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Equations in roots of unity
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1. Introduction. Suppose that n ≥ 1 and that a1, . . . , an are nonzero
complex numbers. We study equations

(1.1) a1ξ1 + . . .+ anξn = 1

to be solved in roots of unity ξi. We call a solution ξ = (ξ1, . . . , ξn) of (1.1)
nondegenerate if

∑
i∈I aiξi 6= 0 for each nonempty subset I of {1, . . . , n}.

Write ν(a1, . . . , an) for the number of nondegenerate solutions ξ of (1.1),
whose components are roots of unity. Equations (1.1) have been first studied
by H. B. Mann [2]. His result implies that for a1, . . . , an ∈ Q we have

ν(a1, . . . , an) ≤ ec1n2
,

where c1 is a positive absolute constant. This was improved by J. H. Conway
and A. J. Jones [1]. They proved that for a1, . . . , an ∈ Q we get

ν(a1, . . . , an) = Oc(exp(cn3/2(log n)1/2))

for any c > 1. In the case when a1, . . . , an lie in a number field K of degree
d, A. Schinzel [4] has shown that

ν(a1, . . . , an) ≤ c2(n, d)

for some function c2, which depends only upon n and d. U. Zannier [7] has
improved upon Schinzel’s result and also determined c2 explicitly.

In the current paper we address the problem to derive a bound for
ν(a1, . . . , an) for arbitrary complex numbers ai. We prove that in fact

ν(a1, . . . , an) ≤ c3(n),

i.e., we derive a uniform bound that depends only upon n.
Write E for the group of roots of unity. Given a point w = (w1, . . . , wn)

in En and a natural number m we write A(w,m) for the set of points
v = (v1, . . . , vn) ∈ En with components of the shape vi = ηiwi, where ηi is
an mth root of unity. We prove
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Theorem. There exist points w1, . . . ,wt ∈ En with

(1.2) t ≤ 22(n+1)!

and there exist prime numbers

p1 < p2 < . . . < ps ≤ (n+ 1)!

with the following property : Any nondegenerate solution ξ = (ξ1, . . . , ξn) of
(1.1) in roots of unity is contained in the union

t⋃
τ=1

A(wτ , p1 . . . ps).

Moreover , we have for any nonzero complex numbers a1, . . . , an

(1.3) ν(a1, . . . , an) ≤ 24(n+1)!.

We remark at this point that the results of [1], [2], [4] and [7] for rational
or algebraic coefficients ai respectively are constructive, i.e., in principle the
proofs provide us with algorithms to determine explicitly the solutions ξ of
(1.1). This is no longer the case with our Theorem. In fact, it is not clear
how our method of proof could give us an effective procedure to construct
the points w1, . . . ,wt.

In a subsequent paper [5] we will apply our result to estimate the number
of solutions of linear equations over division groups of finitely generated
subgroups G of the multiplicative group C∗. In that wider setting the current
Theorem establishes the result of [5] for groups G of rank 0.

2. Rational coefficients. Suppose m ≥ 2. Let b1, . . . , bm be nonzero
integers and consider the relation

(2.1)
m∑

i=1

biξi = 0,

where the ξi are roots of unity. We say that a solution ξ = (ξ1, . . . , ξm) of
(2.1) is nondegenerate if for each nonempty proper subset I of {1, . . . ,m}
we have

(2.2)
∑

i∈I
biξi 6= 0.

Lemma 2.1. There exist distinct primes p1, . . . , pu ≤ m such that any
nondegenerate solution ξ = (ξ1, . . . , ξm) of (2.1) in roots of unity is of the
shape

(2.3) ξi = ξηi,

where the ηi are p1 . . . pu-th roots of unity (and where ξ is a suitable root of
unity).
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This is Theorem 1 of H. B. Mann [2].

Lemma 2.2. Let the hypotheses be the same as in Lemma 2.1. Then the
primes p1, . . . , pu satisfy

(2.4)
u∑

i=1

(pi − 2) ≤ m− 2.

This is Theorem 5 of Conway and Jones [1].

