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Let s = σ + it be a complex variable, and let, as usual, ζ(s) denote
the Riemann zeta-function. It is well known that probabilistic methods can
be applied for the examination of value-distribution of the function ζ(s),
and the obtained results are usually stated as probabilistic limit theorems
in the sense of weak convergence of probability measures. In recent years
much attention was devoted to functional limit theorems for the Riemann
zeta-function. B. Bagchi [1] proved such a limit theorem in the space of
meromorphic functions with the topology of uniform convergence on com-
pacta, and the first author of this article obtained a limit theorem in the
space of continuous functions [4]. The latter paper also contains a survey
on limit theorems for the Riemann zeta-function. In [7] we have presented
a limit theorem with weight for ζ(s) in the space of analytic functions with
the topology of uniform convergence on compacta. Let w(t) be a positive
function with bounded variation on [T0,∞), T0 > 0, such that its variance
V baw on [a, b] satisfies the inequality V baw ≤ cw(a) with some c > 0 for all
b ≥ a ≥ T0. Moreover, let

U = U(T,w) =
T\
T0

w(t) dt,

and suppose that limT→∞ U(T,w) =∞. Denote by B(S) the class of Borel
sets of the space S, and by G some region in the complex plane C. Let H(G)
stand for the space of analytic functions on G with the topology of uniform
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convergence on compacta. Define two probability measures

Pj,T,w(A) =
1
U

T\
T0

w(τ)I{τ :ζ(s+iτ)∈A}dτ, A ∈ B(H(Dj)), j = 1, 2,

where D1 = {s ∈ C : 1/2 < σ < 1}, D2 = {s ∈ C : σ > 1}, and IA denotes
the indicator function of the set A. Then in [7] the following theorem was
proved.

Theorem A. There are probability measures Pj,w on (H(Dj),B(H(Dj)))
such that the measures Pj,T,w converge weakly to Pj,w as T →∞.

It is of interest to find the explicit form of the limit measure Pj,w. In case
w(t) ≡ 1, for this purpose, ergodic theory can be applied. Unfortunately, we
do not know any ergodic theorem with weight w(t). Therefore we must
formulate an assertion of this theorem as a condition for the function w(t).
First we recall the basics of ergodic theory (see, for example, [3]).

Let (Ω,F ,P) be some probability space, and let X(τ, ω), τ ∈ T , ω ∈ Ω,
denote a random process. Let Y be the space of all finite real functions y(τ),
τ ∈ T . It is known that the family of finite-dimensional distributions, i.e.

P(X(τ1, ω) < x1, . . . , X(τn, ω) < xn), n = 1, 2, . . . ,

where τ1, . . . , τn is an arbitrary set of values of τ , determines a proba-
bility measure Q on (Y,B(Y )). Note that Q(A) = P(A′) for A ∈ B(Y ),
where A′ = {ω : X(τ, ω) ∈ A}. Then on the probability space (Y,B(Y ), Q)
the translation transformation gu can be defined which maps each function
y(τ) ∈ Y to y(τ − u).

A random process X(τ, ω) is said to be strongly stationary if all its finite-
dimensional distributions are invariant with respect to the translations by u.

Let Au = gu(A) for A ∈ B(Y ). A set A ∈ B(Y ) is called an invariant
set of the process X(τ, ω) if for each u the sets A and Au differ by a set of
Q-measure zero. In other words, Q(AMAu) = 0, where M denotes symmetric
difference. All the invariant sets form a σ-field.

We say that a strongly stationary process X(τ, ω) is ergodic if its σ-field
of invariant sets consists only of sets having Q-measure equal to 0 or 1.

For an ergodic process the following classical Birkhoff–Khinchin theorem
holds. Let the process X(τ, ω) be ergodic with E|X(τ, ω)| < ∞, and let
sample paths be integrable almost surely in the Riemann sense over every
finite interval. Then

(1) lim
T→∞

1
T

T\
0

X(τ, ω) dt = EX(0, ω)

almost surely. Here EX denotes the mean of the random variable X.
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Now we suppose that the function w(t) satisfies some special condition.
Let the process X(τ, ω) be the same as in the Birkhoff–Khinchin theorem.
Suppose that

(2)
1
U

T\
T0

w(τ)X(t+ τ, ω) dτ = EX(0, ω) + o(1 + |t|)α

almost surely for all t ∈ R with some α > 0 as T →∞.
When w(t) ≡ 1 and t = 0 the equality (2) becomes (1).
For w(t) satisfying (2) we are now able to indicate an explicit formula

for Pj,w. Since the case j = 2 is simpler and similar to that of j = 1, we will
deal with the case j = 1 only.

