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Introduction. In [S-Sch], Sands and Schwarz defined the generalized
Dem’yanenko matrix associated with an arbitrary imaginary abelian field of
odd prime power conductor. They investigated an interesting relation be-
tween this matrix and the relative class number of the field. In [D], Dohmae
defined such a matrix for an arbitrary imaginary abelian field of odd conduc-
tor. Recently we succeeded in generalizing the above result as follows (see
[T]). Let K be an imaginary abelian number field of arbitrary conductor. Let
n be the conductor of K with n # 2 (mod 4) and let [K : Q] = 2d. Forl € Z
with (I,n) =1 and [ > 1, we defined the generalized Dem’yanenko matrix
A(K,l) € M(d,Q) (see [T], Definition 2.5). We proved a relation between
det A(K, 1) and the relative class number hj, which could be regarded as a
generalization of the one in [S-Sch]. In fact, we verified that A(K,2) plays
the same role as the matrices defined in [S-Sch]| and [D]. Moreover, we veri-
fied that det A(K, n+1) coincides with the generalized Maillet determinant
defined by Girstmair in [G] (see [T], §§2 and 3).

In the present paper, we consider a direct sum decomposition of A(K,1)
as follows. Let X;; be the group of even characters of Gal(K/Q) and Y
be a subgroup of X of index (X : Y) = c. We construct the matri-
ces {As(K, 1Y) € M(d/c,Q(C2c)) | s = 1,...,c} such that the following
theorem holds.

THEOREM. A(K, 1) is similar to the matrix

A (K, LY) 0

0 A(K, 1Y)

In the case Y = X}, we can see that A;(K,l,X};) = A(K,l). In the
case Y = {1}, As(K,[,{1}) is essentially equal to the generalized Bernoulli
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number B  (see §3). In the previous paper ([T]), we treated these two cases.
By the class number formula (cf. Proposition 4.9 of [W]), we got a relation
between det A(K, 1) and hj (see Theorem of [T]). As a generalization, the
above theorem gives a kind of direct sum decomposition of the Dem’yanenko
matrix.

In Section 1, we recall the definition of A(K,). In Section 2, we define
the matrices {A(K,1,Y) | 1 < s < ¢} and give the proof of above theorem.
In Section 3, we give some remarks.

1. The generalized Dem’yanenko matrix. We make use of the same
notations as in [T]. The generalized Dem’yanenko matrix A(K,[) was de-
fined as follows. Let K be an imaginary abelian number field of degree 2d
and let n be its conductor. For z € Z, let R(z) = R,,(x) be the residue of =
modulo n with 0 < R(x) < n, and 2’ be the integer with zz’ =1 (mod n)
and 1 <2’ < n.Let G = Gal(Q(¢,)/Q) = {04 | ¢n — (2, (a,n) = 1}. There

is a canonical group isomorphism
(Z/nZ)* — G :a (mod n) — o,.

Let H = Gal(Q(¢,)/K) and Gx = Gal(K/Q) ~ G/H. Note that we let o,
denote both the element of G and its restriction to K, namely the element
of Gk. Let Tk be the subset of {a € Z | 1 < a < n, (a,n) = 1} such
that H = {0, | a € Tk}. Let J = o_1 be complex conjugation. Since
J ¢ H, we can uniquely take a set Sk C {c € Z | 1 < ¢ < n/2} such
that {o;! | c € Sk} U {0~} | ¢ € Sk} forms a set of representatives for

Let Xk be the character group of Gi. Let X = {x € Xk | x(—1) =
—1} and Xt = {x € Xk | x(=1) = 1}. For xy € Xk, let

1

(L1) = Rg ZSJ X(@)(o; " +x(=1)oZ).

Then {e, | x € Xk} are called the orthogonal idempotents of the group ring
Q[Gk], where Q is an algebraic closure of Q. Let V = Q[Gk], and V— =
(1—=J)/2)V = {v € V | Jvo = —v}. Note that e,0,' = X(a)s,. We can
easily verify that {e, | x € Xk} forms a Q-basis for V, and {e,, | x € X}
forms a Q-basis for V= (cf. [W], Chap. 6).

For 2 € Z with (z,n) = 1, let £(z) = (0, " —o0_1)/2. A short calculation
shows that

(1.2) §(ry) = E()E(y),  &(—x) = —¢£(x)
and that {£(c) | ¢ € Sk} forms a Q-basis for V.
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We fix | € Z with [ > 1 and (I,n) = 1. For b € Z, let

_ B Cnfb
Ab,1) = Ap(b, 1) = Y e €Q.
¢'=1
A1
Note that A(b,2) = (—1)*1/2 in the case [ = 2. We can easily verify that
(1.3) A(R(n — a),l) = —A(R(a),1).

We consider the element of Q[Gx| defined by

0= o(K,I) Z AR
(a,n):l
By (1.3), we have p € V. Since
G={o o ' |acTk, ce Sk} U{o, 0"t |aecTk, cc Sk},
we have
(1.4) o= > 2( D A(R(ab), D)),
beSK a€Tk

For a« € V7, let Ly : V- — V= be defined by L, (v) = av. The following
fact was proved in Proposition 2.4 of [T]. For each ¢ € Sk,

(1.5) == ( 3" A(R(ab¢) )g(b).
beSK a€Tk
DEFINITION 1.1 (The generalized Dem’yanenko matrix).
( 3" A(R(abe) ) e M(d,Q).
a€Tx b,ceESK

By (1.5), we get the following.