3. Multilinear maps. Let CN be the vector space of N -tuples
(x1, . . . , xN ). Let SN be the group of permutations of {1, . . . , N}, so that
|SN | = N !. Let V be the space of vectors with components zσ (σ ∈ SN ),
so that dimV = N !. We introduce the map from CN × . . . × CN (with N
factors) into V given by

(x1, . . . ,xN ) 7→ z(x1, . . . ,xN ).

Here z has components

(3.1) zσ = (signσ)x1,σ(1) . . . xN,σ(N),

where xi = (xi1, . . . , xiN ) and sign σ = ±1 according as σ is an even or odd
permutation. It is clear that z is linear in each xi and we have

(3.2)
∑

σ∈SN

zσ(x1, . . . ,xN ) = det(x1, . . . ,xN ).

Suppose we are given a hyperplane U of CN defined by the equation

(3.3)
N∑

i=1

cixi = 0.

Assume that the coefficients in (3.3) satisfy

(3.4) c1 . . . cN 6= 0.

Given vectors x1, . . . ,xN ∈ U , we obviously get

(3.5)
∑

σ∈SN

zσ(x1, . . . ,xN ) = 0.

Lemma 3.1. Let dσ (σ ∈ SN ) be complex numbers such that

(3.6)
∑

σ∈SN

dσzσ(x1, . . . ,xN ) = 0

for each tuple of points (x1, . . . ,xN ) with xi ∈ U (1 ≤ i ≤ N). Then
(dσ)σ∈SN is proportional to (1, . . . , 1), i.e., (3.6) is a consequence of (3.5).

This is Lemma 4 of [6].
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Write M for the set of proper nonempty subsets R of SN . Given R ∈M
we define the multilinear form FR in vectors x1, . . . ,xN ∈ U , by

(3.7) FR(x1, . . . ,xN ) =
∑

σ∈R

zσ(x1, . . . ,xN ).

Lemma 3.1 implies that FR does not vanish identically on U × . . . × U
(N factors). We may conclude that the set of points y ∈ U such that
FR(y,x2, . . . ,xN ) vanishes identically in x2, . . . ,xN ∈ U is a proper sub-
space of U . We denote this subspace by U1R. We may perform this procedure
for every R ∈ M. Now pick an element y1 ∈ U \

⋃
R∈M U1R. Consider the

set of elements y ∈ U such that FR(y1;y,x3, . . . ,xN ) vanishes identically
as x3, . . . ,xN run through U . By our choice of y1, this condition defines for
each R ∈ M a proper subspace U2R of U . Pick y2 in U \⋃R∈M U2R. Our
set of multilinear forms FR (R ∈ M) is symmetric in the following sense:
For each R ∈M and for each σ ∈ SN there exists R′ ∈M such that

FR(xσ(1), . . . ,xσ(N)) = ±FR′(x1, . . . ,xn).

It follows that we have
⋃

R∈M

U2R ⊃
⋃

R∈M

U1R.

We may continue our construction in an obvious way. Finally, we get points
y1, . . . ,yN−1 and subspaces UiR for i = 1, . . . , N−1 and R ∈M. Then each
equation

(3.8) FR(y1, . . . ,yN−1,x) = 0 in x ∈ U
will define a proper subspace UNR of U and we have

⋃

R∈M

UNR ⊃
⋃

R∈M

UN−1,R ⊃ . . . ⊃
⋃

R∈M

U1R.

Our construction now implies

Lemma 3.2. Suppose the points y1, . . . ,yN−1 and the subspaces UNR

(R ∈M) are constructed as above. Then for each point x ∈ U \⋃R∈M UNR

we have

(3.9)
∑

σ∈SN

zσ(y1, . . . ,yN−1,x) = 0

but no proper nonempty subsum of the left hand side of (3.9) vanishes.

For the proof it suffices to observe that the subsums of (3.9) are just
our multilinear forms FR. But our construction is such that for x ∈ U \⋃

R∈M UNR we have FR(y1, . . . ,yN−1,x) 6= 0 for each R ∈M.
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We finally remark that the number of subspaces UNR (R ∈ M) is
bounded by

(3.10) 2N !.

