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Perfect powers in products of integers from a
block of consecutive integers (II)

by
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1. Introduction. For an integer ν > 1, we define P (ν) to be the greatest
prime factor of ν and we write P (1) = 1. Let m ≥ 0 and k ≥ 2 be integers.
Let d1, . . . , dt with t ≥ 2 be distinct integers in the interval [1, k] and let
l > 2, y > 0 and b > 0 be integers with P (b) ≤ k. We consider the equation

(1) (m+ d1) . . . (m+ dt) = byl

in m, t, d1, . . . , dt, b, y and l. We always assume that the left hand side of
equation (1) is divisible by a prime exceeding k. Consequently, there is an
i with 1 ≤ i ≤ t such that m + di is divisible by an lth power of a prime
exceeding k. Thus m+ di ≥ (k + 1)l implying that m > kl.

Equation (1) with t = k and b = 1 is solved completely by Erdős and
Selfridge [5] in 1975; a product of two or more consecutive positive integers
is never a power. In fact, Erdős [4] proved in 1955 that for ε > 0, equation
(1) with b = 1 and

t ≥ k − (1− ε)k log log k
log k

implies that k is bounded by an effectively computable number depending
only on ε. This was sharpened considerably by Shorey [7], [8] in 1986–87.
Shorey [8] showed that equation (1) with

(2) t ≥ 1
2

(
1 +

4l2 − 8l + 7
2(l − 1)(2l2 − 5l + 4)

)
k

implies that k is bounded by an effectively computable absolute constant.
Further, the assumption (2) has been relaxed for sufficiently large l. More
precisely, Shorey [7] showed in 1986 that equation (1) with

(3) t ≥ kl−1/11 + π(k) + 2

implies that min(k, l) is bounded by an effectively computable absolute con-
stant.
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The proofs of these results depend on the method of Roth and Halber-
stam on difference between consecutive ν-free integers, the results of Baker
[1] on the approximations of algebraic numbers of the form (A/B)m/n with
A > B by rationals and the theory of linear forms in logarithms. The pre-
cise dependence on “A” in the irrationality measures of Baker [1] plays a
crucial role in the proofs. Further, Baker’s sharpening [3] on linear forms in
logarithms is essential. Linear forms in logarithms with αi’s very close to 1
appear in the proofs and the best possible estimates of Shorey [7, Lemma 2],
namely replacing logA in place of logA1 . . . logAn with A = max1≤i≤nAi,
for these linear forms in logarithms are required.

In this paper, we improve the results mentioned above on equation (1)
whenever l ≥ 7. For this, it is important to relax the assumption (2) of Baker
[1] even though this makes the exponent of irrationality measure less precise.
This is possible by appealing to a subsequent paper of Baker [2] in this direc-
tion. See Lemma 1. We shall also use an improved version, due to Loxton,
Mignotte, van der Poorten and Waldschmidt [6], of Shorey [7, Lemma 2]
cited above on linear forms in logarithms to relax the assumption (3). For
stating the results of this paper, we define for l ≥ 7,

νl =





112l2 − 160l + 29
28l3 − 76l + 29

if l ≡ 1 (mod 2),

112l2 − 160l + 17
28l3 − 188l + 129

if l ≡ 0 (mod 2).

For l ≥ 7, we observe that νl ≥ 3/l,

νl ≤





4
l

(
1− 1

(.875)l

)
if l ≡ 1 (mod 2),

4
l

(
1− 1

(1.412)l

)
if l ≡ 0 (mod 2)

and
ν7 ≤ .4832, ν8 ≤ .4556, ν9 ≤ .3878, ν10 ≤ .3664,

ν11 ≤ .3243, ν12 ≤ .3076, ν13 ≤ .2787, ν14 ≤ .2655.
We prove the following result.

Theorem. (a) Equation (1) with

(4) l ≥ 7, t ≥ νlk
implies that k is bounded by an effectively computable number depending
only on l.

(b) Let ε > 0. There exists an effectively computable number C depending
only on ε such that equation (1) with

t ≥ kl−1/3+ε + π(k) + 2

implies that min(k, l) ≤ C.
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2. A relaxation in the assumption (2) of Baker’s paper [1]. In
this section, we appeal to Baker’s paper [2] in order to derive the following
result.

Lemma 1. Let A,B,K and n be positive integers such that A > B,
K < n, n ≥ 3 and ω = (B/A)1/n is not a rational number. For 0 < φ < 1,
put

(5) δ = 1 +
2− φ
K

, s =
δ

1− φ ,

u1 = 40n(K+1)(s+1)/(Ks−1), u−1
2 = K2K+s+140n(K+1).

