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0. Let K be a totally real algebraic number field. In his paper [20],
Siegel obtained explicit arithmetic expressions of the values of a zeta func-
tion of K at negative integers by using the method of restricting Hilbert—
Eisenstein series for SLy(O) to a diagonal, O denoting the ring of inte-
gers of K. Let us consider Hilbert—Eisenstein series of higher level whose
Oth Fourier coefficients are special values of L-functions. Then a modified
method of Siegel’s gives formulas for the values of L-functions at integers,
which is one of the purposes of the present paper. Such Eisenstein series have
been considered for example in Shimura [18] and Deligne-Ribet [7]. How-
ever, for our purpose it is desirable that the Eisenstein series have many
0 as their Oth coefficients at cusps except for a specific cusp. After con-
structing such Eisenstein series, we give formulas for values of L-functions
of K at integers. As a particular case, they turn out to be formulas for rel-
ative class numbers of totally imaginary quadratic extensions of K, where
the exact form of fundamental units is not necessary. We also give several
numerical examples of special values of L-functions and relative class num-
bers.

Our result is twofold. After Section 5, we take as K a real quadratic
field. Under some condition on a character we obtain an elliptic modular
form whose Oth coefficient is a product of two L-functions over Q and whose
higher coefficients are elementary arithmetic. These modular forms can be
applied to the investigation of numbers of representations of a natural num-
ber by a positive quadratic form with odd number of variables. We obtain
a relation between special values of L-functions and numbers of represen-
tations by some such quadratic forms. For example, Gauss’ three-square
theorem is an easy consequence of our theorem.
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1. Let $ denote the upper half plane {z € C: Imz > 0}. For N € N, we
put

I(N) = { <i 2) €SLy(Z):a=d=1, c=0 (mod N)}
and

TH(N) = { (‘CL Z) €SLy(Z): ¢ =0 (mod N)}.

Let xo be a Dirichlet character modulo N. Let k € N, and let I" be I(V)
or I'1(N). A holomorphic function f on $) is called a modular form for
I' of weight k if it satisfies (i) f|A = f for A € I', where (f|A)(z) =
(cz+d)*f(Az) with A = (¢ b) and Az = ‘C"Zzig, and (11) f is holomorphic
also at cusps. Let My, (IN) denote the space of modular forms f for 15 (V)
of weight k with character xg, that is, modular forms f for I'j(N) which
satisfy f|A = xo(d)f for any A € I'h(N). If x¢ is trivial, we denote it by
My (N), which is the space of modular forms for I'H(N).

We set e(z) = exp(2my/—12). A modular form f for I'j(N) has the
Fourier expansion f(z) = > . ane(nz) at the cusp v/—1oco. An operator
U, (I € N) on Fourier series is defined by

o0
= Z ape(nz);
n=0

it maps My (V) to itself if any prime divisor of [ is a factor of N (Atkin—
Lehner [2]). We also consider a function for which the holomorphy condition
in (ii) is replaced by meromorphy. Such a function is called a meromorphic
modular form; its weight is not necessarily positive.

Let Mp°, (N) (resp. My | (N), resp. MZOX% (N)) denote the subspace of

My ., (N) consisting of modular forms which vanish at all cusps but v/—1 0o
(resp. 0, resp. v/—1 00 and 0). All of them coincide if N = 1, and the spaces
M+, (N) and M;O)’g (N) coincide if N is prime.

Since MOOX?) (N) is of finite dimension, there are nontrivial linear relations
satisfied by the Oth Fourier coefficient at 0 and first several coefficients at
V=100, of arbitrary modular forms in MOOX0 (N). Let N > 1. We define
LRy, (IN) to be the set consisting of ordered sets {Co,CO,C TyeevsCongt

where ¢;’s and ¢, are constants such that the equality coa —|— Zn 0 C—nln

= 0 holds for the Oth Fourier coeflicient aé ) at 0 and first ng + 1 coefficients
ag, ..., 0n, at v/ —1 0o of any modular form f in MOo 0 (N) Here we note that

a(()o) is a complex number so that lim,_, z*kf(—l/z) = q (9 1f the modular
form is in Mg°, (V) (resp. MY o (IV)), then the equality Y717 g c_pan =0

(resp. chal” + + > 0%, ¢_na, = 0) holds. Similarly for N > 1, LR} (N) is



Values of L-functions 361

defined to be the set consisting of {cg,c_1,...,c_n,} for which the equality
>om oy C—nay = 0 holds for any modular form in MZOX% (N). If xo is trivial,
then we omit xo from M;?;S)(N), LRy y, (V) etc., for example LRy (N) :=
LRk»Xo (N)

Elements of LRg,y,(N), LR}, ,,(N) can be obtained by the following
method initially employed by Siegel [20] in the case N = 1. Cusps of (V)
are represented as i/M (i, M € N, (i,M)=1, M |N), and two such cusps
i/M, i'/M" are equivalent if and only if M equals M’ and ¢’ is congruent
to @ modulo M or modulo N/M. The cusp v/—100 (resp. 0) is equivalent
to 1/N (resp. 1/1). A local parameter at a cusp i/M is e((M?, N)/N x Az),
where A € SLy(Z) maps i/M to v/—1 oo.

LEMMA 1. Let k € N. Let h(z) = >2)2 _ cqe(—nz) be a meromorphic
modular form for I'y(N) of weight —k + 2 with character Xal having the
only pole at \/—1o00. Let céi/M) be the Oth Fourier coefficient at the cusp
i/M. Let f(z) € My, (N), f(2) =3 .7, ane(nz), and let a(()i/M) be its Oth
coefficient at i/M. Then

SN/ (M2, N M al M 43 e nan =0,
M,i n=0

where the first summation is taken over a complete set of representatives of
cusps of I'p(N).

Proof. By the assumption, f(z)h(z)dz is a meromorphic differential
form on the compactified modular curve for I'y(N) with poles only at cusps.
Then by the residue theorem, the residue of the differential form, which is
(2y/—1m)~! times the left hand side of the equality in the lemma, is equal
to 0. This shows our assertion. m

COROLLARY. Let h and c,, be as in the lemma. Let c(()o) denote the Oth
Fourier coefficient of h at the cusp 0. Then {co,NcéO),c_l,...,c_no} €

LRy o (V). If c(()o) =0, then {co,c_1,...,¢_n,} € LR} (N).

For a prime p, denote by v, the p-adic valuation. For a proper divisor
M of N, LR;(N) is not a subset of LRy (M) in general since M;>*(M) ¢
M;*°(N) in general. Suppose that v,(N) > 2. Then by Atkin-Lehner [2],
Up(f) is in My(N/p) for f € My(N). It is easy to show that U,(f) C
MZO’O(N/p) if f e M,;'O’O(N), and that Uy(f) has pk_la(()o) as its Oth co-
efficient at the cusp 0, a(()o) being the Oth coefficient of f at 0. We also
have Up(MP(N)) © ME(N/p) and U,(MY(N)) ¢ MO(N/p). If
{co,¢hyc_1,..sC_ny} € LRx(N/p), then {co,p* 1cf, (p — 1 times 0),c_q,
(p—1 times 0),...,c_p, } is in LR (). This implies that some elements in
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LRy (N) are obtainable from LRk(Hp\N p). Similarly, if {co,c_1,...,c_pn, } €
LR} (N/p), then {co,(p — 1 times 0),c_1,(p — 1 times 0),...,c_p,} is in
LR}, (N). We note that the inclusion M{(M) C M?(N) holds for M| N if
vp(M) > 1 for any prime factor p of N.

Hecke [11] investigated Eisenstein series of higher level (see also [22]). If
N and k are sufficiently small, the spaces of modular forms are spanned by
their linear combinations. In that case, elements of LRy, (IN), etc., can be
obtained from their Fourier coefficients through simple calculation. In the
present paper we need several elements of LRy, (IV), etc. However, we omit
the detail of getting them.

2. Let K be a totally real algebraic number field of degree g. We denote
by O, 0 and Dy the ring of integers, the different and the discriminant
respectively. Let 91 be an integral ideal. Let £y denote the group of units
€ » 0 congruent 1 mod I, where € > 0 means that ¢ is totally positive.
We denote by Cy the narrow ray class group modulo 91, and by C§; the
character group. Although Cs denotes an integral ideal class group, we
evaluate its character also at fractional ideals by the obvious extension.
We call a character ¢ € C§; even (resp. odd) if ¢(pu) = 1 (resp. ¥(pn) =
sgn(Nm(p))) for all g # 0, g =1 (mod M). The conductor of ¢ is denoted
by fy. For an ideal 91 such that 91 C 9 C f,, we denote by 19n the character
in Cj; satisfying ¢ () = 1on(2A) for any 2 relatively prime to .

