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On characterization of Dirichlet L-functions
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TAKEO FUNAKURA (Okayama)

1. Introduction. Let L(s, f) denote the Dirichlet series Y.~ f(n)/n®
If f is purely recurring, then L(s, f) is absolutely convergent for Re(s) > 1
and
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where N is a period of f and
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is the Hurwitz zeta function. We know that L(s, f) can be extended an-
alytically to the whole plane as a meromorphic function of order one and
has only a simple pole with residue (f(1) + ...+ f(N))/N at s = 1 unless
f(1)+...+ f(N) =0, in which case there exists no pole in the whole plane
and L(s, f) is convergent for Re(s) > 0. We call f even (resp. odd) modulo
N if, extending it periodically to all integers, f(—z) = (=1)4f(x) with d = 0
(resp. d = 1). Schnee [6] showed the functional equation
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where
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We list some of the above properties of L(s, f) as

(A) The Dirichlet series expansion of L(s, f) is absolutely convergent for
Re(s) > 1.

(B) L(s, f) can be continued into the whole plane to a meromorphic
function of finite order with a finite number of poles.
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(C) For a non-negative integer d and a positive number N a functional
equation holds in the form

() (5= () (5o

where L(s,g) is convergent in a half-plane.

In Section 2 we shall prove that (A), (B), and (C) characterize Dirichlet
series with recurrent coefficients, following Chandrasekharan—Narashimhan
[3] and modifying Siegel’s proof [7] of Hamburger’s theorem [4] on the Rie-
mann zeta function. In Section 3 we characterize Dirichlet L-functions with-
out using Euler products. We shall use Dirichlet L-functions in Section 4 to
give a characterization of finite Dirichlet series in a way different from Toy-
oizumi’s results in [8]. In Section 5 we shall extend the concept of equivalence
and conductors of Dirichlet characters to general periodic functions.

The author expresses his thanks to the referee for valuable advice and
kindly support.

2. Characterization of recurring coefficients

LEMMA 2.1. For functions f # 0, properties (A), (B) and (C) imply that
N is a positive integer, the number d is 0 or 1, f is purely recurring, even
or odd modulo N according as d =0 or 1, and g =i~ Txf.

Proof (for more details see Chandrasekharan—Narashimhan [3]). We
put
¢(s) = (2N)"L(2s —d, f), (s) = (2N)°L(2s — d, g).
The given functional equation becomes
(2m) " I(5)¢(s) = (2m)°"°T(8 — s)y (0 — 5),
where 6 =d +1/2.
Let «, 0 be positive numbers such that

n2a—d’ n2B—d
n= n=1

E:I f(n) g9(n)

converge absolutely. By (A) we may choose @ < 1+ d (in fact, any a >
(1+d)/2 would do).

We see from (B) and the functional equation that ¢(s) has at most a
finite number of poles r, all in the strip 6 — 5 < Re(r) < a.

We start off from the integral

1

2mi

S I'(s)o(s)z™%ds (x> 0)
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over the vertical line () with real point «. By the formula

1 r
Py S (5) ds=e"Y (y>0),
271 @) yS

putting in the series representation of L(s, f), it is, on the one hand,
o0
Z f(n)nde—an/@N)‘
n=1

The series representations and the functional equation together with
the Phragmén-Lindeldf principle, L(s, f) being of finite order, imply in a
standard way that |¢(s)| can be estimated by a power of [Im(s)| in any
given vertical strip. This enables one, on the other hand, to push the line of
integration to (§ — ().

Using the functional equation,

1 1
5 g I(s)o(s)a™" ds = o g (6 — 8)ih(6 — s)(2m) %Oz ds
(5-5) (6-8)
1
=5 S I(s)y(s)(2m)*2° % ds
()
— <27T>6 i g(n)nde—QTrQng/(Nm)
x n=1

by a similar calculation in the last step as above.
It remains to collect the residues of I'(s)¢(s)x~°. At any given pole r of
order ¢ the residue is of the form

z~"P-(logz),

where P, is a polynomial of degree < ¢ with constant coefficients. Denoting
by P(z) their (finite) sum,

P(z) = 27" P,(log ),

we get

(+) D flmle /BN
n=1

T

o d+1/2 oo )
_ () Zg(n)nde—ZW n®/(Nzx) +P(.Z')
n=1

Following Siegel’s idea, we multiply (%) throughout by zle=s"7/(2N) firgt
with s > 0, and integrate with respect to x over (0,00). The left hand side
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becomes

