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1. Introduction. In a series of papers [6], [7], [21], the authors developed
methods for the construction of multidimensional low-discrepancy sequences
by the use of global function fields. A survey of these methods can be found
in [8]. In most cases, the construction of low-discrepancy sequences is op-
timized by choosing a global function field with many rational places (as
usual, a rational place is meant to be a place of degree 1). It is well known
that global function fields with many rational places also play an impor-
tant role in algebraic coding theory, namely in the construction of good
algebraic-geometry codes; see the books of Stichtenoth [16] and Tsfasman
and Vlǎdut [17]. Global function fields with many rational places have also
received a lot of attention in theoretical considerations related to global
function fields and to algebraic curves over finite fields. We refer e.g. to the
work of Ihara [5] and Serre [11]–[14] in the 1980s and to the more recent
papers of Garcia and Stichtenoth [2], [3], Perret [9], Schoof [10], van der
Geer and van der Vlugt [18], and Xing [20].

For the practical implementation of the constructions of low-discrepancy
sequences and algebraic-geometry codes mentioned above, it is imperative
that global function fields with many rational places are available in as
explicit a form as possible, preferably in terms of generators and defining
equations. In these applications the most important case is the one in which
the full constant field of the global function field is the binary field F2,
and only this case will be considered in the present paper. In this case,
most examples of global function fields with many rational places have been
obtained by means of class field theory (see the work of Serre quoted above),
but this method rarely yields explicit forms of the global function fields.

For a global function field K with full constant field F2 we write g(K)
for its genus and N(K) for the number of rational places of K. If s ≥ 1 is a
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given dimension and K is such that N(K) ≥ s+ 1, then under some minor
additional conditions the constructions in [7] and [21] yield s-dimensional
low-discrepancy sequences, so-called digital (t, s)-sequences in base 2, where
the quality parameter t is given by t = g(K). Our main aim in this paper is to
find explicitly described fields K with small g(K) and relatively large N(K)
which allow the construction of s-dimensional low-discrepancy sequences
for 1 ≤ s ≤ 20. Our examples are listed in Section 3 and are obtained
in most cases from Artin–Schreier extensions or cyclotomic function fields,
or from subfields of the latter. We need some new results on cyclotomic
function fields and certain subfields thereof, and these results are presented
in Section 2.

2. Cyclotomic function fields. Let x be an indeterminate over F2,
R = F2[x] the polynomial ring, F = F2(x) its quotient field, and F ac an
algebraic closure of F . We often use the convention that an irreducible poly-
nomial P in R is identified with the place of F which is the zero of P , and we
will denote this place also by P . For an arbitrary place Q of a global function
field we write νQ for the normalized discrete valuation corresponding to Q.

We employ the theory of cyclotomic function fields as developed by Hayes
[4]. Consider the two elements φ, µ ∈ EndF2(F ac) given by

φ(u) = u2, µ(u) = xu for all u ∈ F ac.

There is a ring homomorphism

R→ EndF2(F ac), f(x) 7→ f(φ+ µ).

The F2 vector space F ac is made into an R-module by

uf(x) = f(φ+ µ)(u) for u ∈ F ac.

This R-module is in fact a Carlitz module; see Carlitz [1] and Hayes [4]. For
M ∈ R,M 6= 0, we define the R-module

ΛM = {z ∈ F ac : zM = 0}
of division points. The following facts from [4] will be needed.

Proposition 1 (Hayes [4]). (1) Let M ∈ R,M 6= 0, have degree d. Then
zM is a separable polynomial in z of degree 2d over R.

(2) ΛM is a cyclic R-module which is naturally R-isomorphic to R/(M).
(3) Let F (ΛM ) be the subfield of F ac generated over F by all elements

of ΛM . Then F (ΛM )/F is an abelian extension and Gal(F (ΛM )/F ) is iso-
morphic to (R/(M))∗, the group of units of the ring R/(M). The Galois
automorphism σA associated with the element A ∈ (R/(M))∗ is determined
by σA(λ) = λA for λ ∈ ΛM .
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(4) If P ∈ R is an irreducible polynomial not dividing M , then the Artin
symbol [

F (ΛM )/F
P

]

of P is equal to σP .
(5) The infinite place of F , i.e., the pole of x , splits completely in the

extension F (ΛM )/F . In particular , F2 is the full constant field of F (ΛM ).
(6) Suppose that P ∈ R is an irreducible polynomial of degree d and

Pm ‖M for some integer m ≥ 1. Then the ramification index of P for the
extension F (ΛM )/F is

Φ(Pm) = 2d(m−1)(2d − 1).