Denote by γ the unit circle on the complex plane, that is, γ = {s ∈ C :
|s| = 1}. Moreover, let

Ω =
∏
p

γp,

where γp = γ for all primes p. With the product topology and pointwise
multiplication Ω is a compact topological group. It is well known that there
exists a unique probability Haar measure on (Ω,B(Ω)). Thus we obtain the
probability space (Ω,B(Ω),m). Let ω(p) stand for the projection of ω ∈ Ω
to the coordinate space γp. Then, setting

ω(k) =
∏

pα‖k
ωα(p),

where pα ‖ k means that pα | k but pα+1 - k, we obtain an extension of ω(p)
to the set of all natural numbers as a completely multiplicative unimodular
function.

Let D = {s ∈ C : σ > 1/2}, and set

ξ(s, ω) =
∞∑

k=1

ω(k)
ks

,

where s ∈ D and ω ∈ Ω. Then it is known from [1] (see also Lemma 5.1.6
of [6]) that ξ(s, ω) is an H(D)-valued random element on (Ω,B(Ω),m).
Moreover, for almost all ω ∈ Ω, the product

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

is uniformly convergent on compact subsets of D, and
∞∑

k=1

ω(k)
ks

=
∏
p

(
1− ω(p)

ps

)−1

.
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Let Pζ denote the distribution of ζ(s, ω). Moreover, let Pj,ζ be the restriction
of Pζ to (H(Dj),B(H(Dj))), j = 1, 2.

Theorem. The measures Pj,T,w converge weakly to Pj,ζ as T →∞.

Thus, the limit measure Pj,w in Theorem A is independent of the function
w(t) and it coincides with Pj,ζ .

We begin the proof of the Theorem by a limit theorem for trigonometric
polynomials

pn(s) =
n∑

k=1

a(k)
ks

.

Define a probability measure on (H(G),B(H(G))) by

PT,n,w(A) =
1
U

T\
T0

w(τ)I{τ :pn(s+iτ)∈A} dτ.

Lemma 1. There exists a probability measure Pn,w on (H(G),B(H(G)))
such that PT,n,w converges weakly to Pn,w as T →∞.

P r o o f. See Theorem 3 of [7].

Now let g(k), k ∈ N, be a unimodular completely multiplicative function,
and define

pn(s, g) =
n∑

k=1

a(k) g(k)
ks

and

P̃T,n,w(A) =
1
U

T\
T0

w(τ)I{τ :pn(s+iτ,g)∈A} dτ, A ∈ B(H(G)).

Lemma 2. The probability measures PT,n,w and P̃T,n,w converge weakly
to the same measure as T →∞.

P r o o f. Let p1, . . . , pr be the distinct primes which divide the product∏n
k=1, a(k) 6=0 k, and let

Ωr =
r∏

j=1

γpj , γpj = γ, j = 1, . . . , r.

Moreover, let mr stand for the Haar measure of (Ωr,B(Ωr)), and let h :
Ωr → H(G) be given by

h(x1, . . . , xr) =
n∑

k=1

a(k)
ks
∏
p
αj
j
‖k, j≤r x

αj
j

, xj ∈ γ, j = 1, . . . , r.
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In the proof of Lemma 1 (see [7]) it was shown that Pn,w = mrh
−1. Define

h1 : Ωr → Ωr by

h1(x1, . . . , xr) = (x1e
−iθ1 , . . . , xre−iθr ),

where θj = arg g(pj), j = 1, . . . , r. By Lemma 1 the probability measures
PT,n,w and P̃T,n,w converge weakly to mrh

−1 and mrh̃
−1 as T → ∞, re-

spectively, where the function h̃ is defined in a similar manner to h. It is
easy to see that

h̃(x1, . . . , xr) =
n∑

k=1

a(k)
∏
p
αj
j
‖k, j≤r e

iαjθj

ks
∏
p
αj
j
‖k, j≤r x

αj
j

=
n∑

k=1

a(k)
ks
∏
p
αj
j
‖k, j≤r x

αj
j e
−iαjθj

= h(h1(x1, . . . , xr)).

