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Introduction. In this paper we compute in two different ways the vol-
ume of the fundamental domain for quaternion groups acting on the four-
dimensional hyperbolic space. The first proof of our volume formula

v(F) =
π2

1080

∏

p|D
(p2 + 1)(p− 1),

where D denotes the discriminant of the corresponding rational quaternion
algebra, is based on the Maaß–Selberg relations using Stokes’ theorem as
described in [EGM] and the Fourier expansion of the Eisenstein series E∗R.
The second proof uses the residue of the Eisenstein series E∗R for explicit
computation of the volume. This method was already used in [Sa]. We draw
the relevant Fourier expansion and the residue of the Eisenstein series from
[GS].

It was kindly pointed out to the authors by F. Grunewald (Düsseldorf)
that our volume formula can also be proved with some labour by the usual
Tamagawa measure method. But in analogously defined cocompact situa-
tions the evaluation of the volume formula by this method seems still very
complicated due to our lack of knowledge of certain Cartan involutions.

1. Preliminaries. Let B be a definite rational quaternion algebra with
discriminant D and class number h. For w = r + xi + yj + zij ∈ B let
w = r − xi − yj − zij be the conjugate element. As usual we denote by
n(w) = ww, tr(w) = w+w, wr := 1

2 tr(w) and Imw := 1
2 (w−wr) the norm,

trace and the real and imaginary part, respectively, of an element w ∈ B.
For A ⊂ B let A(0) := {a ∈ A : tr(a) = 0} be the subset of all quaternions

in A with trace zero.
By H = B ⊗ R we denote the Hamilton quaternions. Let

H = {P ∈ H : tr(P) > 0}

[9]
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be the four-dimensional hyperbolic space, where we identify H = ]0,∞[ ×
R3 ⊂ R4. We always write P = (r, x, y, z) for P ∈ H and Pr := r.

The associate volume measure resp. volume form is given by

dv =
dr dx dy dz

r4 resp. dv =
dr ∧ dx ∧ dy ∧ dz

r4

and the corresponding Laplace–Beltrami operator is

∆ = r2
(
∂2

∂r2 +
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
− 2r

∂

∂r
.

Let MSp(1;H) (in the notation of [Kr], p. 316) be the modified symplectic
group of degree 1 over H, i.e.,

MSp(1;H) =
{
M ∈ Mat(2;H) : M t

(
0 1
1 0

)
M =

(
0 1
1 0

)}
.

It is generated by the elements

(1)
(

1 a
0 1

)
(a ∈ H, tr(a) = 0),

(
0 1
1 0

)
,

(
a 0
0 a

n(a)

)
(a 6= 0).

MSp(1;H) operates on H in the usual way P 7→MP := (aP + b)(cP + d)−1

(M =
(
a b
c d

) ∈ MSp(1;H)). The hyperbolic volume measure dv is MSp(1;H)-
invariant and for f ∈ C2(H) and M ∈ MSp(1;H) we have

∆(f ◦M) = (∆f) ◦M.

Let G be the group

G :=
{
M ∈ Mat(2;B) : M t

(
0 1
1 0

)
M =

(
0 1
1 0

)}
.

For a maximal order R in B we define ΓR := GL(2;R) ∩G.
An element M ∈ G is called parabolic if there exist γ ∈ G and 0 6= b ∈

B(0) with γ−1Mγ = ±( 1 b
0 1

)
, and an element σ ∈ H ∪ {∞} is called a cusp

of ΓR if σ is fixed by some parabolic element of ΓR. For a cusp σ ∈ H∪{∞}
we denote by (ΓR)σ the stabilizer subgroup of σ in ΓR.

Since

(ΓR)′∞ := {M ∈ (ΓR)∞ : traceM = ±2} =
{
±
(

1 b
0 1

)
: b ∈ R(0)

}

we obtain

(2) [(ΓR)∞ : (ΓR)′∞] = |R×|/2.
It is known that the set of cusps of ΓR equals B(0) ∪{∞}, and from that we
can give the explicit correspondence between the classes of ΓR-inequivalent
cusps and the classes of left R-ideals in B:

If we denote by σ1, . . . , σn a maximal system of representatives of ΓR-
inequivalent cusps, the ideals Ii := Rai + Rci, i = 1, . . . , n (σi = aic

−1
i
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(ai, ci ∈ B)) are a complete system of representatives of classes of left R-
ideals, in particular we have n = h. We always choose the ideals Ii such that
n(Ii) = Z and hence I−1

i = Ii, furthermore we denote by Ri the right order
of Ii.