Let $9 denote the product of g copies of §. For 3 = (z1,...,24) €
H9, Nm(v; + §) stands for [[7_, (v z; + §@)), where 4),... 49 denote
conjugates of 7. Let 91, M be integral ideals. Let 2 be an ideal relatively
prime to MN'. Let k € N. For vy € 9101_{1, dg € ‘ﬁ_lQlOI_{l, an Fisenstein
series on Y is defined by setting

/
B 21(3,70, 803 ', M) := Nm(2)* >~ Nm(v3 + 6) " |Nm(v3 + 6)| | s=0,
¥,0
where the summation is taken over all (-, §) # (0,0), v = 7o (mod MAdL'),
d = 0o (mod 910;(1) which are not associated under the action of Enmgr :
(7,0) — (e7,€9), € € Eqorv -
Let ¢ € C§; and ¢’ = C§,;,. Suppose that ¢’ € Cf has the same
parity as k. Then we put

it E—1)! \ 1/ _ _
/\fﬂﬂ(g,) = (M) DM Nm(M) €y ¢ Emor] 1m€§;mw(ﬁl)

X Z O (oA 0k) Z e(tr(do))

YoEAV L /M AV, 700 SoeM 1At /A0t
2 Y
X Ek,i’l(aa —70; 607 m 7m),
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where 2 is a representative relatively prime to 9. This is a modular form
for

Fo(mm,)]( = { <?; ?) € SL2(O) LY = 0 (H’lOd ‘ﬁ‘)’l')}
of weight k with a character. In case K = Q and k = 2 we assume that

either 91 # O or at least one of 9, ¢’ is nontrivial. The Fourier expansion
of )‘;f,w(ﬁ) at the cusp v/—100 is given as

N, =Ccr20 ( > w’(u%*laK)w(mNm(mk*l)e(tr(%))

veotv-0 ODBOvIk

with a constant C, where 9B runs over integral ideals containing vdx. If
N = O and ¢’ is trivial, we denote the modular form by Ay (3). Similarly
X;f (3) is also defined. We can obtain C' and the Oth Fourier coefficients
of Mg, (3) and )\}f (3) at other cusps by a similar computation to that in
Shimura [18].

PROPOSITION 1. Let A = (2 7) € SLy(O). Let k € N and let ¢ € Cy,
and k have the same parity.

(1) In case K = Q and k = 2, assume that M # O or ) is nontrivial.
Then the 0th Fourier coefficient of A\ (3)|A is equal to

sen(Nm(9)"'(6)  [] Q-Nm(P) Lx(A—k bm) (7.9 C fy)

PN
P 1 (v7,9)

+ (VI D () L (L) (k=1 and (7,9 = 0),

where ¥(0) =1 in case N = O.
(2) In case K = Q and k = 2, assume that v is nontrivial. Then the Oth
Fourier coefficient of )\;f (3)|A is equal to

(H) D () Lic (k) ((7,90) = O)

+o@ T (= Nm(B) Lk (0,¢¢0m) (k=1 and (v,M) = fy).

BN
B 1 (v7,9)

3. We put )\gw,;,lp(z) = Xf;p(z, ...,2z). Let N € NNOOV, and let xo be
an element of the group (Z/N)* of characters mod N such that xo(i) =
(i)Y' (7). Then )\Z’kvw(z) is in Mgy y, (IN). We have the Fourier expansion

Aep(2)=C+29) 0 (n)e(nz)
n=1
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with
fZ,—1,¢;(n) = Z Z Y (VA 0 g )p (A) Nm()* L,

vevt, v-0 ODADVIK
tr(v)=n
If ¢’ (resp. ) is trivial, then we write ffl_lw as fk::mp (resp. f;fl_l). Further,
we put Agp (%) = App(2,...,2) and )\z’k(z) .= A\ (z,...,2). By Proposi-
tion 1, we have the following:

PROPOSITION 2. Let ¢ be as in Proposition 1. Let N € NNN, and let
Xo € (Z/N)* be such that xo(i) = ¥ (i). Let M € N be a divisor of N. The

modular forms g and )\;fk are in Mgy, ., (N). The Oth Fourier coefficient
of Mgk, at a cusp i/M (i € N, (i, M) =1) is

xo) ™t T (= Nm(P)HLx(l -k anm)  (M,9N) Cfy)
‘mqgfl\?m)

or 0 (otherwise), and there is an additional term (v/—1 TF)_QD}{/2XO(M)
X Lg(L,9) if k =1 and (M,M) = O. Let k > 1. Then the 0th Fourier
coefficient of )\Z)k at i/M is

or 0 (otherwise).

COROLLARY. Suppose that ¢ is a primitive character with f, =M. Let N
be the least element in NN . Then Agy .y € Mg | (N), )\Igpk €M, ., (N)
fork>1, and Ay y € M;?);%(N) fork=1.

Let W (%) be the root of unity appearing in the functional equation of
the L-function Lk (s,1) in Hecke [12]. It is written as a Gauss sum, in the
form

W(¥) = wNm() 2p(eNox) Y d(pe(tr(op)),

HEO /M, u=0

where w equals 1 or /=1 7 according as v is even or odd and where
o € K, o = 0, is such that o0k is an integral ideal relatively prime
to 1. Then the additional term in the above proposition is written as
V=1 (M)W (¢) Nm()~1/2L(0, %)), ¥ being the complex conjugate of 1.
By the Corollary to Lemma 1 and Proposition 2 we obtain the following:
THEOREM 1. Let k € N. Let ¥ be a primitive character with conductor

N and with the same parity as k, and let N be the least element in N N L.
Let xo0 € (Z/N)* be such that xo(i) = ¥(i). Assume that M # O if k = 1.
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(1) We have the identity
coLg (1 —k,vp) = —29 Zcfnfk 1p(n

where {co,*,c_1,...,c_ny} € LRgpro(N) (N > 1, &k > 1), and
{co,c_1,. . ey} € LRgXO( ) (N =1o0rk=1). Let k = 1 and sup-
pose that LK(O ) € R. Then

{eo+ V=1 "W (1) Nm(9)~/2ch} Lic (0, =—2~"Zcfnfovw

with {co, ¢y, c—1,. .., C—ny} € LRy o (V).
(2) Let k> 1. Then

17PN\ ki1
coLk (k) = _<m> DKk+ / Zc,nf;f,l(n)

n=1

with {*,¢h,c-1,...,¢—ny} € LRgr yo(N) (N > 1), and {c{),c_1,...,c_n,} €
LR} (1) (N =1).

Consider the case £ = 1 and 91 = O. The existence of an odd character
1 of Cp implies that g is even. Then W (z)) is equal to (—1)9/2¢(dg). Let
B be a prime ideal of K with ¥() # 1, and let ¢’ be a character mod P
such that ¢y = 1). Then by Proposition 2,

Agar (2) = (1 = (P)) L (0,9 +2ngowm e(nz)

with
fowp(n) = > > vy
VGD_I V>0 ODQ[DI/DK
tr(u)—n (2A,P)=
is in M (p), where p is a rational prime in . Hence for {cp,c_1,...,c_n,} €

/
LR, (p), we have

no

oL (0,9) = —=29(1L = p(P) ™" > c_nfopm(n).

n=1

However, in the next proposition we obtain a formula which may be better
in the sense that ng is possibly smaller.

PROPOSITION 3. Let B be a prime ideal of K with ¢(P) # 1 and let
p € N be a prime in *B.
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(1) Suppose that Lk (0,¢) € R and ¢¥(d0k) # —1. Then
nQ

coLw(0,4) = =29(L+ (k)" Y c—afo.u(n)
n=1
for {co,...,c_ny} € LR;(I).
(2) Suppose that Lk (0,7) € R and ¢(dx) = —1. Then

{CO - Nm(m)_lcg}LK(()? w) = _2g 1- Z C—nfO P, ‘13

for {co,ch,c—1,...,c_pny} € LRy(p), where p is the rational prime in .
(3) We have the identity

{co = Nm(P) et} Lic (0, )
=27(1—p(P)) "

x{(l—w(‘B)Nm Yepdy lzd nfou(n ZC nfo.e.p (1 }

for {do,...,dm,} € Lng(l) with dy # 0, and for {co,cl,c—1,...,C_py} €
LRy(p).

Proof. Since Ay y(2) = C+293 77 | fr1,4(n)e(nz) with C = Lk (0,%))
+ Y0k )Lk (0,7), is in Mgy(1), the assertion (1) follows immediately. The
Oth Fourier coefficient of gy € My(p) at 0 is (1 — ¢(P) Nm(P)~ 1)
x (0 )L (0,9) + (1 — Nm(B) 1)L (0,%), which is equal to —(1 —(B))
x Nm(PB) 'Lk (0,1) under the assumption of (2). Then the equality in (2)
follows.

Consider the case (3). By Proposition 2 the Oth coefficient of Ay 4 at 0

is calculated to be (1 @ZJ(‘B)) Nm(‘Is’)*lLK(O,zﬁ) + (1 —(B)Nm(P)~HC,
and C' is equal to —29dy " S°"° d_,, fo.,»(n). Since
co(1 =¥ (P))Lk(0,7)
+cp{—(1 = 9(P)) Nm(P) ™ Lk (0,9) + (1 — () Nm(P)~)C}

no
= =293 ¢ nfoupmn),

n=1

our assertion follows. m

Let F be a totally imaginary quadratic extension of a totally real field K.
Let H and h denote the class numbers of F' and K respectively. Let © be the
relative discriminant and let ¢ € C% be the character associated with the
extension in the sense of class field theory. Then the relative class number
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is given by
w(F)Rk
2RF LK (07 ¢)7

where w(F') denotes the number of roots of unity in F' and Rp, Rk denote
the regulators of F', K respectively. Since W () is trivial in this case, we
have the following formulas for the relative class numbers as a corollary of
Theorem 1 and of Proposition 3, where the exact form of fundamental units
is not necessary.