Consequently,

(3) mrh̃
−1 = mr(h(h1))−1 = (mrh

−1
1 )h−1.

Since the Haar measure mr is invariant with respect to translation by points
in Ωr, it follows from (3) that mrh̃

−1 = mrh
−1. This proves the lemma.

Now we will prove a similar assertion to Lemma 2 for absolutely conver-
gent Dirichlet series. Let σ1 > 1/2 be fixed. We define the function

ln(s) =
s

σ1
Γ

(
s

σ1

)
ns, n ∈ N,

in the strip −σ1 ≤ σ ≤ σ1. Here Γ (s) stands for the Euler gamma-function.
Suppose σ > 1/2 and

ζn(s) =
1

2πi

σ1+i∞\
σ1−i∞

ζ(s+ z)ln(z)
dz

z
.

Since Γ (σ+it) = Be−c1|t| uniformly in σ, |σ| ≤ c2, the above integral exists.
Here and afterwards B denotes a number (not always the same) bounded
by a constant.

Lemma 3. Let K be a compact subset of the strip D1. Then

lim
n→∞

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈K

∣∣ζ(s+ iτ)− ζn(s+ iτ)
∣∣ dτ = 0.

P r o o f. This is Lemma 5 of [7], where its proof can be found. Note that
the condition (2) is not used in the proof.

In the proof of Lemma 3 it has been shown that

ζn(s) =
∞∑
m=1

1
ms

exp
{
−
(
m

n

)σ1
}
,
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the series being absolutely convergent for σ > 1/2. Moreover, for n ∈ N and
ω ∈ Ω, let

ζn,N (s) =
N∑
m=1

1
ms

exp
{
−
(
m

n

)σ1
}
,

ζn,N (s, ω) =
N∑
m=1

ω(m)
ms

exp
{
−
(
m

n

)σ1
}
,

ζn(s, ω) =
∞∑
m=1

ω(m)
ms

exp
{
−
(
m

n

)σ1
}
,

the latter series also being absolutely convergent for σ > 1/2.
We define two probability measures on (H(D1),B(H(D1))):

P 1
T,n,w(A) =

1
U

T\
T0

w(τ)I{τ :ζn(s+iτ)∈A} dτ,

P̃ 1
T,n,w(A) =

1
U

T\
T0

w(τ)I{τ :ζn(s+iτ,ω)∈A} dτ.

Lemma 4. There is a probability measure P 1
n,w on (H(D1),B(H(D1)))

such that both the measures P 1
T,n,w and P̃ 1

T,n,w converge weakly to P 1
n,w as

T →∞.

P r o o f. Define the probability measures

PT,n,N,w(A) =
1
U

T\
T0

w(τ)I{τ :ζn,N (s+iτ)∈A} dτ,

P̃T,n,N,w(A) =
1
U

T\
T0

w(τ)I{τ :ζn,N (s+iτ,ω)∈A} dτ

on (H(D1),B(H(D1))). Then by Lemma 2 both PT,n,N,w and P̃T,n,N,w con-
verge weakly to the same measure Pn,N,w, say, as T → ∞. Repeating the
proof of Lemma 8 of [7], we deduce that the family {Pn,N,w : N ≥ 1} of prob-
ability measures is tight. Hence by the Prokhorov theorem it is relatively
compact.

From the definitions of ζn,N (s) and ζn(s) we see that, for σ > 1/2,

lim
N→∞

ζn,N (s) = ζn(s),

and since the series for ζn(s) converges absolutely for σ > 1/2, the conver-
gence is uniform on the half-plane σ ≥ 1/2 + ε1 for every ε1 > 0. Hence we
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find that for every ε > 0,

(4) lim
N→∞

lim sup
T→∞

1
U

T\
T0

w(τ)I{τ :%(ζn,N (s+iτ),ζn(s+iτ))≥ε} dτ

≤ lim
N→∞

lim sup
T→∞

1
Uε

T\
T0

w(τ)%(ζn,N (s+ iτ), ζn(s+ iτ)) dτ = 0.

Here %(f1, f2) is a metric on H(D1) defined by

%(f1, f2) =
∞∑
n=1

2−n
%n(f1, f2)

1 + %n(f1, f2)
,

where

%n(f1, f2) = sup
s∈Kn

|f1(s)− f2(s)|, f1, f2 ∈ H(D1),

and {Kn} is a sequence of compact subsets of D1 such that D1 =
⋃∞
n=1Kn,

Kn ⊂ Kn+1, n = 1, 2, . . . , and if K is a compact set and K ⊂ D1 then
K ⊆ Kn for some n.

