On equal values of power sums

by

B. BRINDZA (Safat) and Á. PINTÉR (Debrecen)

Introduction. There are several classical diophantine problems related to the power values and arithmetical properties of the sum $S_k(x) = 1^k + \ldots + (x-1)^k$ (cf. [3], [7]–[9], [13], [15]–[17]).

The purpose of this paper is to investigate the equation

(1)
$$S_k(x) = S_l(y),$$

where k, l are given distinct positive integers. Unfortunately, there seems to be no way to treat it in its full generality. One would start with l = 1, therefore,

(2)
$$8S_k(x) + 1 = (2y - 1)^2.$$

The known general results on the equation

$$sS_k(x) + r = y^z$$

(see [8], [9], [17]) do not cover it, the special cases k = 2, 3 of (2) are resolved in [1], [5], [10], [14].

THEOREM 1. If k > 1 then all the solutions of the equation

$$S_k(x) = S_1(y)$$
 in positive integers x, y

satisfy $\max(x, y) < c_1$, where c_1 is an effectively computable constant depending only on k.

A similar statement can be obtained if l = 3, that is, $S_3(y)$ is a complete square (cf. [12]). The remaining cases are strongly related to the irreducibility of Bernoulli polynomials.

Let *I* denote the set of positive integers *k* such that the *k*th Bernoulli polynomial denoted by $B_k(x)$ is irreducible (over \mathbb{Q}). Most likely $B_k(x)$ is irreducible for almost every even *k* (see the known cases for $k \leq 200$ in

The research of the second author was supported in part by Grants T4055,T16975 and W15355 from the Hungarian National Foundation for Scientific Research.

^[97]

[11]); for instance, if p is an odd prime and $1 \le m \le p$ then $B_{m(p-1)}(X)$ is irreducible (see [4]).

THEOREM 2. If $k, l \in I$ with k > 2, (k, l) = 2, then equation (1) in positive integers x, y has only finitely many solutions.

Auxiliary results. Let f, g be polynomials having degrees n > 1 and m > 1, respectively. For a $\lambda \in \mathbb{C}$ we write $D(\lambda) = \operatorname{discriminant}(f(x) + \lambda)$ and $E(\lambda) = \text{discriminant}(q(x) + \lambda)$.

LEMMA 1. If there are at least [n/2] distinct roots of $D(\lambda) = 0$ for which $E(\lambda) \neq 0$ and m > 3, n > 3, then the equation

f(x) = q(y) in rational integers x, y

has at most a finite number of solutions.

Proof. See Theorem 1 of [6].

In the next lemma we summarize some classical properties of Bernoulli polynomials. For the proofs of these results we refer to [12].

LEMMA 2. Let $B_n(X)$ denote the nth Bernoulli polynomial and $B_n =$ $B_n(0), n = 1, 2, \dots$ Further, let D_n be the denominator of B_n . Then we have

(A) $B_n(X) = X^n + \sum_{i=1}^n {n \choose i} B_i X^{n-i},$ (B) $1^k + 2^k + \dots + (x-1)^k = \frac{1}{k+1} (B_{k+1}(x) - B_{k+1}),$ (C) $B_n(X) = (-1)^n B_n(1-X),$ (D) $B_{2n+1} = 0, n = 1, 2, \dots,$ (E) (von Staudt–Clausen) $D_{2n} = \prod_{p=1|2n, p \text{ prime}} p$, (F) $B'_{n+1}(X) = (n+1)B_n(X),$ (G) $B_{2n}(\frac{1}{2}) = (2^{1-2n}-1)B_{2n}, n = 1, 2, ...,$ (H) $X(X-1)(X-\frac{1}{2}) | B_{2n-1}(X)$ (in $\mathbb{Q}[X]$), n = 1, 2, ...

LEMMA 3. Let $f(X) \in \mathbb{Q}[X]$ be a polynomial having at least three zeros of odd multiplicities. Then the equation

$$f(x) = y^2$$
 in integers x, y

implies $\max(|x|, |y|) < c$, where c is an effectively computable constant depending only on the coefficients of f.

Proof. Lemma 3 is a special case of the Theorem of [2].

LEMMA 4. Let $P(X) = a_n X^n + \ldots + a_1 X + a_0$ be a polynomial with integral coefficients, for which a_0 is odd, $4 \mid a_i, i = 1, ..., n$, and the dyadic order of a_n is 3. Then every zero of $P(in \mathbb{C})$ is simple. (P is not necessarily irreducible, e.g. $8X^3 + 8X^2 + 8X + 3$ is divisible by 2X + 1.)