COROLLARY. Let N be the minimum of ® NN, and let xo € (Z/N)* be
such that xo(i) = ¥ (i). If © # O, then

H/h =

{co+ V=1 Nm(®) 2 H/h = —29 " w(F)Rx Ry Z c—nfo,4(n)

n=1
with {co,cy,c—1,...,C—ny} € LRy, (V). Suppose that © = O. If g =0
(mod 4), then

no
coH/h = -29"2w(F)Rxk R c_nfoy(n)
n=1
with {co,...,c_ny,} € LR} (1). Let P and p be as in Proposition 3. Then if
g =2 (mod 4), then
no

{co—Nm(P) ')} H/h = —29 " w(F)Rx Ry (1 — ¢ () ! Z c—nfo,p,p(n)

n=1

with {co, ¢, c—1,...,C—ny} € LRg(p).

4. We give some examples to illustrate the results of Section 3. First we
show the following:

LEMMA 2. Let K be a real quadratic field of discriminant Dy . If '
has the same parity as k, then

/ m-+nvDg
Im|<nv/Dg  ODAUD((m+n+/Dk )/2)

m=nDg (mod 2)
x 9 (2A) Nm ()51,
Let B be a prime ideal and let p € Cf, be odd. Then
fop.m(n) = = (B) > > ().

|m|<nv/Dg ODADP~1((m+nvDk )/2)
m=nDg (mod 2)

Proof. A totally positive number in Di}l with trace n € N is of the
form (m + ny/Dg )/2v/Dg with m = nDg (mod 2) and |m| < ny/Dg.
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Then the first equality follows immediately. Consider the second one. Since
A2, € Ma(1) = {0}, its nth Fourier coefficient fg (n) is equal to 0. Then

fopm(n) = —(fo.p(n) = fowmp(n) == > p.

l,eg;<17 v-0 POADVIK
tr(v)=n

This shows our assertion. m

EXAMPLE 1. Let K = Q(+/79). The class number A is 3, and the narrow
ideal class group Cp is a cyclic group of order six. There are six characters
of Cp, three odd ones and three even ones. Let By = (7,3 +/79). It
is a prime ideal with norm 7 and the class containing ‘7 generates Cp.
Let ¢; (0 < i < 6) be a character such that 1;(PB7) = e(i/6), where the
parity of v; is the same as i. Since {—1,4} € L5(7), by the formula before
Proposition 3 and by Lemma 2 we have

4L (0,9:) = — 49—(2) (1 - e<é)>_1

Xy > V() (i=1,3,5).

Im|<v79 ODADP; ' (m+T9)

The inclusion Bz O (m + v/79) (|m| < V79) holds only for m = 3, —4,
and decompositions of m + /79 into products of primes are 3 + /79 =
(94+v79)(5,3 4+ v79)B7 and 4 + V79 = (3,2 + /79 )2P7. Hence if we put
w = ’(/)z (m7)7 then

Lr(0,9:) = (1 —w) 'w{(l + 1+ w? +0*) + (1 +w + )}

By substituting e(1/6), —1,e(5/6) for w, we obtain L (0,11) = Lk (0,v5)
=4 and Lk(0,v3) =5/2.

Let ¢ € Cf, and let w = ¥ (P7). Considering the prime decompositions
of (m ++/79) (|m| < 8), we obtain

fr_1p(1) =1748-2F1
+(6- 3h1 13,651 po.7hl L 1gk-1 4 15E 1) (w + W)
+ (@45t 2.9k L9107 413k 418k 491k
+925k-1 4 26k71)(w2 + w4)
+{4-15F 71 2027k 4 3051 4 35F 71 439k 4 43Rt
+ 54F1 1 63F 71 170k po7sR T 78R ) 9k L8,

From this and the fact that {240,—1} € LR4(1), {504,1} € LRg(1),
{480, -1} € LRg(1) and {264,1} € LRjo(1) (Siegel [20]), we obtain
Lg(=1,42) = Lk (—=1,44) = 16, Lg(—1,%0) = (x(—1) = 28; Lx(—2,¢1)
= LK(—2,¢5) = 544, LK(—2,1/10) = CK(—Q) = 496, LK(—B,I/)Q) =
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Lic(—4,15) = 4412992, Ly (—4,1bs) = 4362400.

Let F' be a totally imaginary extension of a totally real field of K. Let
Qr/k denote the unit index of Hasse, that is, Qp/x = [EF : 2rEKk], where

Er and £k denote the groups of all units in F' and K respectively and {2z de-
notes the group of roots of unity in F'. Then Rx /R is equal to 2*9+1QF/K.
The index is 1 or 2, and is readily obtained (Hasse [10], Okazaki [16]). Let
F = K(v/—v) with a totally positive integer v in K. Let ® be the relative
discriminant of the extension, and let ¢» € C% be the associated charac-
ter. Let 2 be an ideal with (A, D) = O. If A is relatively prime to 2, then
¥(2) is equal to () 5 Where (-) x 18 the quadratic residue symbol in K.
If (2,2) # O, then we take another integral ideal 9B relatively prime to
29 which is of the form B = €22 for some o € K, o > 0 multiplica-
tively congruent 1 mod © and for a fractional ideal €. The computation of
() is reduced to that of (B). Let xo be the character on Z defined by
Xo(7) = (7). Obviously xo(—1) = 1, that is, xo is even.

Suppose that K is real quadratic. Then if 3 is of degree one, then (%) K
is written as (%), where (7) denotes the usual Jacobi-Legendre symbol and
p=Nm(P), n € Z, n = —v (mod P). If P is of degree two, then it is
written as (NmT(V)), where p is a prime in .

For D a discriminant of a quadratic field, we denote by x p the Kronecker—
Jacobi-Legendre symbol.

EXAMPLE 2. Let K be a real quadratic field where 2 is not inert and its
prime factor P2 is a principal ideal (v) with v > 0. A necessary condition
for this is that Dy is free from a prime factor congruent to 3 or 5 mod 8.
Let F' = K(y/—v). We show that the relative class number of F over K is

given by
H/h=c Z Z V()

Im|<v/Dkx  ODAD((m++vDk )/2)
m=Dg (mod 2)

where ¢ = 1/7 (Dg = 1 (mod 8) and tr(v) = 1 (mod 4)), and ¢ = 1/3
(otherwise).

The conductor D of the extension is B3 or 495, where the former is the
case when ¢ = 1/7. The character xo is in (Z/8)*. For p prime, xo(p) = (%)
or 1 according as p is decomposed in K or not, and hence xg = xg. Since
{2,32v/2,1} € LR2 4 (8), and since w(F) = 2 and Rx/Rr = 1/2, we have
H/h = {16v/2Nm(®D)~ /2 — 1}~ 0., (1) by the last corollary in Section 3,
which shows our formula.

There are nine real quadratic fields K with Dx < 100 having v satisfying

the condition, to which we apply the formula.
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Let K =Q(v2) and F = Q(v/—2 —v/2). Then
1 1
H/h = > > V@) = (1+1+1) =1
Im|<v2 AD(m++v2)

Thus the class number of F'is 1.
Let K = Q(v17) and F = K(v/—v) with v = (5 + V17)/2. Put P, =
(v). In this case the conductor is PB3. We note that ¥ (By) = ¥(7) = 1

because 7 = 7 (mod PB3). Then

1 1 _
Hih=2 3. Y. ) =-(G+2u(F,) =1
\m\<(\j/dr7 AD((m+V17)/2)

Let K = Q(+/7) and F = K(v/—3 — /7). Then

Hh=1 Y Y w@

|m|<V7 AD(m+VT)
=3 (BR0), (55 8) ),
S ()0 ) -2

Let ¢ = 8 +3v/7 a fundamental unit of K, let F/ = K(1/(—~3 —+/7)e), and

let H' be the class number. Then H' = 2.
By similar computations we get the following class numbers:

2 (F=Q(/(-7-v41)/2)), 2 (F=Q(\/—4-V14)),
1 (F=Q/(-9-VT3)/2)), 3 (F=Q(/(-217-23V89)/2)),

2 (F=Q(/-5-v3), 3 (F=0Q/(-69—7v07)/2)).