Let η be a random variable on (Ω̃,F ,P) such that

P(η ∈ A) =
1
U

T\
T0

w(t)IA dt, A ∈ B(R).

We put

XT,n,N (s) = ζn,N (s+ iη), XT,n(s) = ζn(s+ iη).

Then by (4) we deduce that for every ε > 0

(5) lim
N→∞

lim sup
T→∞

P(%(XT,n,N (s), XT,n(s)) ≥ ε) = 0.

Since the family {Pn,N,w : N ≥ 1} is relatively compact, we may find a
subsequence {Pn,N ′,w} such that Pn,N ′,w converges weakly to Pn,w, say, as
N ′ →∞. Using our notation, we can write

(6) Xn,N
D−−−→

N→∞ Pn,w,

where Xn,N stands for an H(D1)-valued random element with distribution
Pn,N,w. Since PT,n,N,w converges weakly to Pn,N,w as T →∞, we have

(7) XT,n,N
D−−−→

T→∞ Xn,N ,

where Pn,N,w is the distribution of Xn,N . The space H(D1) is separable.
Consequently, using (5)–(7) and applying Theorem 4.2 of [2], we obtain

(8) XT,n
D−−−→

T→∞ Pn,w.
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Therefore, there exists a measure Pn,w such that P 1
T,n,w converges weakly

to Pn,w as T →∞. The relation (8) shows that Pn,w is independent of the
choice of the subsequence {Pn,N ′,w}. Since the family {Pn,N,w : N ≥ 1} is
relatively compact, we find, by Theorem 2.3 of [2], that Pn,N,w converges
weakly to Pn,w as N →∞, that is,

(9) Xn,N
D−−−→

N→∞ Pn,w.

Reasoning as above for the random elements

X̃T,n,N (s, ω) = ζn,N (s+ iη, ω)

and

X̃T,n(s, ω) = ζn(s+ iη, ω),

we find by (9) that P̃ 1
T,n,w converges weakly to Pn,w as T → ∞. Thus, the

lemma is proved.

Let aτ = {p−iτ : p ∈ P} for τ ∈ R, where P denotes the set of all
prime numbers. Then {aτ : τ ∈ R} is a one-parameter group. Define the
one-parameter family {ϕτ : τ ∈ R} of transformations on Ω by setting
ϕτ (ω) = aτω for ω ∈ Ω. Then {ϕτ : τ ∈ R} is a one-parameter group
of measurable transformations of Ω. As in the case of the process, a set
A ∈ B(Ω) is called an invariant set with respect to the group {ϕτ : τ ∈ R}
if for each τ the sets A and Aτ = ϕτ (A) differ by a set of m-measure zero.
In other words, m(A M Aτ ) = 0. All the invariant sets form a σ-field which
is a sub-σ-field of B(Ω).

Lemma 5. The one-parameter group {ϕτ : τ ∈ R} is ergodic, that is, its
σ-field of invariant sets consists only of sets having m-measure equal to 0
or 1.

P r o o f. This is Lemma 3.4.2 of [1] (see also Theorem 5.3.6 of [6]).

Now we apply the above mentioned elements of ergodic theory to the
H(D)-valued random element ξ(s, ω).

Lemma 6. Let T →∞ and σ > 1/2. Then

T\
T0

w(t)|ξ(σ + it+ iτ, ω)|2 dτ = BU(1 + |t|)α

for almost all ω ∈ Ω and all t ∈ R.

P r o o f. Let

ξ(σ + it, ω) =
∞∑

k=1

ξk(σ + it, ω) and ξ0(σ + it, ω) = |ξ(σ + it, ω)|2,
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where

ξk(σ + it, ω) =
ω(k)
kσ+it , k ∈ N.