Proof. If the polynomial P(X) has a multiple zero, then it can be written as $P_1^2P_2$, where $P_1, P_2 \in \mathbb{Z}[X]$, and P_1 and P_2 are not necessarily relatively prime polynomials. By taking the natural homomorphism $\mathbb{Z}[X] \rightarrow \mathbb{Z}_2[X]$ we have $P_i = 2Q_i + 1$ with some $Q_i \in \mathbb{Z}[X]$, i = 1, 2. The degree of Q_2 is certainly at least one, otherwise the dyadic order of the leading coefficient of $P_1^2P_2$ would not be equal to 3. Every coefficient, apart from the constant term, of the polynomial

$$(2Q_1+1)^2(2Q_2+1) = 8Q_1^2Q_2 + 8Q_1Q_2 + 2Q_2 + 4Q_1^2 + 4Q_1 + 1$$

is divisible by 4, therefore, the leading coefficient of Q_2 is even; however, a_n is not divisible by 16.

Proofs

Proof of Theorem 1. Let d be the smallest positive integer for which

$$8d(B_{k+1}(X) - B_{k+1}) \in \mathbb{Z}[X].$$

By Lemma 3 it suffices to prove that the polynomial

$$P(X) = 8d(B_{k+1}(X) - B_{k+1}) + d(k+1)$$

has at least three zeros of odd multiplicities. We distinguish some cases. If k + 1 is odd then the above statement is a simple consequence of Lemma 4. Since P is not a complete square (in $\mathbb{Z}[X]$) we just have to exclude the remaining case

$$P(X) = (aX^{2} + bX + c)R^{2}(X),$$

where $aX^2 + bX + c$, $R(X) \in \mathbb{Z}[X]$ and $aX^2 + bX + c$ has two distinct zeros. If k + 1 is even, but not divisible by 4, then $\frac{1}{2}P(X)$ is a polynomial in $\mathbb{Z}[X]$ having odd constant term. Hence it can be factorized as

$$P(X)/2 = (2S_1(X) + 1)^2 (2S_2(X) + 1);$$

however, the leading coefficient of $\frac{1}{2}P(X)$ is not divisible by 8. In the amusing last case when $4 \mid k + 1$, the degree of R is odd and the relation P(X) = P(1-X) implies $R^2(X) = R^2(1-X)$, therefore, R(X) = -R(1-X) and $0 = R(\frac{1}{2}) = P(\frac{1}{2})$ yields

$$B_{k+1} = \frac{2^{k-3}(k+1)}{2^{k+1}-1} \quad (k+1 \ge 4),$$

which is impossible, since the denominator of B_{k+1} should be divisible by 2.

Proof of Theorem 2. Put

$$B^{[j]} = \left\{ \frac{1}{j+1} B_{j+1}(\alpha) \mid B_j(\alpha) = 0 \right\}, \quad j = 1, 2, \dots$$

Since $D(\lambda) = C \cdot \prod_{f'(x)=0} (f(x) + \lambda)$, where C is a non-zero numerical constant (cf. [4]) it is enough to show that the sets $B^{[k]}$ and $B^{[l]}$ are disjoint. Supposing the contrary we have

$$\gamma = \frac{1}{k+1} B_{k+1}(\alpha) = \frac{1}{l+1} B_{l+1}(\beta)$$

with some α and β . The polynomials $B_k(X)$ and $B_l(X)$ are irreducible and $\gamma \in \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta)$, therefore, the degree of γ is at most (k,l) = 2. Every zero of $B_{k+1}(X)$ is simple (k + 1) is odd and $B'_{k+1}(X) = (k + 1)B_k(X)$, hence $\gamma \neq 0$. If γ is rational then α is a zero of the polynomial

$$B_{k+1}(X) - \gamma(k+1) \in \mathbb{Q}[X]$$

and $(X - \alpha_1)B_k(X) = B_{k+1}(X) - \gamma(k+1)$ with some rational α_1 . By differentiating both sides we obtain

$$(X - \alpha_1)B_{k-1}(X) = B_k(X),$$

which contradicts the irreducibility of $B_k(X)$. If the degree of γ is 2 over \mathbb{Q} and $\overline{\gamma}$ denotes the algebraic conjugate of γ then α is a zero of the polynomial

