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On equal values of power sums

by

B. Brindza (Safat) and Á. Pintér (Debrecen)

Introduction. There are several classical diophantine problems related
to the power values and arithmetical properties of the sum Sk(x) = 1k +
. . .+ (x− 1)k (cf. [3], [7]–[9], [13], [15]–[17]).

The purpose of this paper is to investigate the equation

(1) Sk(x) = Sl(y),

where k, l are given distinct positive integers. Unfortunately, there seems
to be no way to treat it in its full generality. One would start with l = 1,
therefore,

(2) 8Sk(x) + 1 = (2y − 1)2.

The known general results on the equation

sSk(x) + r = yz

(see [8], [9], [17]) do not cover it, the special cases k = 2, 3 of (2) are resolved
in [1], [5], [10], [14].

Theorem 1. If k > 1 then all the solutions of the equation

Sk(x) = S1(y) in positive integers x, y

satisfy max(x, y) < c1, where c1 is an effectively computable constant de-
pending only on k.

A similar statement can be obtained if l = 3, that is, S3(y) is a complete
square (cf. [12]). The remaining cases are strongly related to the irreducibil-
ity of Bernoulli polynomials.

Let I denote the set of positive integers k such that the kth Bernoulli
polynomial denoted by Bk(x) is irreducible (over Q). Most likely Bk(x) is
irreducible for almost every even k (see the known cases for k ≤ 200 in
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[11]); for instance, if p is an odd prime and 1 ≤ m ≤ p then Bm(p−1)(X) is
irreducible (see [4]).

Theorem 2. If k, l ∈ I with k > 2, (k, l) = 2, then equation (1) in
positive integers x, y has only finitely many solutions.

Auxiliary results. Let f, g be polynomials having degrees n > 1 and
m > 1, respectively. For a λ ∈ C we write D(λ) = discriminant(f(x) + λ)
and E(λ) = discriminant(g(x) + λ).

Lemma 1. If there are at least [n/2] distinct roots of D(λ) = 0 for which
E(λ) 6= 0 and m > 3, n > 3, then the equation

f(x) = g(y) in rational integers x, y

has at most a finite number of solutions.

P r o o f. See Theorem 1 of [6].

In the next lemma we summarize some classical properties of Bernoulli
polynomials. For the proofs of these results we refer to [12].

Lemma 2. Let Bn(X) denote the nth Bernoulli polynomial and Bn =
Bn(0), n = 1, 2, . . . Further , let Dn be the denominator of Bn. Then we
have

(A) Bn(X) = Xn +
∑n
i=1

(
n
i

)
BiX

n−i,
(B) 1k + 2k + . . .+ (x− 1)k = 1

k+1 (Bk+1(x)−Bk+1),
(C) Bn(X) = (−1)nBn(1−X),
(D) B2n+1 = 0, n = 1, 2, . . . ,
(E) (von Staudt–Clausen) D2n =

∏
p−1|2n, p prime p,

(F) B′n+1(X) = (n+ 1)Bn(X),
(G) B2n

(
1
2

)
= (21−2n − 1)B2n, n = 1, 2, . . . ,

(H) X(X − 1)
(
X − 1

2

) |B2n−1(X) (in Q[X]), n = 1, 2, . . .

Lemma 3. Let f(X) ∈ Q[X] be a polynomial having at least three zeros
of odd multiplicities. Then the equation

f(x) = y2 in integers x, y

implies max(|x|, |y|) < c, where c is an effectively computable constant de-
pending only on the coefficients of f .

P r o o f. Lemma 3 is a special case of the Theorem of [2].

Lemma 4. Let P (X) = anX
n + . . . + a1X + a0 be a polynomial with

integral coefficients, for which a0 is odd , 4 | ai, i = 1, . . . , n, and the dyadic
order of an is 3. Then every zero of P (in C) is simple. (P is not necessarily
irreducible, e.g. 8X3 + 8X2 + 8X + 3 is divisible by 2X + 1.)
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P r o o f. If the polynomial P (X) has a multiple zero, then it can be
written as P 2

1P2, where P1, P2 ∈ Z[X], and P1 and P2 are not necessarily
relatively prime polynomials. By taking the natural homomorphism Z[X]→
Z2[X] we have Pi = 2Qi+1 with some Qi ∈ Z[X], i = 1, 2. The degree of Q2

is certainly at least one, otherwise the dyadic order of the leading coefficient
of P 2

1P2 would not be equal to 3. Every coefficient, apart from the constant
term, of the polynomial

(2Q1 + 1)2(2Q2 + 1) = 8Q2
1Q2 + 8Q1Q2 + 2Q2 + 4Q2

1 + 4Q1 + 1

is divisible by 4, therefore, the leading coefficient of Q2 is even; however, an
is not divisible by 16.