EXAMPLE 3. Let K be a real quadratic field where 13 = B13B;5 in K and
13 is a principal ideal (v) with v = 0. Here 9,5 is the conjugate of P13. Let
F = K(v/=v). Assume that the relative discriminant of F' over K is 3.
The character yp is equal to x13. Since {1,13v/13,1} € LRa ,,(13), we have

1
Hih = > > V().
|m|<vDx  ODAD((m+vDx )/2)

m=Dk (mod 2)
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If K =Q(v/13), then our conditions are satisfied, and

3413
F=K(\/—V13¢) withs:+T

9

and

Hh=2 Y Y @

ImI<3 205 ((m+VT3)/2)
(e (), (Evmn). )

4 () E))-
Let K = Q(+/17). Then 13 = (9 + 2v/17)(9 — 2V/17), and if we put

F = K(V~9—2V17), then our conditions are satisfied. We have a decom-
position 2 = PP, in K. Since

o = v =1 (222 - (B) oy
we have {6(Ba). v(Tz)} = {£1). Then

Hh=g Y e

m|<3 m
%Lad AD(m+V17)/2)

= {4+ 20(P2) + 20(B) + Y(B2)” + (o)) = 1

Let K = Q(v/29). Then we have 13 = (%) (%). Let F =
K(y/(=9—+29)/2). Then a similar calculation gives H/h = § -6 = 1.
Let K = Q(v69). Then 13 = (17 + 2/69)(17 — 2/69). Let F =

K(V—17-2v69). Then H/h = % -12=2.

The class numbers of some of the fields in Examples 2 and 3 have already
been computed in Okazaki [16], where Shintani’s formula [19] is employed.
Our results are compatible with his. Grundman [9] obtained numerical ex-
amples of values of zeta functions of totally real cubic fields also by adapting
Shintani’s method.

EXAMPLE 4. Let K be a totally real cubic field, and let ¢ > 0 be a
unit. Let F' = K(y/—¢). Then the conductor D of the extension is a factor
of 4, and w(F') = 4, Qp/x = 1 for e = 1 or w(F) = 2, Qp/x = 2 for
e & (K*)? (see for example Okazaki [16], Sect. 3). The character xq is equal
to x_4, namely x_4(n) = (=1)»=1/2 for n odd. Since {1,32\/—1,1/4} €
LR3,y_,(4), by the last corollary of Section 3 we have a formula for the
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relative class number H/h = (32Nm(®D)~/2 — 1)~ (1). If the absolute
discriminant of K is odd, then ® = (4) and we have

H/h:é 3 Y p@).

yea;(17l,>0 ODADvok
tr(v)=1

Here we take as K a totally real nonabelian cubic field of discrimi-
nant 257, whose class number h is 1. We have K = Q(#), where 0 is a
root of 3 — 22 — 4x + 3 = 0. Because the above polynomial is equal to
z(2? —2—1) mod 3, (z +1)(2? — 22 — 2) mod 5, (z + 3)(z? +x + 1) mod 7,
there are decompositions of 3, 5 and 7 into primes as 3 = P3P%, 5 = P P§
and 7 = PP, where PB,’s are of degree 1 and P.’s are of degree 2. There
are seven [ € DI_{I with g > 0 and tr(px) = 1, and the ideals pudx are equal
to P3 for three of them, to P;s for two u’s, to Pr for one p and to P4 for
one p. This computation was made by Cohen [5], Sect. 7. Let F' = K(y/—1).

Then
1 -1 -1 -1 -1
-4, (3,3, ().
N I C I C IR €3
1 -1 -1 -1
=7+ 3 = 2 — — 1,=2
re(3)2(5)+ (7))
where (‘;ﬁ,l) = lsince —1 is a square in Fg. Thus the class number of F
3

is 2. Let IV = K(y/—¢) with e =2+ 6 > 0. Then if H' is the class number
of F', then

win=alro(), e, ), (),

From the above factorizations of 3 — 22 — 42 4+ 3 modulo 3, 5, 7, it follows
that —e =1 (mod Ps3), —e =4 (mod Pjs), —¢ =1 (mod P7) and that —¢
(mod PB%) is not a square in Fy. Therefore

S R ORONOR

EXAMPLE 5. Let K be a totally real quartic field, and let F' be its totally
imaginary quadratic unramified extension. Since {—240,1} € LR} (1) (Siegel
[20]), by the last corollary in Section 3 we have

1

H/h = @w(F)QF/KTO,d)(l)-

Let K = Q(v5,v/6) and let F = Q(v/—2,v/—3,v5), where F is an
unramified extension of K. Then h = 2, 0x = (2v/30), w(F) = 6, and
Qr/k = 2. There are 22 numbers u € D[_(l with g > 0 and tr(p) = 1,
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and pdg’s are the ideals generated by (£1 + v/5)(£v/5 + v/6)/2 (norm 1),
(£1 4+ V5)(£2 + v6)/2 (norm 4), {£(3 + v/5) + V6 + v/30}/2, {£(3 —
V5) — V6 + 30}/2, {£2 4+ V6 + v/30}/2 (norm 19), (£1 + v/5)(£1 +
v6)/2 (norm 25), (£v6 + +/30)/2 (norm 36). In K we have the prime
decompositions 2 = B3, 3 = P2, 5 = P2P2 and 19 = PP B BLY,
where Py = (2 +V6), P2 = (1 +6) and P2 = (1 — /6). Since Py and

B2 are in the same class of Cp, we have ¥(B2) = 1. Therefore

H/h = 410{4+4(1 + ¥ (B2)) +8(1 + <I§)>

ea(1e () votmn) v v (14 ()
=1.

EXAMPLE 6. Let K be a totally real quartic field, and let F' be a totally
imaginary quadratic extension of K with conductor ®. Let 1 = C% be
the character associated with the extension. Suppose that © = (4). Then
Xo = (Z/4)* is trivial. Since {0, —256,1} € LR4(4), we have

Hh = %MF)QF/KfO,m.

Next, suppose that 7 is the least element in NND and that xo € (Z/7)* is
trivial. Since {1, —7%,1,1} € LR4(7), we have

H/h = w(F)Qp k(7" Nm(D) /% — 1) {fo,4 (1) + fo,u:(2)}-

Let K = Q(#) with 6 a zero of f(x) := 2* — 823 + 2022 — 172 + 3. It is
a nonabelian totally real quartic field of discriminant 1957 (= 19 - 103) and
its Z-basis is provided by 1, 6, 6%, 83 (Godwin [8]). The ideal (2) remains
prime at K. There are decompositions 3 = P3P5 and 7 = PP, where Ps,
B are primes of degree 1 and 5, P~ are of degree 3. The inverse different
0 = (1/f(9)) has 1, 6, 62, 1= (6° + 6916% — 3500 — 42) as its Z-basis.
With the aid of a computer, we can show that there are seven totally positive
elements p in Dl_(l with trace 1. The ideals udg’s are equal to O for four
elements and to B3 for two and to Py for one. Let FF = K(v/—1). Then
D=(4),wF) =4, Qrx =1,and H/h = :{7+2(F) + (3)} = 1. Let
e = —0% +50% — 70 4 2, which is a totally positive unit. Let F = K(y/—¢).
Then ® = (4), w(F) =2, Qp/x = 2 and

=), (3),)-30+0)- ()

Let F'= K(v—T7). Then ® = (7), w(F) = 2, Qp/x = 1. We have

Xo(3) =¢(3) = (;;:)K(;;Z)K —(~1) (1) =1
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since —7 is not a square in F3 and in F33. Since 3 is a generator of (Z/7)*, xo
is trivial. Then H/h = 35 {fo,»(1) + fo,4(2)}. It can be shown that there are

58 totally positive elements in DI} with trace 2. By a similar computation
to the above, we obtain H/h = 5; - 48 = 2.

5. Hereafter we consider exclusively the case where K is a real quadratic
field. Let xx denote the Kronecker—Jacobi-Legendre symbol of K. For an
ideal 2, A denotes its conjugate in K. If ¢ € C%; is invariant under conjuga-
tion, that is, () = () for any A, then there is a completely multiplica-
tive function x on N such that () = x(Nm(2()) for any ideal 2. Indeed,
1) obviously gives a completely multiplicative function y on the subset of N
consisting of norms of ideals. The desired y is constructed by assigning to
x(p) any square root of x(p?), for each prime p which is inert. In particular,
X is not uniquely determined.

For completely multiplicative functions y, x’, we define 0,2:‘,_17 X by setting

o (m) =Y X (m/d)x(d)d"

0<d|m
for m € N, and ai‘il o(m) =0 for m ¢ NU{0}. In the sequel we denote

it by or—1,, (resp. a,fl_l) if x' (resp. x) is trivial. The value o1_1,/(0) is

defined to be $L(1 — k, x). The value 02‘;1(0) is defined to be 0 if x’ # 1.
For later use We present the following lemma. The proof is parallel to that
of Theorem 3.4 in Cohen [5].

LEMMA 3. (1) Let m,n € N. Then
’ ’ _ / mn
X smo sy = 3 V@il (5.
d|(m,n)
(2) Let n € N. Then
n/d
Zak l,x Uk lxn_ ZX dklzak 1,X< /) >
dln meZ
(3) Suppose that x' # 1. Then
= ’ n/d)
S o - S ()
m=0 d|n mEZL
PROPOSITION 4. Let K be a real quadratic field.

(1) Let v, @' be as in Section 2 and let k be a natural number with
the same parity as '1p. Suppose that there are completely multiplicative
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functions x, X' with ¢ = x o Nm, ¢/ = x’ o Nm. Then

Fire 1w = > xx(d 3 o <(n/d)211K_m2>.