We define the Eisenstein series for the cusp σi = γi∞ (γi ∈ G) by the
formula

(3) Ei(P, s) :=
∑

γ∈(ΓR)σi\ΓR
(γ−1
i γP)sr = rs

∑

(a,c)∈(Ii×Ii)/R×i
Ra+Rc=Ii
tr(ac)=0

n(aP + c)−s,

and the modified Eisenstein series by

Ẽi(P, s) := rs
∑

(0,0)6=(a,c)∈Ii×Ii
tr(ac)=0

n(aP + c)−s.

Both series converge for Re s > 3 uniformly on compact sets and are ΓR-
invariant functions since

(4) Ẽj(P, s) =
h∑

i=1

Z(Iij , s)Ei(P, s), Z(Iij , s) =
∑

0 6=x∈Iij
n(x)−s,

with Iji := I−1
j Ii = IjIi.

The ideals Iji, i = 1, . . . , h, constitute a complete system of representa-
tives of the classes of left Rj-ideals, the ideal Iji is associated with the cusp
σji := γ−1

j σi and we obtain, with an appropriate choice of γj ,

(5) ΓRj = γ−1
j ΓRγj .

We define the Eisenstein series E(j)
ji (P, s) and Ẽ

(j)
ji (P, s) for the cusp σji as

above, replacing (j fixed) R by Rj , Ii by Iji and σi by σji.
The correspondence between these series is given by

(6) E
(j)
ji (P, s) = Ei(γjP, s), Ẽ

(j)
ji (P, s) = Ẽi(γjP, s).

Computing the Fourier coefficients of these Eisenstein series it turns out
that one obtains relatively simple expressions if one forms weighted means
of the Eisenstein series. The series

ẼRj (P, s) :=
h∑

i=1

1
|R×i |

Ẽ
(j)
ji (P, s) (j = 1, . . . , h)

are called weighted Eisenstein series. To get a functional equation, we mul-
tiply by an additional factor and define

(7) E∗Rj (P, s) := F (s)ẼRj (P, s).
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Here F (s) is defined by

F (s) := π−3s/2+1DsΓ (s/2)Γ (s)ζ(2s− 2)ζ(s− 1)−1
∏

p|D
(1 + p1−s),

where ζ denotes the Riemann zeta function.
The series E∗Rj (P, s) are obviously ΓRj -invariant functions and satisfy

the differential equation

(8) −∆E∗Rj (P, s) = s(3− s)E∗Rj (P, s).
We draw from [GS] the Fourier expansion of the series E∗Rj (P, s) at infinity.
This yields the Fourier expansion of E∗R(P, s) at every cusp σj (by (6)).

Theorem 1.1. The Eisenstein series E∗Rj (P, s) (j = 1, . . . , h) have the
Fourier expansions

(9) E∗Rj (P, s)

= rsf
(D)
0 (s) + r3−sf (D)

0 (3− s)

+ 4
√
π
∑

u∈R̂(0)
j

u 6=0

n(2u)−1/4
∑

t∈N
(t,D)=1

u∈tR̂(0)
j

∑

l| D

q(2u)
l>0

tl L∗
(
s− 1,−n(2u)D2

t2l2

)

× r3/2Ks−3/2(2πr
√

n(2u)) exp(2πitr(uP)).

Here the following notations are applied :

(10) f
(D)
0 (s) := (s− 1)Ds

∏

p|D
(1− p2−2s)ζ∗(s)ζ∗(2s− 2)

with the customary abbreviation

ζ∗(s) := π−s/2Γ (s/2)ζ(s).