(7) If M = Pn for some integer n ≥ 1 and irreducible polynomial P ∈ R
of degree d , then:

(i) P is the unique ramified place and it is totally ramified in the exten-
sion F (ΛM )/F . The genus of F (ΛM ) is given by

g(F (ΛM )) = 1
2 ((dn− 2)Φ(Pn)− 2d(n−1)d+ 2).

(ii) f(z) = zP
n

/zP
n−1

is an Eisenstein polynomial in R[z] with respect
to the place P. If λ ∈ F (ΛM ) is a root of f(z) and Q is the unique place of
F (ΛM ) lying over P , then λ is a Q-prime element , i.e., νQ(λ) = 1.

R e m a r k 1. Some parts of Proposition 1 are not stated explicitly
as results in [4], but can be easily derived from them. Part (5) follows
from [4, Proposition 1.4 and Theorem 3.2] and [16, Corollary III.8.4(a)].
Part (6) follows from [4, Propositions 1.4 and 2.2] and Abhyankar’s lemma
[16, Proposition III.8.9]. The formula νQ(λ) = 1 in part (7)(ii) can be found
in the proof of [4, Proposition 2.4].

The field F (ΛM ) described in Proposition 1(3) is called a cyclotomic
function field. We need some additional results on certain special cyclotomic
function fields.

Theorem 1. Let M = P1P2 be the product of two distinct irreducible
polynomials P1, P2 ∈ R. Then:

(1) The genus g = g(F (ΛM )) of F (ΛM ) is given by

g = d1(2d1−1 − 1)(2d2 − 1) + d2(2d1 − 1)(2d2−1 − 1)− (2d1 − 1)(2d2 − 1) + 1,

where di is the degree of Pi for i = 1, 2.
(2) F (ΛM ) = F (z) with z ∈ ΛM satisfying the equation

z
zM

zP1zP2
= 0.
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P r o o f. (1) By [4, Proposition 1.4], F (ΛM ) is the compositum of F (ΛP1)
and F (ΛP2). It follows therefore from Proposition 1(7)(i) and [16, Corollary
III.8.4(b)] that P1 and P2 are the only ramified places in the extension
F (ΛM )/F . For i = 1, 2 let Qi be a place of F (ΛM ) lying over Pi. Then
Proposition 1(6) shows that the ramification index e(Qi|Pi) is 2di − 1. This
means that Q1 and Q2 are both tamely ramified. Hence it follows from the
Hurwitz genus formula, in the form given in [16, Corollary III.5.6], that

2g − 2 = (−2)[F (ΛM ) : F ] + d1(2d1 − 2)(2d2 − 1) + d2(2d1 − 1)(2d2 − 2),

which yields the desired result.
(2) Let z be a generator of the cyclic R-module ΛM , then it easily follows

that F (ΛM ) = F (z); see also [4, p. 81]. By Proposition 1(3), the minimal
polynomial f(u) of z over F is given by

f(u) =
∏

A

(u− zA),

where A runs through a set of representatives of (R/(M))∗. The result fol-
lows now from the identities

uM =
∏

AmodM

(u−zA), uP1 =
∏

AmodP1

(u−zAP2), uP2 =
∏

AmodP2

(u−zAP1).

We now consider certain subfields of the cyclotomic function fields
F (Λxn). The following elementary lemma is needed. Here and in the fol-
lowing, log2 denotes the logarithm to the base 2.

Lemma 1. For an integer n ≥ 2 let H be the cyclic subgroup of (R/(xn))∗

generated by the element x+ 1. Then the order of H is

|H| = 2blog2(n−1)c+1.

P r o o f. Since (R/(xn))∗ has order 2n−1, we have |H| = 2k for some inte-
ger k ≥ 1. It remains to note that for integers h ≥ 1 we have
(x + 1)2h − 1 = x2h ≡ 0 mod xn if and only if 2h ≥ n, that is, if and
only if h ≥ blog2(n− 1)c+ 1.

According to Proposition 1(3) it is legitimate to identify Gal(F (Λxn)/F )
with (R/(xn))∗, and this will be done in the following.