4. Linear subspaces. Let N ≥ 2 and suppose that c1, . . . , cN are
nonzero complex numbers. Consider the subspace U of CN defined by

(4.1) c1x1 + . . .+ cNxN = 0,

which was already studied in Section 3. Write B for the subset of points
x = (x1, . . . , xN ) in U whose components xi are roots of unity. Denote by
E the set of all roots of unity and by Em the set of mth roots of unity. If
B 6= ∅, we define for u ∈ B and for l ∈ N the set B(u, l) by

(4.2) B(u, l) = {(ζζ1u1, . . . , ζζNuN ) | ζ ∈ E, ζi ∈ El}.
Lemma 4.1. Suppose that B 6= ∅. Then there exists u0 ∈ B, there are

primes q1 < . . . < qa with
a∑

i=1

(qi − 2) ≤ N !− 2

and there are proper linear subspaces W1, . . . ,Wt1 of U such that the follow-
ing assertion holds true: The set of solutions B of (4.1) in roots of unity is
contained in the union

B(u0, q1 . . . qa) ∪W1 ∪ . . . ∪Wt1 .

Here we have

(4.3) t1 ≤ 2N !.

P r o o f. Recall the definition of the multilinear forms FR(x1, . . . ,xN )
in (3.7). The subspaces U1R (R ∈ M) in Section 3 do not depend on any
choice of points. We distinguish two cases: Either B is contained in the
union

⋃
R∈M U1R. Then obviously the assertion of the lemma is satisfied

with {W1, . . . ,Wt1} = {U1R | R ∈M}. In that case the set B(u0, q1 . . . qa)
will not be needed at all. So any u0 ∈ B and any primes q1 < . . . < qa as
in the assertion will do. Otherwise we may pick y1 ∈ B \

⋃
R∈M U1R and

define subspaces U2R (R ∈M) with respect to y1. Then if B ⊂ ⋃R∈M U2R,
we may choose u0 ∈ B, q1 < q2 < . . . < qa according to the assertion
arbitrarily and again the lemma follows. Continuing in this way, there are
two alternatives: either the construction ends after step j with j ≤ N −1, B
will be contained in the union

⋃
R∈M UjR and we are done. Or we may find

points y1, . . . ,yN−1 ∈ B and define subspaces UNR (R ∈ M) with respect
to these points.
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Then we take {W1, . . . ,Wt1} = {UNR | R ∈ M}. We now assume that
B \⋃R∈M UNR 6= ∅. We may apply Lemma 3.2 and conclude that for each
x ∈ B \⋃R∈M UNR

(4.4)
∑

σ∈SN

zσ(y1, . . . ,yN−1,x) = 0

but no proper nonempty subsum of the left hand side of (4.4) vanishes.
However, by definition of B, the summands zσ(y1, . . . ,yN−1,x) in (4.4)
are roots of unity. So (4.4) is an equation of the type considered in (2.1),
and in fact we have nondegenerate solutions (zσ(y1, . . . ,yN−1,x))σ∈SN

. We
may apply Lemma 2.2 with m = N ! and with b1 = . . . = bm = 1. Now
Lemma 2.2 says the following: For any solution x ∈ B \ ⋃R∈M UNR the
point (zσ(y1, . . . ,yN−1,x))σ∈SN is of the shape (ζησ)σ∈SN , where ζ is an
arbitrary root of unity and where the ησ are q1 . . . qa-th roots of unity with

a∑

i=1

(qi − 2) ≤ N !− 2.

We may assume without loss of generality that 2 ∈ {q1, . . . , qa}. Other-
wise we enlarge the set by taking {2, q1, . . . , qa}.

Recall that the components zσ are the summands in the Laplace expan-
sion of the determinant

det(y1, . . . ,yN−1,x) =

∣∣∣∣∣∣∣

y11 . . . y1N

y21 . . . y2N

. . . . . . . . . . . . .
x1 . . . xN

∣∣∣∣∣∣∣
.