_ d+1 G f(n)nd
Fi(s) = (2N)"'0(d+1)) s

n=1

and using the formula

© —(ax+b/x)
| = \ﬁe—“ab (a,b > 0),
b \/5 a

the first term on the right becomes
Fy(s) = (2w)d+1\/ﬁz s_lg(n)nde_%”s/N,
n=1

both the resulting series being absolutely convergent.
Finally, the second term on the right becomes
Fs(s) = S de(x)e_SQI/(QN) dz.
0
The latter is a finite linear combination of integrals, absolutely convergent
by Re(d —r) > d — a > —1, of the type

00 o) d—r

2 d
S xd_r(log x)me—s z/(2N) dr = S <Sy2> (logy _9 log S)me_y/(2N) ?Z;
0 0

with integers m > 0. This is s2" 72472 multiplied by a polynomial in log s
and we see that F3(s) can be extended to a single-valued regular function
in the whole plane with the non-positive real axis deleted.

Our formula for F5(s) extends sFx(s) to a function regular and periodic
with period iN for Re(s) > 0.

Finally, the series representation of Fj(s) does, in fact, converge for all
complex s # +in (n = 1,2,...) representing a meromorphic function in the
whole plane with poles of order d + 1 at +in only (unless f(n) = 0).

From the periodicity of sFi(s) — sF5(s) = sFs(s) we see that N is a
positive integer and

lim Fy(s)s(s —in)? = (=i)INTI0(d + 1) f(n)
is periodic in n with period N.

Denote by fg and fo the even and the odd part of f modulo N, respec-
tively. Using L(s, f) = L(s, fr) + L(s, fo) in (C), the functional equations
for L(s, fg) and L(s, fo) and the formula

I'(s/2) 21=s ST

F((i-s)2) ~ vr Dy
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we get

L(s,Tn fr) cos % —iL(s, T fo) sin = = G(s)L(s, g) cos M,

2 2
where
d—1 .
s+ .
— ifd>1
G(s) = jl_[os—d+1—|—2j e
1 ifd=0or 1.
Putting s = 4r 4 1+d for any positive integer r large enough, we get L(4r+
1+ d,h) = 0, where h = —sin(dn/2)Tn fg — icos(dn/2)Tn fo, implying

h = 0. Therefore, Ty fg = 0 or Ty fo = 0 according as d = 1 or 0 mod 2 and
L(s,g =i "Tnf) = (1 = G(s))L(s,9)-

The rational function 1—G(s) is thus the quotient of two Dirichlet series.
Such a quotient or its reciprocal tends to a finite limit with an exponential
speed, O(e~ %) as s — 400, a speed a non-constant rational function cannot
produce. Our G(s) is only constant, G(s) = 1 if d = 0 or 1, implying also
g —i 9Ty f = 0. The proof of Lemma 2.1 is complete.

3. Characterization of Dirichlet L-functions. Apostol ([1], [2]) char-
acterizes Dirichlet L-functions corresponding to primitive characters by
functional equation and Euler product. We replace the latter by an alge-
braic condition.

PROPOSITION 3.1. Let f # 0 satisfy (A), (B) and (C), the latter with
g =WF, where W is a constant. By Lemma 2.1, N is an integer and assume
that f(n) = 0 if (n,N) > 1 and that the field Qs generated by the values
f(n) is algebraic over the rationals and is linearly disjoint from the Nth

cyclotomic field Cn. Then f is a constant multiple of a primitive character
mod N.

Proof. By Lemma 2.1 we also know that f is purely recurring with
period N and Ty f = W f.

Our algebraic assumption means that for any m relatively prime to N
there is an automorphism 7, of the composite field QQyCy such that 7,

leaves QQ; invariant and 7, (e2™/N) = 2mm/N,
We get
N
T (VN (T F)(8) = T (3 Fln)e2mmbIY)

n=1

= D Fm)e*™ N = VN(Ty f)(mk)

n=1
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and by the identity T f = W f,
VNlW f(mk) = 7, (VNi?W f(k)) = 7 (VNE@W) f (k).
Putting £ = 1 here we get
VNlW f(m) = 7, (VNi®W) f(1).

This shows that f(1) # 0, otherwise f = 0, a contradiction. We may
assume f(1) = 1 and dividing the last two equations we have

f(mk) = f(m)f (k).
If (m, N) > 1 then this holds trivially, both sides vanishing. Hence f is a
character mod N satisfying (T f)(1) = i“W f(1) = W, ie. (Inf)(n) =
(Twf)(1) - f(n). Such a character is known to be primitive (see e.g. [1],
Lemma 1 or [5]) and the proof is complete.

We remark that Dirichlet characters do not always satisfy the algebraic
condition, but Proposition 3.1 enables us to characterize e.g. the Legendre
symbol by assuming f to be rational-valued.