0<d|n mez

(2) Let v = x o Nm € C}, be odd. Let p be a rational prime which is
not inert. Suppose that x(p) = —1 if xx (p) = 1. If B is a prime factor of p
m K, then

fousp(n) = _X(p)() Z Xx (d)x(d) Z 007X<(n/d)2DK — m2>.

I+ xk(p ocdin =, 4p
(d,p)=1

Proof. (1) Let N(d,2, K) denote the number of integral ideals of K
dividing 2 whose norms are d. By Lemma 2, ﬁfil, w(n) is equal to

,(n?Dyg —m?
Z Z L Y
|m|<nvDg  0<d|(n2Dx—m?2)/4
m=nDg (mod 2)

VD
x X(d)dk—1N<d, w K)

It has been shown in Cohen [5] that

N(d,m—i_z\/m,[() = > xx(€).

0<e|ged(m,n,d,(n?Dg —m?2)/4)
Then

lam= Y >

Im|<nvDx  0<elged(m,n,(n2 Dk —m?)/4)
m=nDk (mod 2)

x > xx (€)X’ (€)
0<da|((n/e)?Dic—(m/e)?) /4

(LD Y, s

= > xx(@X (dx(d)d" "y a;f/_1,x<(n/d) lle — )

0<d|n meZ

(2) First suppose xx (p) = 0, that is, p is ramified at K. If d| ((n/d)?Dx —
m?)/(4p) and if P (LK VDK) is integral, then

N(d, gp—l <m+z VDK)J() - N<d, m—|—+ VDK7K>_
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By Lemma 2 and by the same argument as in (1),

n/d2D e — m2
fowm(n) = —x(p) 3 xacldx(@) 3 aax(( /4" Dic )

4
0<dln mez P

Now suppose that yx(p) = 1, that is, p is decomposed at K, and that
x(p) = —1. Let v(m,n) (resp. v(m,n)) denote the P-adic (resp. P-adic)
valuation of (m + nv/ Dy )/2, and let v,(m) denote the p-adic valuation of
m € Z. Then by Lemma 2,
fo.u.m (1)

= > U+x®) 4+ X))
|m|<nv/Dg

m=nDg (mod 2)

X (L+x(p) + ..+ x(p)?™™)
X Y X(d)N(d, m”;\/m, K)

0<d|(n® Dx —m?)/(4p)

(d,p):l
D
_ 5 3 W) N<d7m+2\/7’ K)
|m|<nv/Dg 0<d\(n2DK—m2)/(4p)
m=nDk (mod 2) (d,p)=1

v(m,n) odd, v(m,n) even
A necessary condition that v(m,n) be odd and ©w(m,n) be even is that
vp((n? Dk —m?)/4) be odd. Under this condition, v(m, n) and v(m, n) have
the above properties only for one of +m (5 0) for a fixed n. Hence since
N<d, B VDKK> _ N<d, b VDKK>
it follows that

fo,u.p(n)
D
_ § : E ' X(d)N(d,m—i_T;K,K).
0<m<n\/Dx 0<d|(n®* Dk —m?)/(4p)
m=nDg (mod 2) (d,p)=1

vp((n*Dx—m?)/4) odd

If v, ((n*Dg —m?)/4) is even, then >, 00,y (W) vanishes. Then

by the same argument as in (1) it is shown that

n 2 _m2
o) =5 3 @@ 3 ooy (HTEE),

0<d|n meZ 4p
(d,p)=1

This shows our assertion. m
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Let x be a completely multiplicative function on N and suppose that
1= yoNm € CZ‘N). Let M be a divisor of N contained in the conductor fy.
Then ¥y € Cpyp (see Section 2 for the notation) is also invariant under
conjugation, and in particular there is a completely multiplicative function
X () on N such that ¥y = x(ar) © Nm.

Since there is an identity

LK(S7 ¢) = L<37 X)L(S7 XXK);
by Propositions 2 and 4 we have the following;:
THEOREM 2. Let k, N € N with kN # 1. Let K be a real quadratic field

and let Cpy be its narrow ideal class group modulo N. Let x be a completely
multiplicative function on N such that ) := x o Nm € C(N) has the same

parity as k. Let xo be such that xo(i) = x(i?).
(1) We have the identity

A2k, (2) = L(1 =k, x)L(1 — k, xxk)

+4ZZXK d)dr—*

n=10<d|n
n/d)?Dy — m?
X ZUk—l,x<( /) 4K >e(nz),
meZ

which is in Moy, 1, (N). For M with M | N, the Oth Fourier coefficient at a
cusp i/M, (i, M) =1, is equal to 0 if M ¢ fy, and to

xo)™ [ @=pH0 = xx@p VLA =k xan) L1 =k, X0 XK)
Pl (/M)

otherwise, and there is an additional term —W’QD%2L(1,X)L(1, XXk) at a
cusp 0 if k = 1. Suppose that N is the least element in NN f,. Then the
modular form is in Mgy |\ (N) (k> 1) orin M;OX?)(N) (k=1).

(2) Let k> 1 and N > 1. Then

AL (2) 4ZXK d)d1 3" o ( (n/d) 2135( o >e(nz)

meEZ

s in 1\/I%7X0 (N). The Oth Fourier coefficient at the cusp 0 is equal to

-0 (B8 ) D 2 0 2k )

Let N € NJ N > 1, and let x € (Z/N)*. Then x is said to be even
or odd according as x(—1) = 1 or —1. Let 9 be an integral ideal of K
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containing N so that N | Nm(M) and tr(N) C NZ. Put ¢ := x o Nm. We
show that ¢ € C§;,. If o = # (mod N) with «a, § € O relatively prime to 91,
then Nm(a) = Nm(5) (mod N). Indeed, putting o/ =1+&/5, £ € N, we
have

Nm(a) 1 — N

Nm(3) ' Ny ) RO € U %
where we note that (Nm(3),N) = 1. Then ¢(a2) = () for o > 0,
a = 1 (mod M), which implies that ¢y € C§;. For a = § (mod N),

have |Nm(«a)| = sgn(Nm(a/3))|[Nm(3)| (mod N) and so v is even or Odd
according as x is even or odd.

Now let 91 = (N). The above argument shows that for x € (Z/N)*,
1) := x o Nm is a character in CZ‘N). However, it is sometimes possible
that even if x is in (Z/N’)* with N |N’, N’ > N, 1 is still a character in
Cly)- For example, suppose that 4| Dk and 2| N. Then 2N | Nm(9) and
2N7Z C tr(N), that is, 2N plays the same role as N in the above argument.
Hence x € (Z/2N)* gives a character 1 of the group C(u). Later for a
Dirichlet character y we obtain the minimal N € N for which ¢ € C*¥ (™)

Let x be a Dirichlet character in (Z/N)* with the same parity as k.
Consider the case K = Q in Section 2, where we have constructed a modular
form A Put Gy = Aoy € My (N) (k#2 0r N # 1), and GY := AY €
My, (N) (k # 2 or x is nontrivial). For k > 2, we have the expansions

Grx(2) =L(1 =k, x) +2 ) ok_1,x(n)e(nz)

n=1

and

X(z)=2 Z ox_1(n)e(nz)
n=1

This holds also for k = 1, except possibly for the constant term. Let 6(z) :=

o2 e(3n%z) be a thetanullwerte. Then

0(22)Gry(42) = LA — k) +23 Y oh1y (” _4’” )e(nz)

n=1meZ

o0 2
0(2:)GY(42) =23 S ox <n4m)e(n2)

n=1meZ
are modular forms for I'1(4N) of weight k + 1/2 with character x. Then
0(22)Gy , (42) and Ao (%), or 0(22)G)(4z) and A;ﬁk(z) give an example of
Shimura correspondence between noncusp forms of half-integral and integral
weight. In a later paper we shall investigate a Shimura correspondence by
using this fact.

and
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The following lemma is easily verified. Here we denote by i (i € Z) the
class of Z/8Z containing i.

LEMMA 4. (1) Let p be an odd prime. Then the map of O (C K) to Z/pZ
defined by @« — Nm(a) (mod p), a € O, is surjective if pt Di. If p| Dk,
then the image is the set of squares in Z/pZ.

(2) The image of the map a — Nm(«) (mod 8) from {a € O : (a,2) =
O} to (Z/87)* is (Z/8Z)* (D =1 (mod 4)), {1,5} (Dg =4 (mod 8)),
{1,1 - Dk /4} (Dg =0 (mod 8)).

(3) The image of the same map from {
(2/87)* is (Z/8Z)* (Dk = 1 (mod 4)), {
(Dg =0 (mod 8)).

(4) The image of the same map from {a € O : «
(2/8Z7)* is {1,5} if Dk =1 (mod 4).

Even if the domains of the maps in Lemma 4 are replaced by the subsets
consisting of totally positive elements, the images do not change.

Let D denote the set of integers of the form v?D’ with v € N and D’ the
discriminants of a quadratic field or 1. We note that once an integer is of this
form, such an expression is unique. The set D is closed under multiplication.
If D’ =1, then yp: denotes the trivial character, and otherwise it denotes
the Kronecker—Jacobi-Legendre symbol. For D = u2D’ € D, we define xp
to be the character

O : «

€ = 1 (mod 2)} to

% mod 8)), {1}

1 (mod 4)} to

_ [xo(m) (D) = 1),
xom = {37 G20

LEMMA 5. Let D € D with D = u?D’, where D' is 1 or a discriminant
and (u, D) =1, and let D be a positive discriminant.