Moreover , R̂(0)
j := {w ∈ B(0) : tr(wR(0)

j ) ⊂ Z} is the dual lattice of R(0)
j and

q(2u) denotes the denominator of n(2u). The function L∗(s,∆) is defined
by

L∗(s,∆) :=
{
π−s/2Γ (s/2)∆s/2L(s,∆) for ∆ > 0,
π−s/2Γ ((s+ 1)/2)|∆|s/2L(s,∆) for ∆ < 0,

where we denote by L(s,∆) the Cohen–Zagier L-function ([Za], p. 110), and
Ks is the modified Bessel function

Ks(w) =
1
2

∞\
0

exp
(
− w

2
(t+ t−1)

)
ts−1 dt.
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Corollary 1.2. The Eisenstein series E∗Rj (P, s) (j = 1, . . . , h) have
meromorphic continuations to the whole complex plane and satisfy the func-
tional equation

E∗Rj (P, s) = E∗Rj (P, 3− s).
They are holomorphic functions except for simple poles at s = 0, 3 with the
residue

(11) res(E∗Rj (P, s), s = 3) =
ζ(3)
2π

∏

p|D
(p2 − 1).

2. The volume of the fundamental domain. In this section we
compute in two different ways the volume of a fundamental domain F for
the operation of ΓR on H. The first proof is based on the Maaß–Selberg
relations, a method which was already described in [EGM]. The second
proof follows the line of argument of [Sa].

2.1. First proof. For g ∈ C1(H) we define the differential form ωg by

ωg := gr
dx ∧ dy ∧ dz

r2 − gx dy ∧ dz ∧ dr
r2 + gy

dz ∧ dr ∧ dx
r2 − gz dr ∧ dx ∧ dy

r2 .

Let ω = ωg, T ∈ G, P = (r, x, y, z) ∈ H, P′ = TP = (r′, x′, y′, z′) and ω′ be
the differential form with P replaced by P′. Simple calculations by means of
the generators (1) show that

(12) ω = ω′.

For g, h ∈ C1(H) let ω(g,h) := ωgh. Trivial calculations show that

dω(g,h) = ((∆g)h+ r2(grad g)t gradh) dv.

Hence

(13) dω(g,h) − dω(h,g) = ((∆g)h− (∆h)g) dv.

Now consider a Poincaré normal polyhedron F for the operation of the
group ΓR on H. The boundary of F is contained in finitely many three-
dimensional planes (cf. [Gr], p. 215, [Wi], p. 866 ff.) and the “sides” of F
are pairwise ΓR-equivalent.

Similarly to [Ro], p. 288, we subdivide F in a relatively compact part
and finitely many cusp sectors. For preparation we need an analogue of
Shimizu’s lemma.

Lemma 2.1. For Y ≥ 1 two points P, P′ ∈ H with Pr,P′r > Y are
equivalent with respect to γ−1

j ΓRγj = ΓRj if and only if they are equivalent
with respect to (ΓRj )∞.
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P r o o f. Let HY := {P ∈ H : Pr > Y }. For M ∈ ΓRj \ (ΓRj )∞, M =(∗ ∗
c d

)
, i.e. c 6= 0 and P ∈ HY we have

(MP)r =
Pr

n(cP + d)
=

Pr

n(c)n(P + c−1d)
≤ Pr

n(c)P2
r
< 1 ≤ Y,

since tr(c−1d) = 0 implies n(P + c−1d) ≥ P2
r and from c ∈ Rj we conclude

n(c) ≥ 1. Hence HY ∩MHY = ∅.
Applying Lemma 2.1 and observing that γ−1

j F is a fundamental domain
for ΓRj we conclude that for a suitable choice of F there is a fundamental
domain Pj for (ΓRj )∞ such that

{P ∈ Pj : Pr > Y } = (]Y,∞[× ImH) ∩ γ−1
j F .

Let Sj be a cusp sector “at height” Y at the cusp σj , i.e.

Sj = γj{P ∈ Pj : Pr > Y } ⊂ F
and

FY := F ∩
( h⋂

j=1

γj(]0, Y ]× ImH)
)

the fundamental domain “cut off at height Y ”. Similar considerations to the
above lemma show that the cusp sectors are pairwise disjoint if Y ≥ 1.