Theorem 2. For n ≥ 2 let G = (R/(xn))∗ be the Galois group of the
extension F (Λxn)/F and let H be the cyclic subgroup of G generated by
x+ 1. Suppose that K is the subfield of F (Λxn) fixed by H. Then:

(1) The number N(K ) of rational places of K is given by

N(K) = 2n−k + 1,

where k = blog2(n− 1)c+ 1.
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(2) The genus g(K ) of K is given by

g(K) = 1 + (n− 3)2n−k−2 −
k−1∑

j=0

22j−j−2.

P r o o f. (1) The infinite place of F splits completely and the place x is
totally ramified in the extension F (Λxn)/F , in view of parts (5) and (7)(i)
of Proposition 1. Hence these two places of F contribute [K : F ]+1 rational
places to the field K. By Proposition 1(4), the Artin symbol

[
F (Λxn)/F
x+ 1

]

corresponds to the element x+ 1 ∈ (R/(xn))∗, and so the place x+ 1 splits
completely in the extension K/F (see [19, p. 182]). Thus

N(K) = 2[K : F ] + 1 = 2
[F (Λxn) : F ]
|H| + 1 = 2n−k + 1,

where we used Lemma 1 in the last step.
(2) Let P be the unique place of K lying over the place x of F and let

Q be the unique place of F (Λxn) lying over P . In order to determine g(K),
it suffices to compute the different exponent d(Q|P ). Let λ ∈ Λxn be a root
of f(z) = zx

n

/zx
n−1

, then λ is a Q-prime element by Proposition 1(7)(ii).
Furthermore, the minimal polynomial of λ over K is

h(z) =
∏

σ∈H
(z + σ(λ)) ∈ K[z].

From Proposition 1(7)(i) we know that Q is totally ramified, hence it follows
from [16, Proposition III.5.12] that

d(Q|P ) = νQ(h′(λ)) =
∑

σ∈H\{id}
νQ(λ+ σ(λ)) =

r−1∑

i=1

νQ(λ+ λ(x+1)i),

where r = 2k = 2blog2(n−1)c+1 (compare also with Lemma 1). For 1 ≤ i ≤
r − 1 we have

λ+ λ(x+1)i = λ+
i∑

j=0

(
i

j

)
λx

j

=
min(i,n−1)∑

j=1

(
i

j

)
λx

j

.

By induction on j one shows that νQ(λx
j

) = 2j for 0 ≤ j ≤ n− 1. It follows
that

νQ(λ+ λ(x+1)i) = 2e,

where e is the least integer with 1 ≤ e ≤ min(i, n − 1) and
(
i
e

) ≡ 1 mod 2.
The Lucas congruence for binomial coefficients yields e = 2ei , the largest
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power of 2 dividing i. Note also that 1 ≤ i ≤ r − 1 < 2k, hence

ei ≤ k − 1 = blog2(n− 1)c,
and so indeed e = 2ei ≤ min(i, n− 1). Thus we have shown

νQ(λ+ λ(x+1)i) = 22ei for 1 ≤ i ≤ r − 1.

A straightforward computation then yields

d(Q|P ) =
k−1∑

j=0

22j+k−j−1.

By the Hurwitz genus formula, in the form given in [16, Theorem III.4.12],
we have

2g(F (Λxn))− 2 = (2g(K)− 2)[F (Λxn) : K] + d(Q|P ).

Our formula for g(K) follows from the last two identities and from Propo-
sition 1(7)(i).

Next we show that the fields K in Theorem 2 can be obtained by a tower
of extensions, with a known defining equation in each step of the tower. For
the simplest case n = 2 we note that

zx
2

= z4 + (x2 + x)z2 + x2z = z(z + x)(z2 + xz + x),

thus a generator λ2 of Λx2 satisfies λ2
2 + xλ2 = x, that is, λx2 = x. This

explains the choice λ1 = x in the following theorem.