Taking into account the equality

E|ξk(σ + it, ·)|2 = 1/k2σ

and the pairwise orthogonality of the random variables ξk(σ+ it, ω), we find
that

(10) Eξ0(σ + it, ω) =
∞∑

k=1

E|ξk(σ + it, ω)|2 =
∞∑

k=1

1/k2σ <∞

for every t ∈ R. It is obvious that

(11) ξ0(σ + it, ϕτ (ω)) = |ξ(σ + it, aτω)|2 = |ξ(σ + it+ iτ, ω)|2

for almost all ω ∈ Ω. Since the Haar measure m is ϕτ -invariant, the equality
m(ϕτ (A)) = m(A) is valid for each A ∈ B(Ω) and every τ ∈ R. Therefore,
|ξ(σ + it, ω)|2 is a strongly stationary process. It is also ergodic. In fact, let
A be an invariant set of |ξ(σ + it, ω)|2, i.e. by the notation used above

(12) Q(A MAu) = 0,

where Au = gu(A). We have

A′ def= {ω ∈ Ω : |ξ(σ + iτ, ω)|2 ∈ A} = {ω ∈ Ω : |ξ(σ, aτω)|2 ∈ A},
A′u

def= {ω ∈ Ω : |ξ(σ + iτ, ω)|2 ∈ Au} = {ω ∈ Ω : |ξ(σ + iτ + iu, ω)|2 ∈ A}
= {ω ∈ Ω : |ξ(σ + iτ, auω)|2 ∈ A}.

Therefore A′u = ϕu(A′). Moreover, (AMAu)′ = A′MA′u. From this and from
(12) we deduce that

m(A′ MA′u) = m((A MAu)′) = Q(A MAu) = 0,

that is, A′ is an invariant set with respect to ϕτ . By Lemma 5 the group
{ϕτ : τ ∈ R} is ergodic. Therefore m(A′) = 0 or m(A′) = 1. Hence Q(A) = 0
or Q(A) = 1, i.e., the process |ξ(σ + it, ω)|2 is ergodic.

Observing that ξ0(σ, ϕτ (ω)) ≥ 0 and using (11) we deduce from (2) that

1
U

T\
T0

w(τ)ξ0(σ + it, ϕτ (ω)) dτ =
1
U

T\
T0

w(τ)|ξ(σ + it+ iτ, ω)|2 dτ

= Eξ0(σ, ·) + o(1 + |t|)α

for almost all ω ∈ Ω and all t ∈ R as T → ∞ with some α > 0. From this
by (10) we obtain the assertion of the lemma.
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The series
∞∑

k=1

ω(k)
ks

converges uniformly on compact subsets of D1 for almost all ω ∈ Ω. This
is obtained in the proof of the fact that ξ(s, ω) is an H(D)-valued random
element [1] (see also Lemma 5.1.6 of [6]). By Lemma 6,

T\
T0

w(τ)|ξ(σ + it+ iτ, ω)|2 dτ = BU(1 + |t|)α

for σ > 1/2 and also for almost all ω ∈ Ω. Denote by Ω1 the subset of ω ∈ Ω
such that both the latter assertions are true. Then m(Ω1) = 1.

Lemma 7. Let K be a compact subset of D1. Then

lim
n→∞

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈K
|ξ(s+ iτ, ω1)− ζn(s+ iτ, ω1)| dτ = 0

for ω1 ∈ Ω.

P r o o f. Let σ1 > 1/2, as above, be fixed. Then the function ξ(s+z, ω), for
Re z = σ1 and s ∈ K, is represented by the absolutely convergent Dirichlet
series

ξ(s+ z, ω) =
∞∑
m=1

ω(m)
ms+z .

Consider the series

(13)
∞∑
m=1

an(m,ω1)
ms

, ω1 ∈ Ω1,

where

an(m,ω1) =
1

2πi

σ1+i∞\
σ1−i∞

ω1(m)ln(s)
sms

ds.

Since

an(m,ω1) = Bm−σ1

∞\
−∞
|ln(σ1 + it)| dt = Bm−σ1 ,

the series (13) converges absolutely for σ > 1/2. Thus, interchanging sum
and integral in

(14)
1

2πi

σ1+i∞\
σ1−i∞

ξ(s+ z, ω1)ln(z)
dz

z
,
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we find that the latter integral is equal to

(15)
∞∑
m=1

an(m,ω1)
ms

.

Taking into account the equality

1
2πi

b+i∞\
b−i∞

Γ (s)a−s ds = e−a

which is valid for b > 0 and a > 0, we obtain

an(m,ω1) = ω1(m) exp
{
−
(
m

n

)σ1
}
.

Thus, for σ > 1/2, the sum of the series (15) and also the integral (14) are
ζn(s, ω1).

