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R. L. Graham (Murray Hill, N.J.) and

W. Wen-Ching Li (University Park, Penn.)

1. Introduction. For a sequence S = (s1, s2, . . .) of positive integers,
define

Σ(S) :=
{ ∞∑

i=1

εisi : εi = 0 or 1,
∞∑

i=1

εi <∞
}
.

Call S complete if Σ(S) contains all sufficiently large integers.
It has been known for some time (see [B]) that if gcd(a, b) = 1 then

the (nondecreasing) sequence formed from the values asbt with s0 ≤ s,
t0 ≤ t ≤ f(s0, t0) is complete, where s0 and t0 are arbitrary, and f(s0, t0) is
sufficiently large.

In this note we consider the analogous question for sequences formed
from pure powers of integers. Specifically, for a sequence A of integers greater
than 1, denote by Pow(A; s) the (nondecreasing) sequence formed from all
the powers ak where a ∈ A and k ≥ s ≥ 1. Although we are currently unable
to prove it, we believe the following should hold:

Conjecture. For any s, Pow(A; s) is complete if and only if

(i)
∑
a∈A 1/(a− 1) ≥ 1,

(ii) gcd{a ∈ A} = 1.

The necessity of (ii) is immediate. On the other hand, if (i) fails to hold
then standard results in diophantine approximation show (as pointed out by
Carl Pomerance) that in fact Σ(Pow(A; s)) has upper density less than 1.

2. The main result. For a sequence A, denote by A(x) the number of
entries a ∈ A with a ≤ x.
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Theorem 1. Suppose A is a sequence of integers greater than 1 satisfy-
ing :

(i) lim supn→∞A(n)/n > 0;
(ii) gcd{a ∈ A} = 1.

Then for any s, there is a finite subset A′ = A′s such that Pow(A′; s) is
complete.

P r o o f. To begin with, we first remove (by (ii)) a finite subsequence
A0 ⊂ A so that gcd{a ∈ A0} = 1. We will use A0 at the end of the proof.
Next, we choose (by (i)) a finite increasing subsequence B = (b1, . . . , bN ) ⊂
A \A0 so that

∑N
i=1 b

−1
i = β > 2.

Write Σ(Pow(B; s)) = {0 = p0 < p1 < p2 < . . .}.
Claim 1. For all k ≥ 0, pk+1 − pk ≤ 2bs+1

N .

P r o o f o f C l a i m 1. Write Pow(B; s) = {β1 < β2 < . . .}. Observe
that for any k ≥ 1:

(a) The maximum gap size between consecutive terms of Σ(β1, . . . , βk)
is at most βk;

(b) If
∑k
i=1 βi ≥ βk+1 then the maximum gap size in Σ(β1, . . . , βk+1) is

less than or equal to the maximum gap size in Σ(β1, . . . , βk).

Let l denote the least index such that βl > 2bs+1
N . Then by (a),

Σ(β1, . . . , βk−1) has maximum gap size at most 2bs+1
N for k ≤ l. For k > l,

define t(i), 1 ≤ i ≤ N , so that bt(i)i < βk ≤ bt(i)+1
i . Then

N∑

i=1

t(i)∑

j=1

bji =
N∑

i=1

b
t(i)+1
i − bs+1

i

bi − 1
≥ (βk − bs+1

N )
N∑

i=1

1
bi − 1

≥ β(βk − bs+1
N ) ≥ βk

since βk ≥ 2bs+1
N and β > 2. Thus, by repeated application of (b), Σ(β1, . . .

. . . , βk) has maximum gap size bounded by 2bs+1
N , and consequently, so does

Σ(Pow(B; s)).

Now, let

δ :=
1
2

lim sup
n→∞

A(n)
n

.