Theorem 3. Let En be the field F (Λxn) with Galois group Gn=(R/(xn))∗

over F , let Hn be the cyclic subgroup of Gn generated by x+ 1, and let Kn

be the subfield of En fixed by Hn. Put λ1 = x, and for n ≥ 2 let λn be a
generator of Λxn satisfying λxn = λn−1. Put µ1 = x, and for n ≥ 2 let µn
be the norm

µn = NEn/Kn(λn) =
2kn−1∏

i=0

λ(x+1)i
n

with kn = blog2(n − 1)c + 1. Then Kn = Kn−1(µn) for n ≥ 2, with µn
satisfying the equation µn = µn−1 if n− 1 is a power of 2 and

µ2
n +

(
µn +

2kn−1∏

i=0

(λ(x+1)i
n + x)

)
µn + µn−1 = 0

if n− 1 is not a power of 2.
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R e m a r k 2. We will see in the following proof that if n − 1 is not a
power of 2, then

µn +
2kn−1∏

i=0

(λ(x+1)i
n + x) = TrKn/Kn−1(µn) ∈ Kn−1.

P r o o f o f T h e o r e m 3. For n ≥ 2 the automorphism σ ∈ Gn corre-
sponding to xn−1 + 1 leaves En−1 invariant, since En−1 = F (λn−1) and

σ(λn−1) = λx
n−1+1
n−1 = λx(xn−1+1)

n = λxn = λn−1.

Together with [En : En−1] = 2 this shows that

Gal(En/En−1) = {1, xn−1 + 1} ⊆ Gn.
From this it follows easily that

Gal(En/Kn−1) = 〈x+ 1, xn−1 + 1〉 ⊆ Gn.
In particular, we obtain Kn−1 ⊆ Kn.

If n−1 is a power of 2, then xn−1 + 1 = (x+ 1)n−1, and soKn = Kn−1. If
n−1 is not a power of 2, then Gal(Kn/Kn−1) ' Gal(En/Kn−1)/Gal(En/Kn)
has order 2 since xn−1 + 1 6∈ Hn. Therefore [Kn : Kn−1] = 2.

Next we determine the relationship between µn ∈ Kn and µn−1 ∈ Kn−1.
First let n = 2. Then

µ2 = λ2 · λx+1
2 = λ2(x+ λ2) = λx2 = λ1 = µ1.

For n ≥ 3 consider again the automorphism σ ∈ Gn corresponding to
xn−1 + 1. Let τ be the restriction of σ to Kn. Then

µnτ(µn) = µn

2kn−1∏

i=0

σ(λ(x+1)i
n ) = µn

2kn−1∏

i=0

λ(xn−1+1)(x+1)i
n

= µn

2kn−1∏

i=0

λ(x+1)i+xn−1

n =
2kn−1∏

i=0

λ(x+1)i
n ·

2kn−1∏

i=0

(λ(x+1)i
n + λx

n−1

n ).

Note that αn = λx
n−1

n satisfies αxn = 0, thus α2
n + xαn = 0, hence αn = x.

Therefore

µnτ(µn) =
2kn−1∏

i=0

((λ(x+1)i
n )2 + xλ(x+1)i

n ) =
2kn−1∏

i=0

(λ(x+1)i
n )x =

2kn−1∏

i=0

λ
(x+1)i

n−1 .

If n− 1 is a power of 2, then τ = id on Kn and kn−1 = kn − 1. Thus
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µ2
n−1 =

( 2kn−1−1∏

i=0

λ
(x+1)i

n−1

)2
=

2kn−1−1∏

i=0

λ
(x+1)i

n−1 ·
2kn−1∏

i=2kn−1

λ
(x+1)i

n−1

=
2kn−1∏

i=0

λ
(x+1)i

n−1 = µnτ(µn) = µ2
n,

and so µn = µn−1. If n − 1 is not a power of 2, then τ 6= id on Kn and
Gal(Kn/Kn−1) = {id, τ}. Also kn−1 = kn, therefore

NKn/Kn−1(µn) = µnτ(µn) =
2kn−1∏

i=0

λ
(x+1)i

n−1 = µn−1.

The same argument shows that

TrKn/Kn−1(µn) = µn +
2kn−1∏

i=0

(λ(x+1)i
n + x),

and so we obtain the equation for µn in the theorem.
In the case where n − 1 is not a power of 2, it remains to show that

µn 6∈ Kn−1. Let Pn be the unique place of En lying over x. By induction on
n one shows that

νPn(λn) = 1 for all n ≥ 1;
compare also with Proposition 1(7)(ii). Now for i ≥ 0,

λ(x+1)i
n =

min(i,n−1)∑

j=0

(
i

j

)
λx

j

n =
min(i,n−1)∑

j=0

(
i

j

)
λn−j ,

thus νPn(λ(x+1)i
n ) = 1, and so νPn(µn) = 2kn . Note that

[En : Kn−1] = [En : Kn][Kn : Kn−1] = 2kn+1.