We claim that for i = 1, . . . , N we can find a root of unity ζi of order dividing
q1 . . . qa such that

(4.5) xi =
x1

y11
y1iζi

holds true for i = 1, . . . , N .
To verify (4.5) consider in the expansion of the determinant the ele-

ment we get along the main diagonal, i.e., y11y22 . . . yN−1,N−1xN . Com-
pare this element with the one where we replace the top left corner by the
bottom left corner and the bottom right corner with the top right corner
but otherwise we remain on the main diagonal, i.e., consider the element
x1y22 . . . yN−1,N−1y1N . Taking quotients we get

y11xN
y1Nx1

= ±ηN ,

where ηN is a root of unity of order dividing q1 . . . qa. By our assumption 2 ∈
{q1, . . . , qa} however, and therefore −ηN is a root of unity of order dividing
q1 . . . qa as well. Thus (4.5) in the case i = N is verified with ζN = ±ηN .
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Interchanging columns in the determinant we get (4.5) in general. Therefore
taking u0 = y1 we may infer that each point x ∈ B \⋃R∈M UNR is of the
shape

(x1, . . . , xN ) = (ζζiy1i) = (ζζiu0i) with ζ = x1/y11

and the lemma follows.

5. Proof of the Theorem. For n = 1 equation (1.1) has at most a
single solution in E and the Theorem follows trivially.

Now suppose that n > 1 and that the assertion is proved for all n′ < n.
Put n+ 1 = N and write equation (1.1) in homogenized form as

(5.1) a1x1 + . . .+ aN−1xN−1 − xN = 0,

to be solved in roots of unity xi.
To prove assertion (1.2) of the Theorem it will suffice to show that there

are points u1, . . . ,ut ∈ EN with

t ≤ 22N !

such that any nondegenerate solution x = (x1, . . . , xN ) of (5.1) is contained
in the union

t⋃
τ=1

B(uτ , p1 . . . ps)

with B(u, l) as in (4.2). Then clearly the general solution ξ = (ξ1, . . . , ξn)
of (1.1) will be of the shape

ξi =
xi
xN

(i = 1, . . . , n).

Thus in the Theorem the sets A(wτ , p1 . . . ps) (τ = 1, . . . , t) will do, where
wτ = (wτ1, . . . , wτn) is defined by

wτi =
uτi
uτN

(i = 1, . . . , n).

We may apply Lemma 4.1 to (5.1). Thus, there exist proper linear sub-
spaces W1, . . . ,W2N! of the (N − 1)-dimensional space defined by (5.1) and
there exists a tuple u0 = (u01, . . . , u0N ) of roots of unity such that any
solution x = (x1, . . . , xN ) of (5.1) is contained in the union

B(u0, q1 . . . qa) ∪W1 ∪ . . . ∪W2N! .

Here
a∑

i=1

(qi − 2) ≤ N !− 2.
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Consider a typical subspace, say W . It may be defined by an equation

(5.2) b1x1 + . . .+ bN−1xN−1 = 0,

where not all bi are equal to zero.
Let I be a nonempty subset of {1, . . . , N −1} and let C(I) be the subset

of solutions of (5.2) satisfying

(5.3)
∑

i∈I
bixi = 0,

but no proper subsum of the left hand side of (5.3) vanishes. We may apply
the induction hypothesis to the solutions of (5.3) lying in C(I).

Consequently, there exist 22|I|! points vj in |I|-dimensional space, and
with roots of unity as components, such that any nondegenerate solution of
(5.3) is contained in the union

⋃
B(vj , r1 . . . rb).

Here r1, . . . , rb are suitable primes satisfying r1 < . . . < rb ≤ |I|!.
Let v = (vi)i∈I be a typical point among the vj . Then the elements in

B(v, r1 . . . rb) may be written as (xi)i∈I with components

(5.4) xi = xηivi (i ∈ I),

where x is an arbitrary root of unity and ηi is a root of unity whose order
divides r1 . . . rb. We may substitute (5.4) into (5.1) and obtain, writing aN =
−1,

(5.5)
(∑

i∈I
aiηivi

)
x+

∑

i 6∈I
aixi = 0.