Assume that

(6) A(A−B)−δu−1
1 > 1.

Then ∣∣∣∣ω −
p

q

∣∣∣∣ >
u2

AqK(s+1)

for all integers p and q with q > 0.

P r o o f. We put

(7) λ1 = 40n(K+1)A, λ2 = 40n(K+1)(A−B)K+1A−K

and

Λ =
log λ1

log λ2
.

By (6) and 0 < φ < 1, we observe that 0 < λ2 < 1. We follow Baker [2] with
mj = j/n for 0 ≤ j ≤ K to conclude that for integers r, p and q with r > 0
and q > 0, there exists a polynomial Pr(X) ∈ Z[X] satisfying

(i) degPr ≤ K, (ii) H(Pr) ≤ λr1,
(iii) Pr(p/q) 6= 0, (iv) |Pr(w)| ≤ λr2.

Here H(Pr) denotes the maximum of the absolute values of the coefficients
of Pr. For r ≥ 54, Baker [2] gave sharper estimates (ii) and (iv) with 40
replaced by 4 in the definitions (7) of λ1 and λ2. We may assume that
|ω − p/q| < 1/2 and we define r as the smallest integer such that

λr2 ≤
1

2qK
.

Then

λr2 >
λ2

2qK

and

λr1 = (λr2)Λ ≤
(
λ2

2qK

)Λ
= λ12−Λq−KΛ.
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Further, we observe that

1
qK
≤
∣∣∣∣Pr
(
p

q

)∣∣∣∣ ≤
∣∣∣∣Pr
(
p

q

)
− Pr(ω)

∣∣∣∣+ |Pr(ω)| ≤
∣∣∣∣Pr
(
p

q

)
− Pr(ω)

∣∣∣∣+
1

2qK
.

Thus ∣∣∣∣Pr
(
p

q

)
− Pr(ω)

∣∣∣∣ ≥
1

2qK
.

On the other hand, we have
∣∣∣∣Pr
(
p

q

)
− Pr(ω)

∣∣∣∣ =
∣∣∣
ω\
p/q

P ′r(X) dX
∣∣∣ ≤ K2Kλr1

∣∣∣∣ω −
p

q

∣∣∣∣.

Consequently, ∣∣∣∣ω −
p

q

∣∣∣∣ > (K2K+1λ1)−12Λq−χ,

where χ = K − KΛ. By (6), we observe that −Λ ≤ s and χ ≤ K(s + 1).
Hence ∣∣∣∣ω −

p

q

∣∣∣∣ >
u2

AqK(s+1)
.

3. Proof of Theorem (a). Let ε1 = (106l3)−1. Suppose that equa-
tion (1) with (4) is satisfied. We may assume that k exceeds a sufficiently
large effectively computable number depending only on l. We denote by
u3, u4 and u5 effectively computable positive numbers depending only on l.
We put

(8) τ =
(

1 +
ε1l

4

)
ν−1
l <

l

2
, τ1 = (ν−1

l − 1)/(l − 1).

We see from equation (1) that

m+ di = aix
l
i for 1 ≤ i ≤ t,

where ai and xi are positive integers satisfying

P (ai) ≤ k,
(
xi,
∏

p≤k
p
)

= 1.

We write S = {a1, . . . , at}. We argue as in [8] to conclude that there exists
a subset S2 of S with |S2| ≥ u3k and

(9) ai ≤ kτ for ai ∈ S2.

Further we apply the method of Halberstam and Roth as in [8] for deriving
that there exists a subset S3 of S2 with |S3| ≥ u4k

1−ε1 such that

(10) xi > k2−τ1−5ε1 for ai ∈ S3.
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In fact, (9) is valid with τ replaced by τ ′ = (1 + ε′/4)ν−1
l where ε′ =

(106l5)−1, and we use this estimate for deriving (10). Put s3 = |S3|. By per-
muting the subscripts of d1, . . . , dt, there is no loss of generality in assuming
that a1, a2, . . . , as3 are elements of S3 and a1 < a2 < . . . < as3 . Then we
find, as in [8], an integer µ with 1 ≤ µ < s3 such that

(11) log
(
aµ+1

aµ

)
≤ u5 log k

k1−ε1

and

(12) 0 6=
∣∣∣∣
(

aµ
aµ+1

)1/l

− xµ+1

xµ

∣∣∣∣ <
2k

aµ+1xlµ
.