Let Q be the unique place of Kn−1 lying over x. If we had µn ∈ Kn−1, then
we would arrive at the contradiction

2kn = νPn(µn) = 2kn+1νQ(µn).

R e m a r k 3. From Theorem 3 we get µ2 = µ3 = x, and µ4 satisfies

µ2
4 + x2(x+ 1)µ4 + x = 0.

Put

y =
µ4

x2(x+ 1)
+

1
x+ 1

,

then

y2 + y =
(x+ 1)2

x3

and K4 = F (µ4) = F2(x, y).
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3. Explicit global function fields with many rational places. In
this section we list examples of global function fields K with full constant
field F2 for which the genus g(K) is small and the number N(K) of ratio-
nal places is relatively large. These examples are explicit in the sense that
the fields K are described in terms of generators and defining equations.
Furthermore, these examples allow the construction of good s-dimensional
low-discrepancy sequences for 1 ≤ s ≤ 20, and also for some larger dimen-
sions.

Some of the examples are based on Artin–Schreier extensions. For the
convenience of the reader we collect the basic facts about these extensions
in Proposition 2 below, where we deal only with the case of the constant
field F2. The stated results are special cases of [16, Proposition III.7.8].

Proposition 2. Let K be a global function field with full constant
field F2. For given u ∈ K consider the extension field E = K(y) with y
satisfying the equation

y2 + y = u.

For each place P of K the well-defined integer mP is determined as follows:
mP = −1 if νP (u + z2 + z) ≥ 0 for some z ∈ K, and mP = m if there is
a z ∈ K with νP (u + z2 + z) = −m < 0 and m odd. Suppose that there is
at least one place Q of K with mQ > 0. Then [E : K] = 2, F2 is the full
constant field of E , and

g(E) = 2g(K)− 1 +
1
2

∑

P

(mP + 1) deg(P ),

where the sum runs over all places P of K. Furthermore, P is unramified
in the extension E/K if and only if mP = −1, and P is totally ramified in
E/K if and only if mP > 0.

We recall the standard notation N2(g) = maxN(K), where the max-
imum is extended over all global function fields K of fixed genus g and
with full constant field F2. Values of N2(g) are tabulated in Serre [12];
see also [7, Table 2]. An example of a function field K is called optimal
if N(K) = N2(g(K)). We do not list the trivial optimal example g(K) =
0, N(K) = 3,K = F = F2(x) as a numbered example.

Example 1. g(K) = 1, N(K) = 5,K = F2(x, y) with

y2 + y = x3 + x.

This example is optimal and well known (see e.g. [16, p. 191]). There are
two rational places of K lying over each of x and x+1, and there is a totally
ramified place of K lying over the infinite place of F .
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Example 2. g(K) = 2, N(K) = 6,K = F2(x, y) with

y2 + y =
x(x+ 1)
x3 + x+ 1

.

This example is optimal and can be found also in Serre [14]. There are two
rational places of K lying over each of the three rational places of F .

Example 3A. g(K) = 3, N(K) = 7,K = F (Λx3+x+1) = F2(x, y) with

y7 + (x4 + x2 + x)y3 + (x4 + x3 + x2 + 1)y + x3 + x+ 1 = 0.

This example is optimal. All rational places of K lie over the infinite place
of F ; compare with Proposition 1(5).

Example 3B. Serre [11] gives the example K = F2(x, y) with

y3 + (x2 + x+ 1)y2 + (x3 + x2)y + x2 + x = 0,

which satisfies also g(K) = 3, N(K) = 7.

Example 4A. g(K) = 4, N(K) = 8,K = F2(x, y1, y2) with

y2
1 + y1 = x3 + x, y2

2 + y2 =
xy1

x+ 1
.

This example is optimal. There are four rational places of K lying over x
and three rational places of K lying over x+1, and there is a totally ramified
place of K lying over the infinite place of F . Note that of the two rational
places of L = F2(x, y1) lying over x+1, one splits completely in the extension
K/L and one is totally ramified in K/L.

Example 4B. Serre [14] gives the example K = F2(x, y) with

(x2 + x)y3 + (x3 + x2 + 1)y2 + x3y + x2 + 1 = 0,

which satisfies also g(K) = 4, N(K) = 8.