PROPOSITION 1.2. The matriz of L, with respect to the basis {{(a) | a €
SK} 18 A(K,Z)

2. Definition of A (K,l,Y). Let Y be a subgroup of X of index
(X : Y) = c. Then we can take representatives {t1,...,1.} of those
classes in Xk /Y that consist of odd characters. Let

(2.1) A=
X€EY

and let Vi, = AV for s = 1,...,c¢. Since 9, is odd for any s, we have
Vs C V™. Let

kerY = {0, € Gk | x(a) =1 for any x € Y}.
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We can verify that |kerY| = (X : Y) = 2¢ (cf. [W], Chap. 3). So (G :
kerY) = d/c. Since J € kerY, we can take I' C Sk such that {o, ' |y € I'}
forms a set of representatives of Gk /kerY.

LEMMA 2.1. {/\say_1 | y € I'} forms a Q-basis for Vi fors=1,...,c

Proof. For o, € kerY,
(2.2) AsOq = Z EysxTa = Z Ysx(a)ey,x = s(a)As

xX€Y XEY

Thus we have the assertion.

Now we let Ag(K,1,Y) be the matrix of L,|y, with respect to the basis
{Aso,t | y € I'} for V, for s = 1,...,c. We determine the entries of

A (K, 1,Y). Since J € kerY, we can take aset 2 C{zx €Z |1 <z <n/2}
such that kerY = {o;! |z € R} U {o~} \ T € Q} Hence we have

2=25" 5 S Alhas) D)
yel' x€R a€Tk
PROPOSITION 2.2. Let z € I'. Then
o) =235 S ARGy 2o
yel x€R a€Tk
fors=1,...,c
In order to prove Proposition 2.2, we prepare some notations. For x € Z,
we define the functions g(z) and f(z) as follows. If 0 < R(z) < n/2 then
we let g(x) = R(x) and f(z) = 1, and if n/2 < R(x) < n then we let
g(x) =n — R(x) and f(z) = —1. We can verify that 0 < g(z) < n/2 and
g(x) = f(zr)x (mod n). We can prove the following lemmas in the same
manner as Lemmas 2.2 and 2.3 of [T].
LEMMA 2.3. Let z € 2. Then {g(yz) |y € 2} = 12

LEMMA 2.4. Let y,z,w € §2 with g(yz) = w. Then y = g(wz’) and
g(o-yz) = f(wz’)f(aw).

Proof of Proposition 2.2. Since §(aa)ab_l = &(oa) for a,b € Z,
we have

(2.3) o(As 0*1 = 22 Z Z A(R(azy), (me))\sagl

yel' x€R a€Tk

= 22 Z Z A(R(azy),1)(Asoy E(oys).

yel x€R a€Tk
Let g(yz) = w. It follows from Lemmas 2.2 and 2.3 that (2.3) is equal to

233 > A(R(azg(wz)), 1) (Aso; ") f(wz')E(ow).

wel ze acTk
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By (1.3), we have
A(R(ag(wz")),1) f(wz") = A(R(azwz’),1).

By (2.2), we have A\so, 1 = ¥, (z)\s for x € 2. Finally, we can verify that
As&(0w) = Aso,! for w € I'. Thus we have the assertion.

DEFINITION 2.5. For s € Z with 1 < s < ¢,

AJKLY) = (22 Z A(R(azyz") )1/15(1:))

z€l’
€ a€Tk y,2€

Proof of Theorem. It follows from Propositions 1.2 and 2.2 that
A(K, 1) is similar to diag(A,(K,1,Y),..., A(K,[,Y)). By the definition of
AG(K,LY), we can see that Ay (K,[,Y) € M(d/c,Q(Cac)), since ¢s(z) €
(Cae) for x € (2. This completes the proof of Theorem.

3. Some remarks. We calculate det A4(K,1,Y) as follows.

PROPOSITION 3.1. For s € Z with 1 < s < ¢,

det AJ(K, 1Y) = [ (tax(D) = DBryy J[ (1 —vax(p)),
xX€eY ppr‘ime
pin

where By, is the generalized Bernoulli number (cf. [W], Chap. 4).
Proof. By Proposition 1.3 of [T], we have
Ly(ey) = (Ix(1) = DB [T(1 = x(p))
pln

where ¥ = y 7! for x € Xj. Since \s = ery Epay fOr s = 1,... ¢, this
completes the proof.

Remark. In the case Y = {1}, it follows from Proposition 3.1 that

As(K, 1 {1}) = (s (1) — 1)Bl,'¢s H(l —s(p)),

pln

fors=1,...,d.
In [T] (see §3, (3.3)), we proved that

S A(R(ac),n+1) = ZnB1<R(§C))7

acTk ac€Tk
for ¢ € Sk, where B;(z) =  — 1/2. Hence, by Definition 2.5, we have

AfK,n+1,Y) <2nz S B ( “xyz))qps( ))wer.

€ acTk
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We recall that det A(K,n+ 1) coincides with the generalized Maillet deter-
minant D* defined by Girstmair in [G] (see [T], §3). Hence we can regard
{As(K,n+1,Y) |1 <s < ¢} as direct summands in a direct sum decom-
position of Girstmair’s matrix.
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