Lemma 7 as follows:

∑

a≤x

∑

b≤x
M

(
x

a

)
M

(
x

b

) Φ(x)∑
ν=1

B1(a%ν)B1(b%ν)
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=
∑

a≤x

∑

b≤x
M

(
x

a

)
M

(
x

b

)∑

c≤x
M

(
x

c

) c∑

k=1

B1

(
ak

c

)
B1

(
bk

c

)

=
∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)
s11

(
a b

c

)
,

where s11
(
a b
c

)
denotes a modification of Mikolás’s generalized Dedekind

sum.
Put

S(x) :=
∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)
s11

(
a b

c

)
.

Then also

S(x) =
∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)
s11

(
b c

a

)

=
∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)
s11

(
c a

b

)
.

Hence

3S(x) =
∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)(
s11

(
a b

c

)
+ s11

(
b c

a

)
+ s11

(
c a

b

))
.

Substituting this in the above formula, we infer that

3Φ(x)2
Φ(x)∑
ν=1

δ2
ν =

1
12

∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)

×
{

(a, b)2

ab
c+

(b, c)2

bc
a+

(c, a)2

ca
b

}

+
1
2

∑

a,b,c≤x
M

(
x

a

)
M

(
x

b

)
M

(
x

c

)
(a, b, c)

− 3
2

∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n) +

3
4
Φ(x).

Noting that the first term on the LHS becomes

Φ(x)
4

∑

m,n≤x
M

(
x

m

)
M

(
x

n

)
(m,n)2

mn
,
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while the second reduces to
∑

d≤x
d

∑

a,b,c≤x/d
(a,b,c)=1

M

(
x

da

)
M

(
x

db

)
M

(
x

dc

)

=
∑

d≤x
d
∑

a,b≤x/d
M

(
x

da

)
M

(
x

db

) ∑

δ|(a,b)
µ(δ)

∑

c′≤x/(dδ)
M

(
x

dδc′

)

=
∑

d≤x
d
∑

a≤x/d
M

(
x

da

)∑

δ|a
µ(δ)

∑

b′≤x/(dδ)
M

(
x

dδb′

)

=
∑

d≤x
dM

(
x

d

)
= Φ(x),

which in passing also shows that the third term is again Φ(x), we complete
the proof.
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