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of the Dem’yanenko matrix
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Introduction. In [S-Sch], Sands and Schwarz defined the generalized
Dem’yanenko matrix associated with an arbitrary imaginary abelian field of
odd prime power conductor. They investigated an interesting relation be-
tween this matrix and the relative class number of the field. In [D], Dohmae
defined such a matrix for an arbitrary imaginary abelian field of odd conduc-
tor. Recently we succeeded in generalizing the above result as follows (see
[T]). Let K be an imaginary abelian number field of arbitrary conductor. Let
n be the conductor of K with n 6≡ 2 (mod 4) and let [K : Q] = 2d. For l ∈ Z
with (l, n) = 1 and l > 1, we defined the generalized Dem’yanenko matrix
∆(K, l) ∈ M(d,Q) (see [T], Definition 2.5). We proved a relation between
det∆(K, l) and the relative class number h−K , which could be regarded as a
generalization of the one in [S-Sch]. In fact, we verified that ∆(K, 2) plays
the same role as the matrices defined in [S-Sch] and [D]. Moreover, we veri-
fied that det∆(K,n+ 1) coincides with the generalized Maillet determinant
defined by Girstmair in [G] (see [T], §§2 and 3).

In the present paper, we consider a direct sum decomposition of ∆(K, l)
as follows. Let X+

K be the group of even characters of Gal(K/Q) and Y
be a subgroup of X+

K of index (X+
K : Y ) = c. We construct the matri-

ces {∆s(K, l, Y ) ∈ M(d/c,Q(ζ2c)) | s = 1, . . . , c} such that the following
theorem holds.

Theorem. ∆(K, l) is similar to the matrix


∆1(K, l, Y ) 0

. . .
0 ∆c(K, l, Y )


 .

In the case Y = X+
K , we can see that ∆1(K, l,X+

K) = ∆(K, l). In the
case Y = {1}, ∆s(K, l, {1}) is essentially equal to the generalized Bernoulli
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number B1,χ (see §3). In the previous paper ([T]), we treated these two cases.
By the class number formula (cf. Proposition 4.9 of [W]), we got a relation
between det∆(K, l) and h−K (see Theorem of [T]). As a generalization, the
above theorem gives a kind of direct sum decomposition of the Dem’yanenko
matrix.

In Section 1, we recall the definition of ∆(K, l). In Section 2, we define
the matrices {∆s(K, l, Y ) | 1 ≤ s ≤ c} and give the proof of above theorem.
In Section 3, we give some remarks.

1. The generalized Dem’yanenko matrix. We make use of the same
notations as in [T]. The generalized Dem’yanenko matrix ∆(K, l) was de-
fined as follows. Let K be an imaginary abelian number field of degree 2d
and let n be its conductor. For x ∈ Z, let R(x) = Rn(x) be the residue of x
modulo n with 0 ≤ R(x) < n, and x′ be the integer with xx′ ≡ 1 (mod n)
and 1 ≤ x′ < n. Let G = Gal(Q(ζn)/Q) = {σa | ζn → ζan, (a, n) = 1}. There
is a canonical group isomorphism

(Z/nZ)× → G : a (mod n) 7→ σa.

Let H = Gal(Q(ζn)/K) and GK = Gal(K/Q) ' G/H. Note that we let σa
denote both the element of G and its restriction to K, namely the element
of GK . Let TK be the subset of {a ∈ Z | 1 ≤ a < n, (a, n) = 1} such
that H = {σa | a ∈ TK}. Let J = σ−1 be complex conjugation. Since
J 6∈ H, we can uniquely take a set SK ⊂ {c ∈ Z | 1 ≤ c < n/2} such
that {σ−1

c | c ∈ SK} ∪ {σ−1
−c | c ∈ SK} forms a set of representatives for

G/H ' GK .
Let XK be the character group of GK . Let X−K = {χ ∈ XK | χ(−1) =

−1} and X+
K = {χ ∈ XK | χ(−1) = 1}. For χ ∈ XK , let

(1.1) εχ =
1

[K : Q]

∑

a∈SK
χ(a)(σ−1

a + χ(−1)σ−1
−a).