Now we will change the contour in the integral (14). The integrand has
a simple pole at z = 0. Let σ belong to [1/2 + ε, 1− ε1], ε > 0, ε1 > 0, when
s ∈ K. We put σ2 = 1/2 + ε/2. Then by the residue theorem we have

(16) ζn(s, ω1) =
1

2πi

σ2−σ+i∞\
σ2−σ−i∞

ξ(s+ z, ω1)ln(z)
dz

z
+ ξ(s, ω1).

Let L be a simple closed contour lying in D1 and enclosing the set K, and
let δ denote the distance of L from the set K. Then by the Cauchy formula
we get

sup
s∈K
|ξ(s+ iτ, ω1)− ζn(s+ iτ, ω1)|

≤ 1
2πδ

\
L

|ξ(z + iτ, ω1)− ζn(z + iτ, ω1)||dz|.

Therefore we obtain

(17)
1
U

T\
T0

w(τ) sup
s∈K
|ξ(s+ iτ, ω1)− ζn(s+ iτ, ω1)| dτ

=
B

Uδ

\
L

|dz|
T+Im z\
T0+Im z

w(t− Im z)|ξ(Re z + it, ω1)− ζn(Re z + it, ω1)| dt

=
B|L|
Uδ

sup
σ+iu∈L

T+u\
T0+u

w(t− u)|ξ(σ + it, ω1)− ζn(σ + it, ω1)| dt.

Here |L| denotes the length of the contour L. The contour L can be chosen
so that, for s ∈ L, the inequalities σ ≥ 1/2 + 3ε/4 and δ ≥ ε/4 hold.
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By (16),

ξ(σ + it, ω1)− ζn(σ + it, ω1) = B

∞\
−∞
|ξ(σ2 + it+ iτ)||ln(σ2 − σ + iτ)| dτ.

Hence we find that

(18)
1
U

T+u\
T0+u

w(t− u)|ξ(σ + it, ω1)− ζn(σ + it, ω1)| dt

= B

∞\
−∞
|ln(σ2 − σ + iτ)| 1

U

T+u+τ\
T0+u+τ

w(t− u− τ)|ξ(σ2 + it, ω1)| dt dτ.

By the Cauchy inequality we have

(19)
T+u+τ\
T0+u+τ

w(t− u− τ)|ξ(σ2 + it, ω1)| dt

≤
( T\
T0

w(t) dt
T+u+τ\
T0+u+τ

w(t− u− τ)|ξ(σ2 + it, ω1)|2 dt
)1/2

=
√
U
( T+u+τ\
T0+u+τ

w(t− u− τ)|ξ(σ2 + it, ω1)|2 dt
)1/2

.

Since u is bounded, by Lemma 6 we have

T+u+τ\
T0+u+τ

w(t− u− τ)|ξ(σ2 + it, ω1)|2 dt = BU(1 + |τ |)α.

Hence and from (19) it follows that the left-hand side of the equality (18) is
estimated by

(20) B sup
σ+iu∈L

∞\
−∞
|ln(σ2 − σ + iτ)|(1 + |τ |)α dτ

= B sup
σ∈[−1/2,−ε/4]

∞\
−∞
|ln(σ + iτ)|(1 + |τ |)α dτ.

Moreover, from the definition of ln(s) we have

lim
n→∞

sup
σ∈[−1/2,−ε/4]

∞\
−∞
|ln(σ + iτ)|(1 + |τ |)α dτ = 0.

This together with (20) and (17) proves the lemma.
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Let

P̃1,T,w(A) =
1
U

T\
T0

w(τ)I{τ :ξ(s+iτ,ω1)∈A}dτ, A ∈ B(H(D1)).

Lemma 8. There exists a probability measure P 1
w on (H(D1),B(H(D1)))

such that the measures P1,T,w and P̃1,T,w both converge to P 1
w as T →∞.

P r o o f. We will use the scheme of the proof of Lemma 4. By this lemma
both the measures P 1

T,n,w and P̃ 1
T,n,w converge weakly to the same measure

P 1
n,w as T → ∞. First we will prove that the family {P 1

n,w} of probability
measures is tight.

Let η be a random variable defined as above, and let

XT,n(s) = ζn(s+ iη).

Then

(21) XT,n
D−−−→

T→∞ Xn,

where Xn is an H(D1)-valued random element having distribution P 1
n,w.