This is an equation in the N−|I|+1 variables xi with i 6∈ I and x. As in (5.3)
we clearly have |I| ≥ 2, we may apply the inductive hypothesis again. By the
hypothesis of our Theorem, on the left hand side of (5.5) no proper subsum
vanishes. Thus by induction we get 22(N−|I|+1)! points yj ∈ EN−|I|+1 and
primes s1 < . . . < sc ≤ (N − |I|+ 1)! such that the solutions x, xi (i 6∈ I) of
(5.5) are contained in the union of the sets B(yj , s1 . . . sc). We now combine
the results we have derived for (5.3) and (5.5).

Given a point v corresponding to (5.3) and a point y corresponding to
(5.5) we construct a point u ∈ EN as follows: Suppose y has the components
y, yi (i 6∈ I). Then we put

ui =
{
viy for i ∈ I,
yi for i 6∈ I.

So u = (u1, . . . , uN ) has components which are roots of unity.
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Recall that the subspace W with the set I produces 22|I|! points v and
22(N−|I|+1)! points y. So the pair W , I gives rise to no more than

(5.6) 22(|I|!+(N−|I|+1)!) points u.

A closer look at (5.3) and (5.5) shows that for |I| = 2 in (5.3) a single point
v and for |I| = N − 1 in (5.5) a single point y will suffice. In both cases
we obtain only 22(N−1)! points u. Estimating the total number of points u
corresponding to a single subspace W we finally obtain the bound
((

N

2

)
+
(

N

N − 1

))
22(N−1)! +

N−2∑

|I|=3

(
N

|I|
)

22(|I|!+(N−|I|+1)!)

≤ 22(N−1)!(2N −N).

Consequently, each subspace W gives rise to not more than 2N !−1 points u.
Allowing a factor 2N ! from Lemma 4.1 for the number of subspaces W ,

we finally see that altogether 22N ! points u will suffice for the set of sub-
spaces W . This bound also easily takes care of the extra point u0 arising
from the assertion of Lemma 4.1.

We still have to discuss how the primes r1, . . . , rb and s1, . . . , sc from
(5.3) and (5.5) and the primes q1, . . . , qa corresponding to u0 fit together.
However, we had

q1 < . . . < qa,

a∑

i=1

(qi − 2) ≤ N !− 2,

r1 < . . . < rb ≤ |I|!,
s1 < . . . < sc ≤ (N − |I|+ 1)!.

Therefore, we have only primes not exceeding N !. Thus in the assertion
of the Theorem it suffices to take the set {p1, . . . , ps} as the union of the
sets {r1, . . . , rb}, {s1, . . . , sc}, the union being taken over all points v and y
in our construction together with the primes {q1, . . . , qa} coming from the
extra point u0 in Lemma 4.1. Assertion (1.2) follows with N = n+ 1.

As for assertion (1.3), we remark that by Theorem 9 of J. B. Rosser and
L. Schoenfeld [3] we have for x > 0

(5.7)
∑

p≤x
log p ≤ 1.02x.

In the above considerations leading to the proof of (1.2), it is clear that points
wτ coming from a subspace Wτ involve only primes ≤ (N − 1)!. In view
of (5.7) there will be not more than exp(1.02(N − 1)!) possibilities for each
component ξi of a solution ξ in the corresponding set A(wτ , p1 . . . ps). Hence
A(wτ , p1 . . . ps) in that case contains not more than 22(n+1)! solutions ξ.
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There remains the exceptional point u0 in Lemma 4.1. The corresponding
set B(u0, q1 . . . qa) in view of Lemmata 2.1 and 2.2 has

q1 < . . . < qa,

a∑

i=1

(qi − 2) ≤ N !− 2.

Estimating roughly, again we see that there are not more than 22(n+1)!

solutions ξ in the set A(w0, q1 . . . qa) derived from B(u0, q1 . . . qa). Allowing
the factor 22(n+1)! for the number of sets A(wτ , p1 . . . ps) we finally get (1.3).
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