Then {εχ | χ ∈ XK} are called the orthogonal idempotents of the group ring
Q[GK ], where Q is an algebraic closure of Q. Let V = Q[GK ], and V − =
((1 − J)/2)V = {v ∈ V | Jv = −v}. Note that εχσ−1

a = χ(a)εχ. We can
easily verify that {εχ | χ ∈ XK} forms a Q-basis for V , and {εχ | χ ∈ X−K}
forms a Q-basis for V − (cf. [W], Chap. 6).

For x ∈ Z with (x, n) = 1, let ξ(x) = (σ−1
x −σ−1

−x)/2. A short calculation
shows that

(1.2) ξ(xy) = ξ(x)ξ(y), ξ(−x) = −ξ(x)

and that {ξ(c) | c ∈ SK} forms a Q-basis for V −.
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We fix l ∈ Z with l > 1 and (l, n) = 1. For b ∈ Z, let

A(b, l) = An(b, l) =
∑

ζl=1
ζ 6=1

ζn−b

1− ζn ∈ Q.

Note that A(b, 2) = (−1)b−1/2 in the case l = 2. We can easily verify that

(1.3) A(R(n− a), l) = −A(R(a), l).

We consider the element of Q[GK ] defined by

% = %(K, l) =
n∑
a=1

(a,n)=1

A(R(a), l)σ−1
a .

By (1.3), we have % ∈ V −. Since

G = {σ−1
a σ−1

c | a ∈ TK , c ∈ SK} ∪ {σ−1
a σ−1

−c | a ∈ TK , c ∈ SK},
we have

(1.4) % =
∑

b∈SK
2
( ∑

a∈TK
A(R(ab), l)

)
ξ(b).

For α ∈ V −, let Lα : V − → V − be defined by Lα(v) = αv. The following
fact was proved in Proposition 2.4 of [T]. For each c ∈ SK ,

(1.5) L%(ξ(c)) =
∑

b∈SK
2
( ∑

a∈TK
A(R(abc′), l)

)
ξ(b).

Definition 1.1 (The generalized Dem’yanenko matrix).

∆(K, l) =
(

2
∑

a∈TK
A(R(abc′), l)

)
b,c∈SK

∈M(d,Q).

By (1.5), we get the following.

Proposition 1.2. The matrix of L% with respect to the basis {ξ(a) | a ∈
SK} is ∆(K, l).

2. Definition of ∆s(K, l, Y ). Let Y be a subgroup of X+
K of index

(X+
K : Y ) = c. Then we can take representatives {ψ1, . . . , ψc} of those

classes in XK/Y that consist of odd characters. Let

(2.1) λs =
∑

χ∈Y
εψsχ,

and let Vs = λsV for s = 1, . . . , c. Since ψs is odd for any s, we have
Vs ⊂ V −. Let

kerY = {σa ∈ GK | χ(a) = 1 for any χ ∈ Y }.
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We can verify that |kerY | = (X : Y ) = 2c (cf. [W], Chap. 3). So (GK :
kerY ) = d/c. Since J ∈ kerY , we can take Γ ⊂ SK such that {σ−1

y | y ∈ Γ}
forms a set of representatives of GK/ kerY .

Lemma 2.1. {λsσ−1
y | y ∈ Γ} forms a Q-basis for Vs for s = 1, . . . , c.

P r o o f. For σa ∈ kerY ,

(2.2) λsσa =
∑

χ∈Y
εψsχσa =

∑

χ∈Y
ψsχ(a)εψsχ = ψs(a)λs.

Thus we have the assertion.

Now we let ∆s(K, l, Y ) be the matrix of L%|Vs with respect to the basis
{λsσ−1

y | y ∈ Γ} for Vs, for s = 1, . . . , c. We determine the entries of
∆s(K, l, Y ). Since J ∈ kerY , we can take a set Ω ⊂ {x ∈ Z | 1 ≤ x < n/2}
such that kerY = {σ−1

x | x ∈ Ω} ∪ {σ−1
−x | x ∈ Ω}. Hence we have

% = 2
∑

y∈Γ

∑

x∈Ω

∑

a∈TK
A(R(axy), l)ξ(σxy).

Proposition 2.2. Let z ∈ Γ . Then

L%(λsσ−1
z ) = 2

∑

y∈Γ

∑

x∈Ω

∑

a∈TK
A(R(axyz′), l)ψs(x)λsσ−1

y

for s = 1, . . . , c.