Since the series for ζn(s) is absolutely convergent for σ > 1/2, it follows
that

(22) sup
n≥1

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈Kl

|ζn(s+ iτ)| dτ ≤ Rl <∞.

Here Kl are the compact sets used in the proof of Lemma 4. By Chebyshev
inequality we have

P( sup
s∈Kl

|XT,n(s)| > Ml) ≤ 1
MlU

T\
T0

w(τ) sup
s∈Kl

|ζn(s+ iτ)| dτ.

Consequently,

(23) lim sup
T→∞

P( sup
s∈Kl

|XT,n(s)| > Ml)

≤ 1
Ml

sup
n≥1

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈Kl

|ζn(s+ iτ)| dτ.

Now let ε > 0 be an arbitrary number, and we take Ml = Rl2l/ε. Then
from (22) and (23) we deduce that

(24) lim sup
T→∞

P( sup
s∈Kl

|XT,n(s)| > Ml) ≤ ε/2l

for all l ∈ N. Define a function h : H(D1)→ R by the formula

h(f) = sup
s∈Kl

|f(s)|, f ∈ H(D1).
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Obviously, h is continuous, and therefore in view of (21) and Theorem 5.1
of [2],

sup
s∈Kl

|XT,n(s)| D−−−→
T→∞ sup

s∈Kl
|Xn(s)|.

Hence and from (24) we find that

(25) P( sup
s∈Kl

|Xn(s)| > Ml) ≤ ε/2l

for all l ∈ N. Set

Hε = {f ∈ H(D1) : sup
s∈Kl

|f(s)| ≤Ml, l ≥ 1}.

Since K is compact and K ⊂ D1 implies K ⊆ Kl for some l, the set Hε of
functions analytic on D1 is uniformly bounded on every compact K ⊂ D1,
and thus by Lemma 6 of [7] it is a compact subset of H(D1). Moreover, by
(25),

P(Xn(s) ∈ Hε) ≥ 1− ε
for all n ≥ 1 and, since P 1

n,w is the distribution of Xn,

P 1
n,w(Hε) ≥ 1− ε

for all n ≥ 1. So we have proved that the family {P 1
n,w} of measures is tight.

Hence and by the Prokhorov theorem it follows that {P 1
n,w} is also relatively

compact.
Applying the Chebyshev inequality once more and Lemma 3, we deduce

that for every ε > 0,

(26) lim
n→∞

lim sup
T→∞

1
U

T\
T0

w(τ)I{τ :%(ζ(s+iτ),ζn(s+iτ))≥ε} dτ

≤ lim
n→∞

lim sup
T→∞

1
εU

T\
T0

w(τ)%(ζ(s+ iτ), ζn(s+ iτ)) dτ = 0.

Set XT (s) = ζ(s+ iη). Then the relation (26) can be written as

(27) lim
n→∞

lim sup
T→∞

P(%(XT,n(s), XT (s)) ≥ ε) = 0.

Since the family {P 1
n,w} is relatively compact, we can find a subsequence

{P 1
n′,w} which converges weakly to P 1

w, say, as n→∞. Then

Xn′
D−−−→

n′→∞ P 1
w.

Hence and from (27) and (21), using Theorem 4.2 of [2], we obtain

(28) XT
D−−−→

T→∞ P 1
w.

Therefore, there exists the measure P 1
w such that the measure P1,T,w con-

verges weakly to P 1
w as T → ∞. The relation (28) in addition shows that
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P 1
w is independent of the choice of the subsequence {P ′n′,w}. Hence by The-

orem 2.3 of [2] we find that

(29) Xn
D−−−→n→∞ P 1

w.

Reasoning as above in the case of random elements

X̃T,n(s, ω1) = ζn(s+ iη, ω1) and X̃T (s, ω1) = ξ(s+ iη, ω1),

and applying Lemma 7 and (29), we conclude that the measure P̃1,T,w also
converges weakly to P 1

w as T →∞. The lemma is proved.

P r o o f o f T h e o r e m. As noted above, we consider the case j = 1
only. Lemma 8 asserts that the measures P1,T,w and P̃1,T,w converge weakly
to some measure P 1

w as T → ∞ simultaneously. It remains to prove that
P 1
w = P1,ζ . By the above remarks, it suffices to show that P 1

w = P1,ξ, where
P1,ξ denotes the distribution of ξ(s, ω) restricted to (H(D1),B(H(D1))).