Example 5A. g(K) = 5, N(K) = 9,K = F2(x, y1, y2) with

y2
1 + y1 = x3 + x, y2

2 + y2 = (x2 + x)y1.

This example is optimal. There are four rational places of K lying over each
of x and x + 1, and there is a totally ramified place of K lying over the
infinite place of F .

Example 5B. Let K be the subfield of F (Λx6) fixed by the subgroup
〈x+ 1〉 of Gal(F (Λx6)/F ). Then g(K) = 5 and N(K) = 9 according to
Theorem 2, and the rational places of K can be read off from the proof of
this theorem. Note that Theorem 3 yields an explicit description of K since
K = K6 in the notation of this theorem.

Example 6. g(K) = 6, N(K) = 10,K = F2(x, y1, y2) with

y2
1 + y1 = x3 + x, y2

2 + y2 = u :=
x2(x+ 1)((x+ 1)y1 + x3)
x5 + x4 + x3 + x2 + 1

.
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This example is optimal. There are four rational places of K lying over each
of x and x+ 1. The unique rational place P of L = F2(x, y1) lying over the
infinite place of F splits completely in the extension K/L, thus yielding two
more rational places of K. This is seen by a short calculation showing that

νP

(
u+

(
y1

x

)2

+
y1

x

)
= 3.

To calculate g(K), one also has to study the splitting behavior of the place
p(x) = x5 + x4 + x3 + x2 + 1 of F . A standard application of Kummer’s
theorem shows that there are two different places P1, P2 of L lying over p(x)
which can be arranged in such a way that

y1 ≡ x4 + x mod P1, y1 ≡ x4 + x+ 1 mod P2.

Then νP1(u) = −1, hence mP1 = 1 in the notation of Proposition 2, and
νP2(u) ≥ 0, so that mP2 = −1. Thus, P1 is the only ramified place in the
extension K/L and deg(P1) = 5.

Example 7. g(K) = 7, N(K) = 10, K = F2(x, y1, y2) with

y2
1 + y1 = x3 + x, y2

2 + y2 =
x(x+ 1)
x3 + x+ 1

.

This example is optimal. There are four rational places of K lying over each
of x and x+1 and two rational places of K lying over the infinite place of F .

Example 8. g(K) = 8, N(K) = 11, K = F2(x, y1, y2) with

y2
1+y1 =

x(x+ 1)
x3 + x+ 1

, y2
2+y2 = u :=

x(x+ 1)(x3 + x+ 1)
(x2 + x+ 1)2 y1+

x(x+ 1)
x2 + x+ 1

.

This example is optimal. There are four rational places of K lying over each
of x and x + 1. Of the two rational places of L = F2(x, y1) lying over the
infinite place of F , one splits completely in the extension K/L and the other
is totally ramified in K/L, which yields three more rational places of K. The
only other ramified place in K/L is the unique place P of L with deg(P ) = 4
lying over x2 + x+ 1. If we put

z =
(x+ 1)y1 + 1
x2 + x+ 1

∈ L,

then a straightforward calculation shows that νP (u+ z2 + z) = −1, so that
mP = 1 in the notation of Proposition 2.

Example 9A. g(K) = 9, N(K) = 12,K = F2(x, y1, y2) with

y2
1 + y1 =

x(x+ 1)
x3 + x+ 1

, y2
2 + y2 =

x(x+ 1)
x3 + x2 + 1

.

This example is optimal. There are four rational places of K lying over each
of the three rational places of F .
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Example 9B. Let K = F (Λ(x2+x+1)2) = F2(x, y) with

z3 + (x2 + x+ 1)z + x2 + x+ 1 = 0,

where z = y4+(x2+x+1)y2+(x2+x+1)y. Then g(K) = 9 and N(K) = 12,
and all rational places of K lie over the infinite place of F ; compare with
Proposition 1(5).

Example 10. g(K) = 10, N(K) = 12,K = F2(x, y1, y2) with

y2
1 + y1 =

x(x+ 1)
x3 + x+ 1

, y2
2 + y2 = u :=

x(x+ 1)
(x3 + x+ 1)(x2 + x+ 1)

.