By Szemerédi’s theorem [S], there is an integer R = R(δ, s) such that any
subset of R consecutive integers with cardinality at least δR contains an
arithmetic progression of length 2s. By (i), there exist infinitely many m
so that the interval [m,m + R] contains at least δR elements of A′ := A \
(A0∪B). Select an infinite sequence of such disjoint intervals with left-hand
endpoints m1 < m2 < . . . Set Aj := A′ ∩ [mj ,mj + R]. Thus, each Aj
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satisfies |Aj | ≥ δR and consequently, Aj contains an arithmetic progression
aj + kdj , 0 ≤ k ≤ 2s − 1.

Claim 2. For each s it is possible to partition

{0, 1, . . . , 2s − 1} = C(s) ∪D(s)

so that

(1)
∑

c∈C(s)

cj =
∑

d∈D(s)

dj , 0 ≤ j ≤ s− 1,

and

(2)
∣∣∣
∑

c∈C(s)

cs −
∑

d∈D(s)

ds
∣∣∣ = s!2(s2).

P r o o f o f C l a i m 2. To begin, set C(1) = {0}, D(1) = {1}. Now,
recursively define

C(k + 1) = C(k) ∪ {2k +D(k)},
D(k + 1) = D(k) ∪ {2k + C(k)}

for k = 1, 2, . . . , so that C(2) = {0, 3}, D(2) = {1, 2}, etc. Thus, (1) and (2)
hold for s = 1.

Now assume that s ≥ 1 is fixed, and that (1) and (2) hold for s. Then
∣∣∣
∑

c∈C(s+1)

cj −
∑

d∈D(s+1)

dj
∣∣∣

=
∣∣∣
∑

c∈C(s)

cj +
∑

d∈D(s)

(2s + d)j −
∑

d∈D(s)

dj −
∑

c∈C(s)

(2s + c)j
∣∣∣

=
j−1∑

i=0

(
j

i

)
2s(j−i)

∣∣∣
∑

d∈D(s)

di −
∑

c∈C(s)

ci
∣∣∣.

By (1) and (2), this reduces to
(
s+ 1

1

)
2s
∣∣∣
∑

d∈D(s)

ds −
∑

c∈C(s)

cs
∣∣∣ = (s+ 1)2s · s!2(s2) = (s+ 1)!2(s+1

2 ).

Thus, the claim follows by induction.

Since (1) is invariant under the affine transformation k 7→ aj + kdj , by
Claim 2 we can decompose the set {aj + kdj : 0 ≤ k ≤ 2s − 1} into two
disjoint sets Pj and Qj so that

∑

p∈Pj
pi =

∑

q∈Qj
qi, 0 ≤ i ≤ s− 1,
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and ∣∣∣
∑

p∈Pj
ps −

∑

q∈Qj
qs
∣∣∣ = s!2(s2)dsj .

Of course, there are at most R · 21−s possible values for dj , so that one of
them, say d, occurs infinitely often. From now on we restrict ourselves to
these j, so that we can assume without loss of generality that all dj = d.

Let us set D := s!2(s2)ds.
We have just shown that each sequence Pow(Aj ; s) contains two terms

which differ by D. Since the Aj ’s are mutually disjoint, we conclude:

Claim 3. For any u ≥ 1, Σ(Pow(A1; s)) + . . .+Σ(Pow(Au; s)) contains
an arithmetic progression of length u+ 1 and step size D.

Finally, we will need:

Claim 4. Σ(Pow(A0; s)) contains a complete residue system modulo D.

P r o o f o f C l a i m 4. Let q1 < . . . < qr be the distinct primes dividing
D. By hypothesis, for some a(i) ∈ A0, we have gcd(a(i), qi) = 1, 1 ≤ i ≤ r.
Thus, there exist ti(1) < ti(2) < ti(3) < . . . so that a(i)ti(k) mod D does
not depend on k, say

a(i)ti(k) ≡ c(i) (mod D), k = 1, 2, . . . ,

where, of course, gcd(c(i), qi) = 1. Define Q : =q1 . . . qr. Then Σ(Pow(A0; s))
certainly contains integers M(j) so that

M(j) ≡ Q

q1
c(1) + . . .+

Q

qr
c(r) := M (mod D)

for 1 ≤ j ≤ D. Note that gcd(M,D) = 1. Finally, since
k∑

j=1

M(j) ≡ kM (mod D), 1 ≤ k ≤ D,

it follows that Σ(Pow(A0; s)) contains a complete residue system modulo D
as claimed.