(1) Let N = [D/| [T,y p (v2(D'Dic) < 3), N = LD/ 1, p (v2(D' Dic)
=4,5) and N = ;|D/| [1,j.p (v2(D'Dk) = 6). Then xp o Nm is in C{y,.

(2) Let u= 1. Then a necessary and sufficient condition for N to be the
minimal natural number in the conductor of xp o Nm is

(i) D and D have no common odd prime factor, and
(i) neither vo(DDg) =4 nor DDk /64 =1 (mod 4).

Proof. (1) It is enough to show the assertion in case u = 1. Let Zy :=
{(w) : p €O, w0, u=1 (mod N)}. This is the identity element of
C(n).- We must show that y poNm is trivial on Zy. If D is odd, then there is
nothing to prove. Let D =4 (mod 8). Lemma 4(2), (3) implies that x poNm
is trivial on Zp/y (Dx =4 (mod 8)), or on Zp/s (Dg =0 (mod 8)), and
hence xp o Nm is trivial on Zy. Let D =0 (mod 8). For i odd, let 7 denote
the class in Z/(D) which is congruent to ¢ (mod 8) and to 1 (mod D/8).

Then xp(5) = —1, xp(3) = —(=1)(P/*72, xp(7) = (~1)P/*D/2 By
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Lemma 4(2)—(4), xpoNm is trivial on Zp /o (Dx =4 (mod 8)), or on Zp 4
(Dg =0 (mod 8)). Thus xp o Nm is trivial on Zy also in this case, which
shows our assertion.

(2) Let p be a prime with p | N. We must show that x o Nm is nontrivial
on Zyy, for any p if and only if D and Dk satisfy the condition. Since D is
a discriminant, yp is a primitive character modD. Let p be odd. If pt D,
then the image of the map % — Nm(2l) (mod p) from Zy, to (Z/pZ)* is
surjective by Lemma 4, and hence x p is nontrivial on Zy/,, by primitiveness.
If p| Dk, then xp is trivial on Zy/, again by Lemma 4. Hence (i) follows.
Let p = 2. By a similar argument to (1), we can show that xp o Nm is
nontrivial on Zy/, except for the case (ii). m

Let D = 2%da, Dk = 2"dd’ (w =0,2,3, 2¢d, 2{a, 2td’, (a,a’) =1) be
distinct discriminants, where aa’ =1 (mod 4) if w = 3. We note that a = o’

(mod 4) and that aa’ is a discriminant. Let X be the multiplicative function

defined by X(p) = xp(p) (p12"d) and X(p) = Xaa'(p) (p|2"d). Then YoNm
is in C?a) and its restriction to C(p) is equal to the character xp o Nm. Let

1 := xp o Nm and gfbv := X o Nm. Then
Lic(1=k ) = ] (1= Xaw (Nm(P)) Nm(B)* ) " Lic(1 = k, ¢).
PO2wd
Hence
L(1 =k, X)L(1 =k, Xxk)
= H (1 = Xaa (P)P" ) 7' L1 =k, xp)L(1 = k, XD XK)
p|21ud
= L(l — k,XD)L(l — kyXaa/)-
More generally, for M € f,, we have

L(1 =k, x(ar)) L(1 = Ky x(anyxx) = L(1 =k, xp) L(1 — Kk, Xar2aar)-

Let D € D, and k € N with (—1)*D > 0. Put A2k, D, D ‘= A2k xpoNm and

(D) . yXpoNm
Aok D = Mg,

(Gexp)? (k # 2 or D # 1), and )‘éf,)1 = (GX?)? (k # 2 or D is not a
square). In the following corollary we treat the case k > 1. The case k = 1
is considered in Section 7.

for a positive discriminant Dg. Further, put g 1.p =

COROLLARY TO THEOREM 2. Let Dy be 1 or the discriminant of a real
quadratic field, and let D € D, u and D’ be as in Lemma 5. Let k > 1
with (=1)*D > 0. Let N be |D’| [I,.p if Dk =1 and as in Lemma 5(1)
otherwise. Put D" := 4D'Dy /(D', Dk)? and E := 2|D’/(D’, Dk)| in case
vo(D'D) =5 or D'Dg /64 =3 (mod 4), and put D" := D'Dy /(D’, Dg)?
and E := |D'/(D', Dg)| in any other case.
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(1) Suppose that D # 1 if k =2 and D = 1. Then

)‘2k7DK,D(Z) = L(l - k;)XD)L(]' - k?XDDK)

+4Y Y XD (d)d*

n=10<d|n

x> Tii <(”/d)22K - m2>e(nz)

meZ

is in Mok (N). For M with M |N and (M,D") = (N,D"), the 0th Fourier
coefficient at a cusp i/M, (i, M) =1, is equal to

II A== xDi @)L =k, xar2p) L(1 =k, Xar2pr)-
pl(N/M)
The modular form is in M3 (N) if D, Dk satisfy the conditions in
Lemma 5(2).

(2) Let D # 1. Suppose that D is not a square if k = 2 and Di = 1.
Then

Wb () =4Y Y wop(d S i, (DS e

n=1 0<d|n mez

is in M9, (N). The Oth Fourier coefficient at the cusp 0 is

CDFEIa = xop ™ [ (O =xorp)

plu pl(DDk/D")
X L(l — k’,XD/)L(l — ]{}’XD//),
Proof. First let Dg be a discriminant. Then the assertions (1), (2)

follow immediately from Theorem 2 and Lemma 5, except for the Oth Fourier
coefficient at the cusp 0. We have the equality

L(k, xp) = [J(1 = xo )™ L x0).
plu
D" is a discriminant with D’ Dg = t2D”, and
Lk, xope) = J[ (0 =xor(@)p™")L(k, xD)-
pl(DDk /D)

Then the functional equations of L-functions of primitive Dirichlet charac-
ters give our Oth Fourier coefficient. Now let D = 1. Our Fourier expansions
are obtained by Lemma 3, and the assertions follow from Propositions 1 and
2incase K =Q. =
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6. We give some applications of the Corollary to Theorem 2. Let

—1)F/22k &
Gr(z): =1+ ()B op—1(n)e(nz) for even k > 4,
k n=1
where B}, denotes the kth Bernoulli number. This is a normalized Eisenstein

series for SLo(Z) of weight k. The following lemma is elementary.

LEMMA 6. (i) There is no nontrivial cusp form in My(N) if k < 12 and
N =1orif (k,N)=(4,2),(4,3),(4,4), (6,2).

(ii) Let k > 4 be even. If N is prime, then (1/(N* —1))(N*Gr(Nz) —
Gr(2)) € MP(N) and (N¥/(N* — 1))(Gi(2) — GL(N2)) € MY(N). The
former (resp. the latter) has 1 as its Oth coefficient at the cusp /—100
(resp. 0).

LEMMA 7. Let a € N be square-free. Let a* be a or 4a according as a =1
(mod 4) or not. Denote by pu the Mobius function. Let k > 2 be even and
let N be 1 or a prime. Then, up to O(aF/?=1/28+epk—1+e)

2a* o m2
Z O-k'717XN2 4

meZ
(=D)*2ByL(1 — k, Xa-) k-1 n _
Bor d§|n p(d)Xax (d)d U2k—1< ) (N =1),

(— )k/2BkL 1— k » Xa*) o1

{Nk — ]\[k_1 + 1 — xg~ (N)Nk_l}O'Qkfl (Z)

+ N?"2L N 4 x0 (N)(N* = N 4 1)Yoop_1 (Nd)] (N prime)
where there is an additional term —7n if N=1,a=1and k = 2. The
term O(a®/2=1/28Fepk=1%2) s 0 if k and N are as in Lemma 5(1).

Proof Let a =1 (mod 4). Suppose N # 1 or k # 2. Put
co = (1= N*""H(1 = xa(N)N*")¢(1 = k)L(1 ~ k, Xa),

=1 =N~ Xa(N)NTHC(A — k) L(L ~ k, Xa)-

Then by the Corollary to Theorem 2, Aoy o n2 is in MSZ’O(N) with ¢
(resp. cj) as its Oth Fourier coefficient at v/—1 0o (resp. 0). By Lemma 6(ii),
Mok an2(2) = (o (NF—1))(NFGi(N2) = Gi(2))+ (chN* / (N*— 1)) (G (2)
Gk(Nz)) plus some cusp form. Comparing the Fourier coefficients and us-
ing the Mobius inversion formula we obtain the formula. The error term
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vanishes if Moy (N) contains no nontrivial cusp form. A similar argument
works also for other cases except for the case N =1, a=1, k=2 1in (1) of
the Corollary to Theorem 2, where nonexistence of A4 11 causes difficulty.
For this, we refer to Cohen [5], Theorem 3.6. The Ramanujan—Petersson
conjecture proved by Deligne and Iwaniec’s result [14] gives the estimate of
the error term. m

We give arithmetic expressions for values of L(1 — k,xp) (k = 2,3,4)
with D being discriminants of quadratic fields.