$$(B_{k+1}(X) - \gamma(k+1))(B_{k+1}(X) - \overline{\gamma}(k+1)) = B_{k+1}^2(X) + r_1 B_{k+1}(X) + r_2 \in \mathbb{Q}[X],$$

therefore,

$$B_k(X) | B_{k+1}^2(X) + r_1 B_{k+1}(X) + r_2.$$

Substituting 1 - X instead of X a simple subtraction implies

$$B_k(X) \mid 2r_1 B_{k+1}(X) \quad (\text{in } \mathbb{Q}[x]),$$

which is impossible in case of $r_1 \neq 0$, since $X(X-1)(X-\frac{1}{2}) | B_{k+1}(X)$ and $B_k(X)$ is irreducible. In the remaining case $r_1 = 0$ we obtain

$$B_k(X)F(X) = B_{k+1}^2(X) + r_2$$

with an $F(X) \in \mathbb{Q}[X]$. Differentiation yields

$$B_k(X) \mid B_{k-1}(X) \cdot F(X),$$

that is, $B_k(X) | F(X)$. Then there is a quadratic polynomial $M(X) \in \mathbb{Q}[X]$ for which

$$M(X)B_k^2(X) = B_{k+1}^2(X) + r_2,$$

hence,

$$M'(X)B_k(X) = 2(k+1)B_{k+1}(X) - 2kM(X)B_{k-1}(X).$$

The right-hand side is divisible by $X(X-1)(X-\frac{1}{2})$; however, the other one is not.

References

- [1] E. T. Avanesov, The Diophantine equation 3y(y+1) = x(x+1)(2x+1), Volž. Mat. Sb. Vyp. 8 (1971), 3-6 (in Russian).
- B. Brindza, On S-integral solutions of the equations $y^m = f(x)$, Acta Math. [2]Hungar. 44 (1984), 133–139.
- -, On some generalizations of the diophantine equation $1^k + 2^k + \ldots + x^k = y^z$, [3] Acta Arith. 44 (1984), 99-107.
- L. Carlitz, Note on irreducibility of the Bernoulli and Euler polynomials, Duke [4]Math. J. 19 (1952), 475-481.
- J. W. S. Cassels, Integral points on certain elliptic curves, Proc. London Math. [5]Soc. 14 (1965), 55-57.
- H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), [6]Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312.
- K. Dilcher, On a diophantine equation involving quadratic characters, Compositio [7]Math. 57 (1986), 383-403.
- K. Győry, R. Tijdeman and M. Voorhoeve, On the equation $1^k + 2^k + \ldots + x^k$ [8] y^{z} , Acta Arith. 37 (1980), 234–240. H. Kano, On the equation $s(1^{k} + 2^{k} + \ldots + x^{k}) + r = by^{z}$, Tokyo J. Math. 13
- [9] (1990), 441-448.
- [10]W. Ljunggren, Solution complète de quelques équations du sixième degré à deux indéterminées, Arch. Math. Naturv. (7) 48 (1946), 26-29.
- P. J. McCarthy, Irreducibility of certain Bernoulli polynomials, Amer. Math. [11] Monthly 68 (1961), 352-353.
- H. Rademacher, Topics in Analytic Number Theory, Springer, Berlin, 1973. [12]
- J. J. Schäffer, The equation $1^p + 2^p + \ldots + n^p = m^q$, Acta Math. 95 (1956), [13]155 - 189.
- [14]S. Uchiyama, Solution of a Diophantine problem, Tsukuba J. Math. 8 (1984), 131 - 137.
- J. Urbanowicz, On the equation $f(1)1^k + f(2)2^k + \ldots + f(x)x^k + R(x) = by^z$, [15]Acta Arith. 51 (1988), 349-368.
- -, On diophantine equations involving sums of powers with quadratic characters as [16]coefficients, I, Compositio Math. 92 (1994), 249-271.
- [17] M. Voorhoeve, K. Győry and R. Tijdeman, On the diophantine equation 1^{k} + $2^k + \ldots + x^k + R(x) = y^z$, Acta Math. 143 (1979), 1–8.

Department of Mathematics	Mathematical Institute
Kuwait University	of Kossuth Lajos University
P.O.Box 5969	P.O.Box 12
13060 Safat, Kuwait	Debrecen, H-4010, Hungary
E-mail: brindza@math-1.sci.kuniv.edu.kw	E-mail: apinter@math.klte.hu

Received on 13.11.1995 and in revised form on 12.2.1996 (2894)