Now, we turn to applying Lemma 1 with

(13) K =
{

(l − 3)/2 if l ≡ 1 (mod 2),
(l − 4)/2 if l ≡ 0 (mod 2),

and A = aµ+1, B = aµ, n = l. We put ψ = (2−φ)/K, where φ will be chosen
later in some special way and we put δ = 1 + ψ with 2/(l − 3) < ψ < 1. By
(11), we observe that

aµ+1 − aµ
aµ+1

<
aµ+1 − aµ

aµ
<

2u5 log k
k1−ε1 .

Therefore, by (9), the left hand side of inequality (6) exceeds
(

k1−ε1

2u5 log k

)1+ψ

(u1k
τψ)−1.

Thus, the assumption (6) is satisfied if 1 + ψ − τψ ≥ 5ε1, which, by (8),
reads

νl ≥ ψ

1 + ψ
+
ε1l

4
· ψ

1 + ψ
+

5ε1νlψ

1 + ψ
.

We observe that the second summand on the right hand side of the preceding
inequality does not exceed 2ε1, since

ψ

1 + ψ
=

2− φ
K + 2− φ <

2
K + 1

≤ 4
l − 2

,

and the third summand is at most 5ε1, since νl < 1 and 0 < ψ < 1. Hence,
the assumption (6) is satisfied if

(14) νl ≥ ψ

1 + ψ
+ 7ε1.

We shall later choose φ depending only on l so that (14) is satisfied. Then,
the assumption of Lemma 1 is valid. Hence, we conclude from Lemma 1 that

(15)
∣∣∣∣
(

aµ
aµ+1

)1/l

− xµ+1

xµ

∣∣∣∣ >
u2

aµ+1x
K(s+1)
µ

.
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We put θ = l −K(s+ 1). The parameter φ will be chosen later in such
a way that θ > 0. We observe from (5) that

θ = l − K + 2− φ
1− φ −K = l −

(
2 +

φ

1− φ
)

(K + 1)

which, by (13), implies that

θ = θ′ − φ(K + 1)
1− φ ,

where

θ′ =
{

1 if l ≡ 1 (mod 2),
2 if l ≡ 0 (mod 2).

Further, we see from (8) and (14) that

τ1 ≤ 1
(l − 1)ψ

− ε1.

Finally, we combine (12), (15) and (10) in order to derive that

k(2−τ1−5ε1)θ < 2u−1
2 k,

which, since k is sufficiently large, implies that (2 − τ1 − 5ε1)θ < 1 + ε1.
Consequently,

θ′ − φ(K + 1)
1− φ <

(
2− 1

(l − 1)ψ

)−1

+ 8ε1.

Let l ≡ 1 (mod 2). Then, by substituting θ = 1, l = 2K + 3 and ψ =
(2− φ)/K, we get

(1− (K + 2)φ)(7K + 8− (4K + 4)φ)− (2K + 2)(2− 3φ+ φ2) < 128ε1K.

Thus

(4K2 + 10K + 6)φ2 − (7K2 + 20K + 14)φ+ 3K + 4 < 128ε1K.

Let

φ =
24K + 28.84

14(4K2 + 10K + 6)
.

Then

(45.68)K2 − (26.88)K − 116.8944 < 3 · 106ε1K
3.

We observe that the left hand side of the preceding inequality exceeds 12
since K ≥ 2. On the other hand, the right hand side is less than one. This
is a contradiction.
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Let l ≡ 0 (mod 2). Then

(4K2 + 16K + 15)φ2 − (7K2 + 35K + 39)φ+ 10K + 18 < 128ε1K

and we choose

φ =
80K + 127.82

14(4K2 + 16K + 15)

to obtain

(145.64)K2 − (12.6)K − 531.7676 < 3 · 106ε1K
3,

leading to a contradiction. Finally, we compute ψ in either of the cases l ≡ 1
(mod 2) and l ≡ 0 (mod 2) to observe that the assumption (14) is valid.
This completes the proof of Theorem (a).

4. Proof of Theorem (b). We follow the notation of [7, Lemma 2]
where, under certain assumptions, the lower bound

(16) exp(−(C9τ2n
3)3n+3τ1 logA)

for the absolute value of linear forms in logarithms was proved. This has
been improved to

(17) exp(−(C9n)nτn+1
2 logA)

in [6, Theorem 1]. If we replace (16) by (17) for the case n = 2 in the proof
of [7, Lemma 6], the assertion of Theorem (b) follows.
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