According to Serre [12] we have N2(10) = 12 or 13, but a recent commu-
nication by Serre [15] indicates that N2(10) = 13, and so this example is
not optimal. There are four rational places of K lying over each of the three
rational places of F . There are exactly two ramified places in the extension
K/L with L = F2(x, y1), namely the unique place of L lying over x2 +x+ 1
and the unique place P of L lying over x3+x+1. To prove that P is ramified,
put z = xy1 and note that

u+z2+z =
y2

1 + y1

x2 + x+ 1
+x2y2

1+xy1 =
(x3 + x+ 1)(x+ 1)

x2 + x+ 1
y2

1+
(x+ 1)3

x2 + x+ 1
y1.

Since νP (y1) = −1, we get νP (u + z2 + z) = −1, and the rest follows from
Proposition 2.

Example 11. g(K) = 12, N(K) = 14,K = F2(x, y1, y2) with

y7
1 +(x4 +x2 +x)y3

1 +(x4 +x3 +x2 +1)y1 +x3 +x+1 = 0, y2
2 +y2 = 1/x.

It is not known whether this example is optimal since N2(12) can be 14
or 15 according to Serre [12]. Note that L = F2(x, y1) is the cyclotomic
function field F (Λx3+x+1) in Example 3A. The principal divisor (x) in L

is Q −∑7
i=1 Pi, where Q is the place of degree 7 lying over x and the Pi,

1 ≤ i ≤ 7, are the rational places lying over the infinite place of F . From
this it follows that the Pi split completely in the extension K/L, producing
all rational places of K, and that Q is the only ramified place in K/L.

Example 12. g(K) = 13, N(K) = 15,K = F2(x, y1, y2, y3) with

y2
1 + y1 = x3 + x, y2

2 + y2 =
xy1

x+ 1
, y2

3 + y3 = x(x+ 1)y2.

This example is optimal. The fact that N2(13) = 15 was mentioned also in a
recent communication by Serre [15]. Note that L = F2(x, y1, y2) is the field
in Example 4A. The seven rational places of L lying over x or x + 1 split
completely in the extension K/L, whereas the rational place P of L lying
over the infinite place of F is totally ramified in K/L. Furthermore, P is the
only ramified place in K/L and mP = 11 in the notation of Proposition 2.
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Example 13. g(K) = 14, N(K) = 15,K = F (Λx4+x+1) = F2(x, y) with

y15 + (x8 + x4 + x2 + x)y7 + (x8 + x6 + x5 + x4 + x3 + x2)y3

+ (x6 + x5 + x4 + x3 + 1)y + x4 + x+ 1 = 0.

It is not known whether this example is optimal since N2(14) can be 15 or
16 according to Serre [12]. All rational places of K lie over the infinite place
of F ; compare with Proposition 1(5).

Example 14. g(K) = 15, N(K) = 17,K is the subfield of F (Λx7) fixed
by the subgroup 〈x+ 1〉 of Gal(F (Λx7)/F ). This example is optimal. The
rational places of K can be read off from the proof of Theorem 2. Note that
Theorem 3 yields an explicit description of K since K = K7 in the notation
of this theorem.

Example 15. g(K) = 17, N(K) = 17,K = F2(x, y1, y2, y3) with

y2
1 + y1 = x3 + x, y2

2 + y2 = (x2 + x)y1, y2
3 + y3 = (x2 + x)y2.

It is not known whether this example is optimal since N2(17) can be 17 or
18 according to Serre [12]. There are eight rational places of K lying over
each of x and x+ 1, and there is a totally ramified place of K lying over the
infinite place of F .

Example 16. g(K) = 21, N(K) = 21,K = F (Λ(x2+x+1)(x3+x+1)) =
F2(x, y) with

y{z2(x+ z + 1)3 + z(x+ z + 1)2(y2 + xy) + (x+ z + 1)(y4 + x2y2)

+ (x2 + x+ 1)(x+ z + 1)}+ y3 + xy2 + (x+ 1)y + 1 = 0

and z = yx
2+x+1 = y4 +(x2 +x+1)y2 +(x2 +x+1)y, where these equations

are obtained from Theorem 1. This example is optimal. All rational places
of K lie over the infinite place of F ; compare with Proposition 1(5).

Example 17. g(K) = 39, N(K) = 33,K is the subfield of F (Λx8) fixed
by the subgroup 〈x+ 1〉 of Gal(F (Λx8)/F ). This example is optimal. The
rational places of K can be read off from the proof of Theorem 2. Note that
Theorem 3 yields an explicit description of K since K = K8 in the notation
of this theorem.
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