ExXAMPLE 1. Let D be a positive discriminant. Then

b == % 2 01<D _4m2) - 4—;)(2) 2 “i“(D_zlmQ)

MmEZL meZ
_ —2 ZJ?Q(D_m2>7
9w 27\
D —m?
L(_37XD): ZJ3< 4 >
meZ

These equalities are obtained by substituting n = 1 in Lemma 7. Let D be
a negative discriminant. Then

1

L=2x0) = grgryymenz 2 S (Pl =) 24D)
—m?2
SN EC (12(D) > 2).

meZ
Indeed, let Dg = —4D (2¢D), —D/4 (v2(D) = 2), —D (v2(D) = 3).
Then X\g,p,,—a is in Mg(2), Mg°(4), Mg°(2) in the respective cases. From
{8,512, -1} € LRg(2), {8,0,—1} € LR4(4), {8, —1} € LR(2), the formula
follows.

For a positive definite integral quadratic form f, we denote by r¢(a) the
number of integral representations of a by f. If f is a sum of k squares,
then we denote it by ri(a). For a square-free a, we can have a formula for
ror41(na) up to O(ak/2=1/28+epk=1+e) (cf. van Asch [1]). However, we treat
several other quadratic forms here.

Let S be a positive even symmetric matrix of size 2k (k > 2) with square
determinant M? (M € N) with level N, that is, N is the least number in N
such that NSS! is even. Suppose that k is even and N = 1 or a prime. The

theta series
1
Os(z) = g e<2tr5r2>

rez2k
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associated with S is in My,(N). The theta series takes the value (—1)*/2/M
at the cusp 0 by the inversion formulas for theta series. It is written as a
sum of Eisenstein series in Lemma 6 up to cusp forms. Let g = %thx with

‘x = (z1,...,T2,). By the expression of Og, r4(n) (n € N) is shown to be
equal, up to O(nk=1/2+¢) to
2k
B—ak_l(n) 4]k, N=1),
k
2k

m[{M_lN(Nk_l — 1)+ (=D)**(N - 1)}

X op—1(n) + ]\/'(Mf1 — (—1)k/2)ak_1,XN2 (n)]  (2|k, prime N).
Here we note that for /N prime,
o-1(n/N) = N7 (0 -1(n) = 01-1,x . (n)),
Jfff (n) = (1= N NYe,_1(n) + N_k"'lak_l,xlv2 (n).
Let f = g+ x3,,,. Then r¢(n) = >, ., 7¢(n — m?). By the above
formulas for ry, 7¢(n) is written in terms of o_1(n—m?), op_1,y ., (n—m?)

up to O(n*/?2+¢). Then Lemma 7 gives a formula for r¢. For a square-free
a € N, 74(na) is equal, up to O(ak/271/28Fepk=1te) g

LX) S e (D omis ) (4], N =1),
d|n*

(=1)*22kL(1 — k, Xa-)
M(N? —1)Bgy,

> ald)xar (@dd N — (<1)"/20

N td|n*

= Xa+ (N)NF(1 = (=1)*2 M)} o), 1 (n*/d)

— NFHNFF (L = (=)M2M) + xar (N) (=N + (=1)*?
x M(N?* + N —1))}oor_1(n*/Nd)] (N being prime),

where n* denotes 2n or n according as a =1 (mod 4) or not and where in
the latter formula there is an additional term —240(N —M)M ~1(N+1)~tn?
ifk=2anda=1.

EXAMPLE 2. Let g = 23 + 23 + 25 + 25 + 22 + 2122 + x374. Then k = 2,
N = M =3, and

rg(n%a) = 6L(~1,xa) Y p(d)Xa ()A{(~T + 3xa+ (3))os(n" /d)
3td|n*
+9( = Txa (3))os(n”/(3d))}-

Since My (3) contains no nontrivial cusp form, there appears no error
term.
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ExXAMPLE 3. Let Agi (k € N) be a positive even unimodular matrix
of size 8k, and let ¢ = 3'xAgpx + xd, | with ‘x = (z1,...,28;). For a
square-free integer a € N,

8kL(1 — 4k, xa+)

ry(nte) = T P ) uldxar (O owa(n”/d)
n O(a2k—1/28+€n4/|fn—1+6)‘
If k = 1, then
ro(na) = ~240L(~3, xa) 3 pld) - ()orr(n* ),

d|n*
since there is no nontrivial cusp form in Mg(1).

Finally, we give a formula in the case of a quadratic form with nonsquare
discriminant.

EXAMPLE 4. Let g = z§ + 23 + 23 + 27 + 222. Let a € N be square-free.

Then
—8L(—1, x8a) %u(dma(d)d{% <Z> — 1603 <4Til) }
(2ta),
—SL(-1,xe0) %dewd{?’“g () ~5(50) )
ro(n%a) = (a =6 (mod 8)),
— 8L(~1, Xa/2) %M(d)xza(d)d{(w — 6Xa/2(2))o3 <Z>

(a =2 (mod 8)).

Let f denote a quaternary form x2 4+ 23 + 3 +222. By a standard argument,
we have ry(n) = 2(407° (n) — 01,4, (n)). Since ry(n) = 3, o, rr(n—m?), we
have
ro(m) =2 3" (403 (0 — m?) — 01,1, (n — ).
meZ

Let a =1 (mod 4). By Corollary to Theorem 2, A\s 48 € M3°(8) and )\fﬁ)l €
MY(8), and hence their Us-images are in M3$°(4) and MY(4) respectively.
Now UQ(AEL?Z) has —276L(—1, xg4) at its Oth Fourier coefficient at 0. We
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have

1
2000 (2) = 3Mas(2)

- _ 1[,(—1, Xs)L(=1,Xsa) +2 3 > Xsa(d)d

2
n=1 d|n

and so,

1
U2 <2Af()1 — 2)\4,11,8) (Z)

= SE(Txsa) + D0 7 Xsa(d)dry (n/d)a)e(nz),

n=1 d|n
which is equal to

16 16
2_5L(—1,X8a){15(16G4(4z) — G4(22)) — 1—5(G4(z) — G4(22))}.
By comparing Fourier coefficients, we obtain the formula in this case. By a

similar argument we can obtain formulas for ¢ Z 1 (mod 4).

7. In this section we consider a modular form Ag . in case k = 1. Its
Oth coefficient is essentially a product of two class numbers of imaginary
quadratic number fields. Costa’s result [6] has already shown that modular
forms are effective in the study of class numbers. Our purpose is different
and we investigate a relation between ternary forms and class numbers. For
m nonsquare, let h(m) and w(m) denote the class number of Q(y/m ) and
the number of roots of unity, respectively. Let D be a negative discrimi-
nant. Then L(0, xp) equals 2h(D)/w(D). The number w(D) is 4 (D = —4),
6 (D = —3), or 2 (otherwise).

Let N > 1. Let [ € N be a divisor of N™ for some m € N. Let Ma(N, 1)
denote the subspace consisting of modular forms f in My(N) for which

(1w, - ) =o.
pIN
When N is prime, My(N, 1) denotes the subspace in Ma(N) consisting
of modular forms invariant under Uy. Obviously if [|{’, then My (N,1) C
M, (N, "), and if p?| N, then U,(Mz(N,1)) C Mz(N/p,l/(l,p)). For the
first several prime N, a basis of the space of cusp forms in My(N, 1) and
their Fourier coefficients are computed in [21].
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PROPOSITION 5. (1) Let the notation be as in Theorem 2. Suppose that

k = 1 and that x s a real-valued odd Dirichlet character with conduc-
tor N'. Let | be a natural number such that N'| ((alle)2DK) (2tN7),

or N"|((l leNp)QDK/Zl) (2| N'). Then Ay is in Ma(N,1).
(2) Let the notation be as in Proposition 4(2). Let 1 = x o Nm. If x is
real-valued, that is, 1 is a genus character, then Aoy is in Ma(p,1).

Proof. (1) Put

s(n) = ao,x<”2DK4_mQ>.

meZ

Let ¢ € N be so that x(¢) = —1. In particular, ¢ is not a square. Then oy , (c)
vanishes because for d|¢, the equality x(d) + x(d’) = 0 holds, d’ being the

(In V2D —m?
complementary divisor. This shows that o,y ( [y Z “ )
if (N',m)=1,orif 2| N" and (N’,m/2) = 1. Thus

s(lan)zZs(lan)— Z S(ln H p)—i—...,

p|N p1|N PF#P1 p1,p2|N DP#P1,DP2

vanishes

where p, p; are primes. Putting a(n) = >4, Xk (d)x(d)s(n/d), we have

a(lan) = Za(ln H p) — Z a(ln H p) +...
pIN p1IN PF#p1 p1.p2|N PFP1,P2

Since a(n) (n > 0) is the higher Fourier coefficient of Ay ,, we have shown
that the modular form is in My(V,[). Thus our assertion follows.