4. Characterization of finite series. If in

Fis)=S &
n=1 n?

¢n, = 0 for n large enough and x(n) is any Dirichlet character, then
L(s, f) = F(s)L(s, x)

has the purely recurring coefficients

f(n) = caxx(n) = cax(n/d).

d|n
Conversely, we have

THEOREM 4.1. If for each Dirichlet character x there is an N such that
fn+ N) = f(n) for n large enough, then F(s) is a finite series.

Proof. Denoting by p the Mdbius function we see that

PO = 10 = L5, )L s,

is a Dirichlet series absolutely convergent for Re(s) > 1, representing a
meromorphic function of order < 1 in the whole plane.

We first claim that for any given complex number s (# 1) there is a
Dirichlet character y such that L(s,x) # 0. Since L(s, f) can only have a
first order pole at s = 1 as its only singularity, it will follow that F'(s) is
regular for s # 1. Using the zeta function, ((s) = L(s, x) with x = 1, having
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the same singularity at s = 1, we shall even find that F(s) is an entire
function.
To prove the claim we first note that ((s,z) (0 < z < 1), also a regular
function in s in the whole plane with the exception of s = 1, satisfies
o™((s,x)

B = (=1D)™s(s+1)...(s+m—1){(s+m,x)

o0

= (=1)"s(s+1)...(s+m—1))

n=0

1
(x +mn)stm

for Re(s +m) > 1, implying
™( (s, x) |s(s+1)...(s+m—1)|
oxrm (1: + 1)Re(s+m)
as m — oo, provided that s # 1,0, —1,—2,... Hence ((s,z) cannot vanish

identically in = for such an s and there exists a rational number x = p/q,
0 <p<gq, (p,q) =1, such that {(s,p/q) # 0. Now,

1 P s 1 = 1

C(s,>= — = =

N P T VI
k=p (mod q)

— OO

can be represented as a linear combination of Dirichlet L-functions mod g,
showing that at least one of them does not vanish.
As to the remaining cases s = 0,—1,—2,..., we have ((s) # 0 (s =
0,—1,-3,...) and L(s,x) #0 (s = —2,—4,...) for any odd character Y.
For the rest of the proof we fix our Dirichlet L-function e.g. as ((s) and
use the single relation

F(s)¢(s) = L(s, f).
f, being ultimately recurring, can be written as foo + fg + fo; here foo(n)
vanishes for n large enough, fg and fo are purely recurring with period N,
even and odd, respectively.
From the respective functional equations we have

((=k) = L(=k, fe) =0
for even, positive integers k, implying
0= L(=k, f) = L(=k, foc) + L(=k, fo).
From the functional equation of fo we see that
|L(~k, fo)| > e2k1osk

for even k large enough, unless Ty fo = 0, fo = 0. The finite series L(s, fxo)
also tends to infinity but at a smaller rate, only exponentially, as s — —oo,
unless it is a constant.
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We conclude first that fo = 0 and then fo, = 0. Hence f = fg and

L(Sv fE)
F(s) = ———=.
R E
By the respective functional equations
F(S) — N1/278L<1 — S7TNfE)7
¢(1—s)

implying for Re(s) < —1
|F(S)| < CNI/Q_RG(S).

An entire function of finite order, representable by a Dirichlet series for
Re(s) > 1 and satisfying an estimate like this is a finite series. A proof of
this standard fact runs e.g. as follows.

By the Phragmén-Lindeldf principle F'(s) is bounded in any fixed vertical
strip. The coefficient formula,

. 1 o+iT .
Cn = TIE)I;O T S F(s)n®ds,

—iT
valid first for o > 1, but by the above boundedness for any o, implies
len| < eNY277n7 (0 < —1),

and letting 0 — —oo gives ¢, = 0 (n > N). (This proof even allows for a
finite number of singularities, compare with Toyoizumi [8].)

5. An equivalence relation. In the set of all convergent Dirichlet
series, we define the equivalence L(s, f) ~ L(s,g) if there exist two non-
zero finite series L(s, hy) and L(s, hy) such that L(s, hg) = L(s, f)L(s,hy) —
L(s,g)L(s, ha) is a finite series. If D; is the least common multiple of integers
d such that h;(d) # 0, then this means

S fmfdh(d) — Y gn/d)hs(d) =0
d|(n,D1) d|(n,Ds)

for n large enough. The conductor of L(s, f) can be defined as the minimum
of the primitive period of g for which L(s,g) ~ L(s, f) and g is purely
recurring.

THEOREM 5.1. Our conductor of a Dirichlet L-function coincides with
the ordinary conductor of the associated character.