In order to prove Proposition 2.2, we prepare some notations. For x ∈ Z,
we define the functions g(x) and f(x) as follows. If 0 ≤ R(x) < n/2 then
we let g(x) = R(x) and f(x) = 1, and if n/2 < R(x) < n then we let
g(x) = n − R(x) and f(x) = −1. We can verify that 0 ≤ g(x) < n/2 and
g(x) ≡ f(x)x (mod n). We can prove the following lemmas in the same
manner as Lemmas 2.2 and 2.3 of [T].

Lemma 2.3. Let z ∈ Ω. Then {g(yz) | y ∈ Ω} = Ω.

Lemma 2.4. Let y, z, w ∈ Ω with g(yz) = w. Then y = g(wz′) and
ξ(σyz) = f(wz′)ξ(σw).

P r o o f o f P r o p o s i t i o n 2.2. Since ξ(σa)σ−1
b = ξ(σab) for a, b ∈ Z,

we have

L%(λsσ−1
z ) = 2

∑

y∈Γ

∑

x∈Ω

∑

a∈TK
A(R(axy), l)ξ(σxy)λsσ−1

z(2.3)

= 2
∑

y∈Γ

∑

x∈Ω

∑

a∈TK
A(R(axy), l)(λsσ−1

x )ξ(σyz).

Let g(yz) = w. It follows from Lemmas 2.2 and 2.3 that (2.3) is equal to

2
∑

w∈Γ

∑

x∈Ω

∑

a∈TK
A(R(axg(wz′)), l)(λsσ−1

x )f(wz′)ξ(σw).
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By (1.3), we have

A(R(ag(wz′)), l)f(wz′) = A(R(axwz′), l).

By (2.2), we have λsσ−1
x = ψs(x)λs for x ∈ Ω. Finally, we can verify that

λsξ(σw) = λsσ
−1
w for w ∈ Γ . Thus we have the assertion.

Definition 2.5. For s ∈ Z with 1 ≤ s ≤ c,
∆s(K, l, Y ) =

(
2
∑

x∈Ω

∑

a∈TK
A(R(axyz′), l)ψs(x)

)
y,z∈Γ

.

P r o o f o f T h e o r e m. It follows from Propositions 1.2 and 2.2 that
∆(K, l) is similar to diag(∆1(K, l, Y ), . . . , ∆c(K, l, Y )). By the definition of
∆s(K, l, Y ), we can see that ∆s(K, l, Y ) ∈ M(d/c,Q(ζ2c)), since ψs(x) ∈
〈ζ2c〉 for x ∈ Ω. This completes the proof of Theorem.

3. Some remarks. We calculate det∆s(K, l, Y ) as follows.

Proposition 3.1. For s ∈ Z with 1 ≤ s ≤ c,
det∆s(K, l, Y ) =

∏

χ∈Y
(lψsχ(l)− 1)B1,ψsχ

∏

p prime
p|n

(1− ψsχ(p)),

where B1,χ is the generalized Bernoulli number (cf. [W], Chap. 4).

P r o o f. By Proposition 1.3 of [T], we have

L%(εχ) = (lχ(l)− 1)B1,χ

∏

p|n
(1− χ(p)),

where χ = χ−1 for χ ∈ X−K . Since λs =
∑
χ∈Y εψsχ for s = 1, . . . , c, this

completes the proof.

R e m a r k. In the case Y = {1}, it follows from Proposition 3.1 that

∆s(K, l, {1}) = (lψs(l)− 1)B1,ψs

∏

p|n
(1− ψs(p)),

for s = 1, . . . , d.

In [T] (see §3, (3.3)), we proved that
∑

a∈TK
A(R(ac), n+ 1) =

∑

a∈TK
nB1

(
R(ac)
n

)
,

for c ∈ SK , where B1(x) = x− 1/2. Hence, by Definition 2.5, we have

∆s(K,n+ 1, Y ) =
(

2n
∑

x∈Ω

∑

a∈TK
B1

(
R(axyz′)

n

)
ψs(x)

)

y,z∈Γ
.
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We recall that det∆(K,n+ 1) coincides with the generalized Maillet deter-
minant D∗ defined by Girstmair in [G] (see [T], §3). Hence we can regard
{∆s(K,n + 1, Y ) | 1 ≤ s ≤ c} as direct summands in a direct sum decom-
position of Girstmair’s matrix.
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