We now choose
g : H → C, P 7→ E∗R(P, s),

h : H → C, P 7→ E∗R(P, t)

for fixed s, t > 3, s 6= t, and let Y ≥ 1. For j ∈ {1, . . . , h}, P = γjP′ ∈ Sj
with P′ ∈ Pj and P′r > Y the functions g and h have Fourier expansions at
the cusp σj of the form

(14)
g(P) = ϕ(P′) + ψj(P′),

h(P) = σ(P′) + τj(P′),

where

(15)
ϕ(P′) = (r′)sf (D)

0 (s) + (r′)3−sf (D)
0 (3− s),

σ(P′) = (r′)tf (D)
0 (t) + (r′)3−tf (D)

0 (3− t)
and where ψj , τj denote the terms involving the higher Fourier coefficients
in (9) with P replaced by P′.

We subtract the zeroth Fourier coefficients “in height Y ”, i.e.,

gY (P) :=
{
g(P) for P ∈ FY ,
g(P)− ϕ ◦ γ−1

j (P) for P ∈ Sj ,

∆gY =
{
∆g in FY ,
∆(g − ϕ ◦ γ−1

j ) in Sj ,
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where in the last line we take the usual derivative. We conclude from (8)
and simple calculations in the cusp sectors

(16) −∆gY = s(3− s)gY , −∆hY = t(3− t)hY .
We first treat the contribution of FY .

Lemma 2.2. With the same notations as above set Qj(Y ) := {P ∈ Pj :
Pr = Y }. Then

J(Y ) := (t(3− t)− s(3− s))
\
FY

gY hY dv(17)

=
h∑

j=1

\
Qj(Y )

(gr′h− hr′g)
dx′ dy′ dz′

(r′)2 .

P r o o f. From (13) and (16) we have

((t(3− t)− s(3− s))gY hY ) dv = ((∆gY )hY − (∆hY )gY ) dv

= dω(gY ,hY ) − dω(hY ,gY ),

where these differential forms are defined only on FY . Since further calcu-
lations only deal with FY , we write g and h instead of gY and hY .

Denoting by ∂FY the positively oriented boundary of FY and applying
Stokes’ theorem we obtain\

FY
(dω(g,h) − dω(h,g)) =

\
∂FY

(ω(g,h) − ω(h,g)).

The boundary of FY consists of pairwise equivalent parts of three-dimen-
sional hyperbolic planes and the “cross-sections” γjQj(Y ) = γj{P ∈ Pj :
Pr = Y } at the cusps.

Since ΓR-equivalent pairs of bounding hyperbolic planes inherit opposite
orientation, the corresponding contributions to the above integral cancel
because of (12) and the ΓR-invariance of g and h. Hence we obtain

J(Y ) =
h∑

j=1

\
γjQj(Y )

(ω(g,h) − ω(h,g)).

If we denote by ω′(g,h) the differential form with respect to g and h with P
replaced by P′ = γjP and similarly with g and h interchanged, (12) again
implies

J(Y ) =
h∑

j=1

\
Qj(Y )

(ω′(g,h) − ω′(h,g)) =
h∑

j=1

\
Qj(Y )

(gr′h− hr′g)
dx′ dy′ dz′

(r′)2 .

This proves the assertion.
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We treat the cusp sectors applying a similar argument to the “cusp
sectors cut off at height X > Y ”

SXj = γj{P ∈ Pj : Y < Pr ≤ X}
and letting X →∞. We only note the result.

Lemma 2.3. For an arbitrary cusp sector Sj we have

(18) (t(3− t)− s(3− s))
\
Sj
gY hY dv

= −
\

Qj(Y )

((
∂

∂r′
ψj(P′)

)
τj(P′)−

(
∂

∂r′
τj(P′)

)
ψj(P′)

)
dx′ dy′ dz′

(r′)2 .

Theorem 2.4. We have the equality

(19) (t(3− t)− s(3− s))
\
F
gY hY dv

=
h∑

j=1

\
Qj(Y )

((
∂

∂r′
ϕ

)
σ −

(
∂

∂r′
σ

)
ϕ

)
dx′ dy′ dz′

(r′)2 .