(2) The higher Fourier coefficient of Ag 4 is obtained in Proposition 4(2).
If xx(p) = 0, then its nth and pnth coefficients are obviously equal for any
n € N, that is, A is invariant under U,. Suppose xk (p) # 0. Let ¢ = p"¢
with (¢/,p) = 1. Since x(p) = —1, 0o (c) is equal to 0 if r is odd, and to
00,5 (') otherwise. So

(pn)? Dy — m? n? Dy —m?
Z 00,x <4p = Z 00,x T )

meZ me”Z
which shows that Ao is invariant under U,. =
THEOREM 3. (1) Let D and D be negative discriminants. Let a € N

be square-free. Let a* denote a or 4a according as a = 1 (mod 4) or not.
Assume that

(i) there is u € N such that a*D; = u®D, and
(ii) xp(p) # 1 for any prime factor p of .
Let t denote the cardinality of {p : p|lu, xp(p) = —1}. Let N = |D;|
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(2{@* or 2)[D1>, %‘D1| (Uz(a*Dl) = 4, 5), i‘D1| (’UQ(G*Dl) = 6) Then
A2a+,D, (2) = 2772 1(D1) (D) /w(Dy)w(D)

e n 2a* _ m2
+4> Y xuen(d) D o0, <(/d)4>e(”2)

n=10<d|n meZ

is a modular form in Ma(N,1), where | = 2% with the least integer u >
max{0, (va(D1)—v2(a*))/2}. If Dy and a* have no common odd prime factor
and if neither vo(D1a*) = 4 nor D1a*/64 = 1 (mod 4), then the modular
form is also in MSO’O(N). Suppose otherwise. Let M > 1 be a divisor of N.
Then the Oth coefficient at a cusp i/M, (i, M) = 1, is equal to 0 ((M, D)
#1),

22 T (1= p H(Dy)A(D)/w(Dy)w(D)  ((M,D) =1),
p|(N/M)
where ty; denotes the cardinality of {p : p| M, xp(p) = —1}.
(2) Let D and Dy be negative discriminants such that a* = DDy is the
discriminant of a real quadratic field. Let p be a rational prime such that
XD, (p) = =1 and xp(p) =0 or —1, and let x be a completely multiplicative

function on N defined by x(q) = xp,(q) for a prime q with qf Dy, and
x(q) = xp(q) for q dividing Dy. Then

4h(D1)h(D )/w(Dl) (D)

Z Z xp(d) Z JO%(W)G(HZ)

n=1 0<d|n meZ
(d,le) 1

1_XD

is a modular form in Ma(p,1).

Proof. (1) The Oth Fourier coefficient of Ag o+ p, is L(0, xp,)L(0, Xu2D),
which is equal to 2! L(0, xp, ) L(0, xp) = 2!*2h(D1)h(D)/(w(D1)w(D)). The
Oth coefficients at other cusps are obtained as in the Corollary to Theorem 2.
Thus by Lemma 5, Theorem 2(1) and Proposition 5, our assertion follows.

(2) Let K be a quadratic field with Dg = a*, and let ¢ := x o Nm
be a genus character corresponding to the decomposition a* = D - D;. By
Proposition 5(2), A2y is in Ma(p,1). Its Oth coefficient is equal to (1 —
Y(P)) Lk (0,v) = 2L(0,xp)L(0, xp, ), and the higher coefficients are given
in Proposition 4(2). Thus £z, is the modular form in the theorem. m

In Theorem 3, the Oth coefficients at a cusp 0 are not presented. However,
by Lemma 1, they can be obtained from the Oth coefficients at other cusps.
We give an application of Theorem 3(2).

EXAMPLE. Let r = 3 (mod 8) > 3 be square-free, and let —s be a
negative discriminant with s # 7 (mod 8) and (s,r7) = 1. Let p = 2, Dy =
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—r and D = —s in Theorem 3(2). Then

hrh(-9)+ ——— Y 3 @
1 X—S(2)

n=1 d|n
(d,2r)=1

X Z 00,x (W)e(nz) € Ms(2).

MEZL
Since {24, —1} € LR5(2), we have

1 rs —m?
- L ()

mEZ
m=s (mod 2)
If g is the minimal prime with x(q) = 1, then 0 < o9 (m) < log, m (see the
proof of Proposition 5). Thus we obtain the estimate

1
h(—=r)h(=s) < m(\/ﬁ + 2) logs(rs)

1
< E(\/fs + 1)(log |r| + log |s]).

Note that this cannot be obtained from the usual estimate such as h(—s) <
C'+/|s|log|s| with a constant C' (see for example Newman [15]). A similar
argument is possible for some other congruence conditions.

Let D be a discriminant. Then for m € N, oq,,(m) is equal to the
number of integral ideals in Q(v/D) with norm m. Hence for D < 0,
w(D)oo,y (M) is equal to the number of representations of m by positive
definite quadratic forms of discriminant D which form a complete system
of representatives of the proper equivalence classes. It follows that higher
Fourier coefficients of A3 o+ p, in Theorem 3(1) are closely related to repre-
sentations of natural numbers by ternary forms.

We give an application of Theorem 3(1). We examine the case Dy = —4.
Let a be square-free with a # 7 (mod 8). Then D = —4a (a = 1,2 (mod 4)),
D = —a (a = 3 (mod 8)) satisfy the conditions (i), (ii), where ¢ = 0 in the
former, and ¢ = 1 in the latter. Since h(—4) = 1 and w(—4) = 4,

)‘Z,a*,—4
= 2h(—a)/w(~a) + 1) > x-1a(d) Y o0\, (W) e(nz).
n=1 d|n meZ

Considering the norm form for Q(1/—1), we have

r3(n) =4 Z 0o s(n—m?) forn€N.
meZ
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Here Uz(Ag,q+,—4) (@ = 1 (mod 4)) and Mg+ —4 (@ # 1 (mod 4)) are in
M,(2) and they have the expansion

2'h(=a)/w(=a) + >_ { 3 x-1a(d)rs(n/d)%a) fe(n2).

n=1 d|n
Since {24, —1} € LR5(2), we have shown that for a square-free a > 3,
h(—a) = 5r3(a) (a=1,2 (mod 4)),
%r3(a) (a=3 (mod 8)),

which is known as “Gauss’ three-square theorem”. Since M(2) is spanned
by G2y, (%), comparison of Fourier coefficients leads to

(2723h(~a) /w(=a))o1x,(n) = Y x-1a(d)r3((n/d)*a)
d|n
for any n. By the Md&bius inversion formula, we obtain
r3(n®a) = (2"73h(- )Y p(d)x-1a(d)o1,y, (n/d),
dln

which is a classical result (Bachmann [3], Bateman [4]).
In this way we can obtain other such formulas by replacing D, by other
negative discriminants. We state some of them as a corollary.

COROLLARY. Let m be any natural number. Let m = n*a with a square-
free. Let n* be 2n or n according as a =1 (mod 4) or not.
(1) Then rg(m) = 0 (a = 7 (mod 8)), and r3(m) = d1(a)h(—a)
X Y apn Md)X-1a(d)o1,y, (n/d) (otherwise), where 61(a) = 6 (a = 1),
8(a=3),12 (a=1,2 (mod 4), a>1),24 (a=3 (mod 8), a > 3).
(2) Let f=a%+y*+222 Thenrs(m) =0 ifa =14 (mod 16). Suppose
otherwise. Then
(—2a) ) p(d)x-sa(d)o1x,(n/d)  (2|a or 21n),
d|n
h(=20) 3" i(d)x_sa(d)1,4a(n/2d) (2Fa and 2|n),
d|n
where d2(m) denotes 6 (a = 2), 8 (a =6), 12 (a = 2 (mod 8), a > 2),
24 (a=6 (mod 16) a>6),4 (2J(a 21n), 12 (2ta, 2|n).
(3) Let f =2+ y? +yz + 2% Then
0 (a =6 (mod 9)),
ry(m) = —3a) Z,u X—3a+ ()01 5, (n"/d) (otherwise),
d|n*
where d3(a) denotes 2 (a=1), 3 (a =3), 6(1 +v3(a)) (a #1,3).

rg(m) =
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(4) Let f =a®+y*+ 322 Thenry(m) =0 if a =6 (mod 9). Suppose
otherwise. Then
8% (a)h(—3a) Z,u )X—12a(d)01 5o (n/d) (a=1 (mod 8)),
6/ 3a Z:u’ X— 3a )0-17X9 (n/d) (CL =5 (mOd 8))7

d5(a)h(—3a) ZM X—12a(d){01,x, (n/d)

+ 201 5, (n/(2d))} (a =2,3 (mod 4)),
where 05(a) =4 (a =1), 2 (a = 3), 12(1 + v3(a)) (a =1 (mod 8), a > 1),
8(1+ wv3(a)) (a E 5 (mod 8)), 2(1 +wv3(a)) (a=2,3 (mod 4), a # 3).

(5) Let f = a2+ y? +yz +22%. Then

0 (a/7#3,5,6 (mod 7)),
() = 267 (a )(1+v7( ))h(—?a)
! XZM )X-7a* (d)o1,7(n*/d) (otherwise),
d|n*

where 07(7) =1/2, §7(21) =1/3 and d7(a) =1 (a # 7,21).
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