Let A ∈ B(H(D1)) be a continuity set of P 1
w. Then the properties of

weak convergence and Lemma 8 imply that

(30) lim
T→∞

1
U

T\
T0

w(τ)I{τ :ξ(s+iτ,ω1)∈A} dτ = P 1
w(A).

Let us fix A and define the random variable θ on (Ω,B(Ω)) by

θ(ω) =
{

1 if ξ(s, ω) ∈ A,
0 if ξ(s, ω) 6∈ A.

It is easy to see that

(31) E(θ) =
\
Ω

θ dm = m(ω : ξ(s, ω) ∈ A) = P1,ξ(A) <∞.

Taking into account Lemma 5 and reasoning similarly to the proof of Lem-
ma 6, we find that θ(ϕτ (ω)) is an ergodic process. Therefore, by (2) with
t = 0,

(32) lim
T→∞

1
U

T\
T0

w(τ)θ(ϕτ (ω)) dτ = E(θ)

for almost all ω ∈ Ω. But from the definitions of the random variable θ and
of the one-parameter group, it follows that

1
U

T\
T0

w(τ)θ(ϕτ (ω)) dτ =
1
U

T\
T0

w(τ)I{τ :ξ(s,ϕτ (ω))∈A} dτ

=
1
U

T\
T0

w(τ)I{τ :ξ(s+iτ,ω)∈A} dτ.
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This, (31) and (32) give

lim
T→∞

1
U

T\
T0

w(τ)I{τ :ξ(s+iτ,ω)∈A} dτ = P1,ξ(A)

for almost all ω ∈ Ω. Thus, by (30),

P 1
w(A) = P1,ξ(A)

for any continuity set of measure P 1
w. Since the continuity sets constitute

the determining class, we have

P 1
w(A) = P1,ξ(A)

for all A ∈ B(H(D1)). The Theorem is proved.

The limit measure Pj,ζ in Theorem coincides with that when w(t) ≡ 1.
This shows that the condition (2) for w(t) is sufficiently strong. It is of
interest to find some condition for w(t) that the relation (2) were satisfied.
For example, (2) is true for t = 0 if w(t) is non-decreasing. But in this case
the Theorem is a consequence of the similar theorem with w(t) ≡ 1 [5].

Now we give an example of a weight function w(t) satisfying (2). Let
µ(T ) = inft∈[T0,T ] w(t), and suppose that

(33) w(T )/µ(T ) = B.

For simplicity we limit ourselves to ergodic processes with continuous sample
paths. Let EX(0, ·) = A. Then the Birkhoff–Khinchin theorem yields

v\
0

X(τ, ω) dτ = vA+ o(v)

almost surely as v →∞. Hence we find that

(34)
v\
0

X(t+ τ, ω) dτ = vA+B|t|+ o(v) = vA+ vo(1 + |t|)

almost surely as v →∞. Integrating by parts we obtain

(35)
1
U

T\
T0

w(τ)X(t+ τ, ω) dτ =
1
U

T\
T0

w(τ)
(
d

τ\
0

X(t+ u, ω) du
)
dτ.

From (34) we have
τ\
0

X(t+ u, ω) du = τA+ r(τ)τ(1 + |t|),

where r(τ) → 0 as τ → ∞. Consequently, since U ≥ µ(T )(T − T0), (35)
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gives in view of (33),

1
U

T\
T0

w(τ)X(t+ τ, ω) dτ =
1
U
w(T )(AT + r(T )T (1 + |t|))(36)

+
B|t|
U
− 1
U

T\
T0

(Aτ + r(τ)τ(1 + |t|)) dw(τ)

= A+B(1 + |t|)r(T )− 1 + |t|
U

T\
T0

r(τ)τ dw(τ).

Now let T1 →∞ as T →∞ and T1 be such that

T1\
T0

r(τ)τ dw(τ) = o(U), T1w(T1) = o(U)

as T →∞. Then again in view of (33),

1
U

T\
T0

r(τ)τ dw(τ) =
1
U

T\
T1

r(τ)τ dw(τ) + o(1)

=
B

U
sup

τ∈[T1,T ]
|r(τ)|

T\
T1

τ dw(τ) = o(1)

as T →∞. Now (36) yields (2) with α = 1.
The latter note shows that the class of functions w(t) in the Theorem is

sufficiently wide.
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