P r o o f. We decompose F = FY +
∑h
j=1 Sj and add (17) and (18).

Note that the integrals over the sets Qj(Y ) in (17) with the higher Fourier
coefficients from (14) vanish because of their periodicity.

Now we can compute the volume of the fundamental domain explicitly.

Theorem 2.5. The volume of the fundamental domain for the group ΓR
is given by the equation

v(F) =
π2

1080

∏

p|D
(p2 + 1)(p− 1).

P r o o f. We compute the integrand on the right hand side of (19) by
means of (15). For simplification we write f instead of f (D)

0 and r instead
of r′. This gives

(20)
h∑

j=1

\
Qj(Y )

((
∂

∂r
ϕ

)
σ −

(
∂

∂r
σ

)
ϕ

)
dx dy dz

r2

= (f(s)f(t)Y s+t−3(s− t) + f(3− s)f(t)Y t−s(3− s− t)
+ f(s)f(3− t)Y s−t(s+ t− 3) + f(3− s)f(3− t)Y 3−s−t(t− s))

×
h∑

j=1

λ3(ImQj(Y )),
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where λ3 denotes the Lebesgue measure on B(0) ⊗ R = R3. From (2) and
λ3(B(0) ⊗ R/R(0)

j ) = D/2 ([GS], p. 247) we conclude that

(21) λ3(ImQj(Y )) = D/|R×j |.
For further simplification we set

(22) Θ :=
h∑

i=1

D

|R×i |
=
D

24

∏

p|D
(p− 1)

(cf. [De], p. 134).
We now substitute s = 3 + 2a, t = 3 + a with a > 0, multiply both sides

of (19) with 2a2/(3a2 + 3a) and conclude from (20)–(22) that

2a2
\
F
gY hY dv =

(
f(3 + 2a)f(3 + a)

2a2

3a+ 3
Y 3+3a(23)

+ (−2a)f(−2a)f(3 + a)Y −a

− 2(−a)f(−a)f(3 + 2a)Y a

+ (−2a)f(−2a)(−a)f(−a)
−1

3a+ 3
Y −3−3a

)
Θ.

The right side of this equation converges as a→ 0+ to

(0 + f(3)res(f ; 0)− 2f(3)res(f ; 0) +O(Y −3))Θ

= −f(3)res(f ; 0)Θ +O(Y −3).

For the same reason as in [EGM], p. 211, we obtain from (23), letting a→
0+,

v(FY ) =
−f(3)res(f ; 0)Θ

(res(E∗R(P, s), s = 3))2 +O(Y −3)

and therefore, letting Y →∞,

v(F) =
−f(3)res(f ; 0)Θ

(res(E∗R(P, s), s = 3))2

= D4π
2

45

∏

p|D

1− p−4

p2 − 1

h∑

j=1

1
|R×j |

(see (10), (11))

=
π2

1080

∏

p|D
(p2 + 1)(p− 1).
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2.2. Second proof

Theorem 2.6. With the function f
(D)
0 from (10) we have for Re s > 3

E∗R(P, s) = f
(D)
0 (s)

h∑

j=1

2
|R×j |

∑

γ∈(ΓRj )′∞\ΓRj

(γγ−1
j P)sr .

P r o o f. Since
h∑

i=1

Z(Iji, s)
|R×i |

= ζ(s)ζ(s− 1)
∏

p|D
(1− p1−s)

(cf. [GS], p. 255), we derive from (4) and (7) that

E∗R(P, s) = f
(D)
0 (s)

h∑

j=1

Ej(P, s).

To prove the assertion, we transform the Eisenstein series Ej(P, s) in
(3). From (2) and (5) we obtain

Ej(P, s) =
2
|R×j |

∑

γ∈(ΓRj )′∞\ΓRj

(γγ−1
j P)sr ,

which gives the desired result.

Let F be a Poincaré normal polyhedron for the action of ΓR on H.
Without loss of generality we may assume that F contains a full cusp sector
for ΓR at infinity.