To conclude the proof of Theorem 1, we observe by Claims 3 and 4 that

Σ(Pow(A0; s)) +Σ(Pow(A1; s)) + . . .+Σ(Pow(Au; s))

= Σ(Pow((A0, A1, . . . , Au); s))

must contain at least 2bs+1
N consecutive integers, provided u is taken suffi-

ciently large. However, by Claim 1, it follows at once that

Σ(Pow((B,A0, A1, . . . , Au); s)) ⊂ Σ(Pow(A; s))

contains all sufficiently large integers. This proves the theorem.
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3. Concluding remarks. We remark here that with very similar ar-
guments, one can prove somewhat sharper forms of Theorem 1 when the
initial set A has a special structure.

Theorem 2. For any ε > 0, there is an integer n0(ε) so that if n > n0(ε)
and N > (e+ ε)n then Pow({n, n+ 1, . . . , N}; 1) is complete (and , in fact ,
contains all integers ≥ n).

Note that the bound on N is essentially best possible because of the
necessity of condition (i) in the conjecture for any set A to have Pow(A; s)
complete.

Theorem 3. There exists a function f : Z+ → Z+ such that for any
s ≥ 1, if A = {n, n+1, . . . , N} with N > f(s)ns then Pow(A; s) is complete.
Moreover , for any ε > 0,

f(s) = o(2s
3/2+ε) as s→∞.

The results we have described have all had an asymptotic flavor. That is,
the sets A for which Pow(A; s) was proved complete were large. One might
well ask for similar results for specific small sets A (indeed, this was our
original motivation). The first nontrivial example is probably the set {3, 4, 7}
(since 1

3−1 + 1
4−1 + 1

7−1 = 1). Using fairly recent estimates in diophantine
approximation, such as the inequality

|3p − 4q| > exp{ln 3(p− 500 ln 4(8 + ln p)2)}
of Mignotte and Waldschmidt [MW, Corollary 10.1], we can show that the
largest integer not in Σ(Pow({3, 4, 7}; 1)) is 581. Similarly, the largest miss-
ing integer in Σ(Pow{3, 5, 7, 13}; 1) is 111, and the largest missing integer in
Σ(Pow{3, 6, 7, 13, 21}; 1) is 16. Of course, when

∑
a∈A 1/(a−1) is larger than

1, then one would expect it to be easier to show completeness of Pow(A; s),
and our limited computational experience confirms this. For example, the
largest missing integer in Σ(Pow({3, 4, 5}; 1)) is 78.

We are still fairly far from being able to prove the conjecture stated at
the beginning. A related problem one could look at is the following. Suppose
0 < a1 < . . . < ak satisfy

∑

i

1
log ai

>
1

log 2
.

Must Σ(Pow{a1, . . . , ak}; s) have positive density? positive upper density?
For example, what about set {3, 4}?

We close by remarking that our investigations grew out of the following
conjecture of Erdős and Lewin [EL]. Suppose {a1, . . . , ak} is a set of k ≥ 2
positive integers so that gcd(a1, . . . , ak) = 1. Prove that every sufficiently
large integer is a sum of terms ar11 a

r2
2 . . . arkk with all ri ≥ 1 so that no



138 S. A. Burr et al.

term in the sums divides any other. This was shown to hold for {2, 3} by
Selfridge and Lewin (independently), and for {2, 5, 7} (and several other
sets) by Erdős and Lewin [EL].
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U.S.A. H-1053, Budapest, Hungary
E-mail: stefan@bellcore.com

AT&T Bell Laboratories Department of Mathematics
Murray Hill, New Jersey 07974 Pennsylvania State University
U.S.A. University Park, Pennsylvania 16802
E-mail: rlg@research.att.com U.S.A.

E-mail: wli@leibniz.math.psu.edu

Received on 3.2.1995
and in revised form on 9.4.1996 (2738)