Proofs

P r o o f o f T h e o r e m 1. Let d be the smallest positive integer for
which

8d(Bk+1(X)−Bk+1) ∈ Z[X].

By Lemma 3 it suffices to prove that the polynomial

P (X) = 8d(Bk+1(X)−Bk+1) + d(k + 1)

has at least three zeros of odd multiplicities. We distinguish some cases. If
k + 1 is odd then the above statement is a simple consequence of Lemma
4. Since P is not a complete square (in Z[X]) we just have to exclude the
remaining case

P (X) = (aX2 + bX + c)R2(X),

where aX2 + bX+ c, R(X) ∈ Z[X] and aX2 + bX+ c has two distinct zeros.
If k+ 1 is even, but not divisible by 4, then 1

2P (X) is a polynomial in Z[X]
having odd constant term. Hence it can be factorized as

P (X)/2 = (2S1(X) + 1)2(2S2(X) + 1);

however, the leading coefficient of 1
2P (X) is not divisible by 8. In the

amusing last case when 4 | k + 1, the degree of R is odd and the relation
P (X) = P (1−X) implies R2(X) = R2(1−X), therefore, R(X) = −R(1−X)
and 0 = R

(
1
2

)
= P

(
1
2

)
yields

Bk+1 =
2k−3(k + 1)

2k+1 − 1
(k + 1 ≥ 4),

which is impossible, since the denominator of Bk+1 should be divisible by 2.

P r o o f o f T h e o r e m 2. Put

B[j] =
{

1
j + 1

Bj+1(α)
∣∣∣∣ Bj(α) = 0

}
, j = 1, 2, . . .
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Since D(λ) = C ·∏f ′(x)=0(f(x) + λ), where C is a non-zero numerical con-

stant (cf. [4]) it is enough to show that the sets B[k] and B[l] are disjoint.
Supposing the contrary we have

γ =
1

k + 1
Bk+1(α) =

1
l + 1

Bl+1(β)

with some α and β. The polynomials Bk(X) and Bl(X) are irreducible
and γ ∈ Q(α) ∩ Q(β), therefore, the degree of γ is at most (k, l) = 2.
Every zero of Bk+1(X) is simple (k + 1 is odd and B′k+1(X) = (k +
1)Bk(X)), hence γ 6= 0. If γ is rational then α is a zero of the polyno-
mial

Bk+1(X)− γ(k + 1) ∈ Q[X]

and (X − α1)Bk(X) = Bk+1(X) − γ(k + 1) with some rational α1. By dif-
ferentiating both sides we obtain

(X − α1)Bk−1(X) = Bk(X),

which contradicts the irreducibility of Bk(X). If the degree of γ is 2 over Q
and γ denotes the algebraic conjugate of γ then α is a zero of the polyno-
mial

(Bk+1(X)− γ(k + 1))(Bk+1(X)− γ(k + 1))

= B2
k+1(X) + r1Bk+1(X) + r2 ∈ Q[X],

therefore,

Bk(X) |B2
k+1(X) + r1Bk+1(X) + r2.

Substituting 1−X instead of X a simple subtraction implies

Bk(X) | 2r1Bk+1(X) (in Q[x]),

which is impossible in case of r1 6= 0, since X(X−1)
(
X− 1

2

) |Bk+1(X) and
Bk(X) is irreducible. In the remaining case r1 = 0 we obtain

Bk(X)F (X) = B2
k+1(X) + r2

with an F (X) ∈ Q[X]. Differentiation yields

Bk(X) |Bk−1(X) · F (X),

that is, Bk(X) |F (X). Then there is a quadratic polynomial M(X) ∈ Q[X]
for which

M(X)B2
k(X) = B2

k+1(X) + r2,

hence,

M ′(X)Bk(X) = 2(k + 1)Bk+1(X)− 2kM(X)Bk−1(X).

The right-hand side is divisible by X(X − 1)
(
X − 1

2

)
; however, the other

one is not.
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