ΓR contains the hyperbolic rotations of the form γa :=
(
a 0
0 a

) ∈ (ΓR)∞
with a ∈ R×. We now consider the images γaF and see that the union

P :=
⋃

a∈R×/{±1}
γaF

yields a set which we can assume to have the following shape (note the
formula

(( 1 w
0 1

)
γ−1
j P

)
r = (γ−1

j P)r for all w ∈ R(0)
j ):

The imaginary coordinates of the points in P with sufficiently large real
part run through a fundamental parallelepiped F for the lattice R(0). The
real coordinates run through a set (depending on the imaginary part P−Pr

of the points)

]A(P− Pr),∞[ with A(P− Pr) ≥ 0.

Here we have A(P−Pr) = 0 if and only if P−Pr is a cusp of ΓR not equiva-
lent to ∞. Without loss of generality let us assume that the representatives
σj of the cusps are in ∂F . Then the fundamental domains Fj := γ−1

j F ,
j = 1, . . . , h, “contain” the cusp infinity, too. Since linear-fractional trans-
formations map hyperbolic straight lines to hyperbolic straight lines, we can
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assume for the computation of the volume that

Pj :=
⋃

a∈R×
j
/{±1}

γaFj

has the same shape as P = P1 with certain Fj , R
(0)
j and Aj instead of F,R(0)

and A, respectively. From now on we choose the fundamental domains Fj
and the integration domains Pj as described above. For a ∈ R× we always
denote by γa the matrix

(
a 0
0 a

)
.

S e c o n d p r o o f o f T h e o r e m 2.5. Consider the function

b(s) :=
\
F

(
E∗R(P, s)− f (D)

0 (s)
h∑

j=1

(γ−1
j P)sr

)
dv(P).

Since the residue of E∗R(P, s) does not depend on P, we obviously have

res(b(s), s = 3) = v(F)res(E∗R(P, s), s = 3).

To compute the residue of b(s) in a different manner, we put sn := 3 + 1/n
and find, by Theorem 2.6,

res(b(s), s = 3) = lim
n→∞

(sn − 3)b(sn)

= lim
n→∞

1
n

\
F
f

(D)
0 (sn)

h∑

j=1

2
|R×j |

×
( ∑

γ∈(ΓRj )′∞\ΓRj

(γγ−1
j P)snr −

|R×j |
2

(γ−1
j P)snr

)
dv(P)

= lim
n→∞

1
n

\
F
f

(D)
0 (sn)

h∑

j=1

2
|R×j |

∑

γ∈(ΓRj )′∞\ΓRj
γ 6=γa,a∈R×j

(γγ−1
j P)snr dv(P)

= lim
n→∞

1
n

h∑

j=1

2
|R×j |

f
(D)
0 (sn)

∑

γ∈(ΓRj )′∞\ΓRj
γ 6=γa,a∈R×j

\
γFj

rsn dv(P)

= lim
n→∞

1
n

h∑

j=1

2
|R×j |

f
(D)
0 (sn)

\
Fj

Aj(x,y,z)\
0

r1/n−1 dr dx dy dz

= f
(D)
0 (3)

h∑

j=1

D

|R×j |
,

since λ3(Fj) = D/2 ([GS], p. 247).
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Putting together these equations we obtain from Corollary 1.2 and some
well-known special values of Γ and ζ,

v(F) =
f

(D)
0 (3)

∑h
j=1D/|R×j |

res(E∗R(P, s), s = 3)
=
π2

45

∏

p|D
(p2 + 1)

h∑

j=1

1
|R×j |

=
π2

1080

∏

p|D
(p2 + 1)(p− 1) (see (22)).

By way of example, in the special case of the quaternion algebra B =(−1,−1
Q
)

and the Hurwitz order R = Zi+Zj+Zk+Z 1+i+j+k
2 we have D = 2

and obtain

v(F) =
π2

216
.

This special result can be also obtained by means of both methods from the
calculations in [Kr].

Using the above method, we can now compute the residue of the Eisen-
stein series Ei(P, s) at s = 3 without knowing the Fourier expansion explic-
itly. The Eisenstein series Ei(P, s) have meromorphic continuations to the
half plane Re s > 1 with a simple pole at s = 3 (cf. [GS], p. 245) and we
have

res(Ei(P, s), s = 3) =
D

|R×i |v(F)
.
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