Proof. Assume that L(s,x) ~ L(s, f), that is, for n large enough

S /D) = Y Fn/dha(d).

d|(n,D1) d|(n,D2)
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Let M denote the primitive period of f. By putting rn as n in the above
identity, where = 1 (mod M) and (r, D1D3) = 1, the right hand side is
invariant and the left hand side is multiplied by x(r). There exist infinitely
many n such that the left hand side is not zero, otherwise L(s, x)L(s,h1)
would be a finite series. Therefore x(r) = 1.

If x belongs to the modulus ¢ and a; = ay (mod (¢, M)), (a1,q) =
(a2,q) = 1, then we can find an r with the above properties such that in
addition ra; = as (mod ¢). This implies x(a1) = x(az), i.e. x can be defined
mod(q, M) and the conductor of y is < (¢, M) < M.

The rest is obvious.

Two characters are said to be equivalent if their corresponding primitive
characters are the same.

COROLLARY 5.2. Dirichlet L-functions are equivalent if and only if their
associated characters are equivalent.

Proof. Assume in the identity in Theorem 5.1 that f is also a character.
Putting rn as n with (r, D1 Dy) = 1, the left and right hand sides are multi-
plied by x(r) and f(r), respectively. Since the two sides are not identically
zero, we have x(r) = f(r) for (r, DyD3) = 1, so that y and f are equivalent.

PROPOSITION 5.3. Any positive integer N except for 2 is the conductor
of a Dirichlet series.

Proof. According to Corollary 5.2 there exists a Dirichlet series with
conductor N if N = 0,1 or 3 mod 4. We show that the conductor of the
Dirichlet series

kzlégn:mld N)
is N if N =2 (mod 4). Assume that L(s, f) ~ L(s,g), where g is purely
recurring with primitive period M < N. We have

Y. f/dha(d) = Y g(n/d)ha(d)
d|(n,D1) d|(n,D2)
for n large enough, but both sides being purely recurring, in fact for all n.
This means

L(s,9)/L(s, f) = L(s, hn)/L(s, h2).
The left hand side is an ordinary Dirichlet series > >° , a(n)/n® because
f(1) # 0 and we see from the right hand side that a(n) = 0 if (n, D1D3) = 1.
Let dy be the least integer such that a(d;) # 0.

In any case except 2M = N we can find an integer (even a prime) ¢
satisfying ¢ = 1 (mod M), ¢ # 1 (mod N) and (q, D1D3) = 1. From the
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identity
g(n) = a(d)f(n/d)
d|n
we get,
g9(dy) = a(d1)f(1) = a(d1) # 0,
9(diq) = a(d1) f(q) = a(d1) - 0 =0,

contradicting the fact that by d; = di1q (mod M), g(d1) = g(d1q).

In the exceptional case 2M = N we have M odd since N = 2 (mod 4)
and we can find an integer ¢ satisfying 2¢ =1 (mod M), (¢, D1D2) = 1. We
get g(2d1q) = g(d1) # 0 as established above, contradicting the fact that

9(2d1q) = a(d1) f(2q) + a(2d1)f(q) =0,

since 2¢ # 1 (mod N), N being even and ¢ = (M + 1)/2 # 1 (mod N),
provided that M > 1.
The identity

b b a—>b
+7+375+E+ <a— 9 )C(S)

shows that no series has conductor N = 2.

PROPOSITION 5.4. Let f and g be purely recurring with period N, such
that f(n) = g(n) =0 for (n,N) > 1. If L(s, f) ~ L(s,g) and g # 0, then
f =1vg with a constant 9.

Proof. Let x run over the characters mod N. Under our assumption we
have the representations

F=>ox. 9= dyx
X X

with constants c,, d,.
The relation

L(S7 f)L(S, hl) - L(S,g)L(S, h2) = L(S7 hO)
can be rewritten as
> (exL(s,h1) — dyL(s, h2)) ZL s, hy ) L(s,x) = L(s, ho)
X
(L(s, h) all denoting finite series) or, in terms of the coefficients,
> hy(d)x(n/d) =0
X dn

for n large enough.
Assuming that not all h, = 0, let ¢ be the least value such that there is
a x with h,(q) # 0. Applying the identity for n = pq with a prime p large
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enough, we get

th(Q)X(p) = Z Z hy (d)x(pg/d) = 0.

X d|pg

Since large primes p represent all reduced residue classes mod IV, it follows
that > hy(q)x =0 and hy(g) = 0 for all x, a contradiction. We infer that
L(s,hy) = L(s,ho) =0 for all x.

We get ¢, L(s, f) —dL(s,g) = 0 for any x and, since not all d, = 0, the

statement follows.
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