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1. Introduction. For z > 2 real, and q and a coprime positive integers,

set
X
O(z;q,0) = Y logp=——(1+ A(x;q,0)),
= (q)
p=a (mod q)

where ¢ is Euler’s function.

The prime number theorem for arithmetic progressions is equivalent to
the statement that A(z;q,a) = o(1) as * — oo, for fixed ¢ and a. The
Siegel-Walfisz theorem gave a uniform upper estimate for the function A,
and the Bombieri—Vinogradov theorem gave a mean value estimate for A.

Montgomery conjectured that if (a,q) = 1 then

(1) |A(w;q,a)] <- (¢/z)/*logz

uniformly for ¢ < x, for any given € > 0.

Recently, Friedlander and Granville [1] disproved Montgomery’s conjec-
ture (1). They showed that for any A > 0 there exist arbitrarily large
values of z and integers ¢ < x/(logz)? and a with (a,q) = 1 for which
|A(x; q,a)| > 1.

Then Friedlander, Granville, Hildebrand and Maier [2] further showed
that (1) fails to hold for almost all moduli g as small as x exp{—(log z)*/379},
for any fixed 6 > 0, if the parameter € in (1) is sufficiently small.

They also showed the following

THEOREM A [2]|. Let € > 0. There exist N(e) > 0 and qo = qo(e) > 0
such that for any q > qo and any x with

q(log q)V® < z < gexp{(logq)*/?},
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there exist numbers x4 with x/2 < x4 < 2x and integers ax coprime to q
such that

(2) A(zy;q,aq) > (logx) Py~ (Fe)al@y)
3) Alr_;qa_) < — (logz) By~ 1+ (@),

where y = z/q and §1(z,y) = 3log(logy/log, z)/log(logzlogy). (Here
log, © = loglog z.)

It follows from Theorem A that (1) fails to hold for all moduli ¢ with
2/(log )V > g > z exp{—(logz)/}.

In this note, our purpose is to extend the above result by showing the
following

THEOREM. For e > 0, there exists qo(e) > 0 such that for any q > qo(e)
and any x with

(4) q(log q)'*e < x < gexp{(log ¢)*/*},

there exist numbers x4 with x/2 < x4 < 2z and integers ay coprime to q
such that

(5) Alwy;q,aq) > (logm) Py~ IFeolew),
(6) A(z_;q,a_) < — (logx) ™3y~ (Fe)dz(@y)
where y = x/q and d2(z,y) = 2log, y/ log, .
It follows from the Theorem that (1) fails to hold for all moduli ¢ with
z/(log ) > ¢ > zexp{—(logz)'/*°}.

The exponent 1/4 is the best possible, using this method.
Moreover, we note that the estimates (5) and (6) are slightly better than
(2) and (3) for ¢ < xexp{—(log, x)*}.

2. Some lemmas. The following two lemmas are Theorem B2 and
Proposition 11.1 of [2], respectively.

LEMMA 1 [2]. For z > zp, h < z/2, k > 1, and P the product of any k
primes all of which are in the interval (z — h, z], we have

et = > - w0 = 2 (5)=

for every integer j with 1 < j < k/5 and every real y with (z — h)? >y >
4529 /(k — 7+ 1).

LEMMA 2 [2]|. Fiz e > 0. For any squarefree integer n > 1 all of whose
prime factors are < n'=%, there exists a divisor P of n, with n/P prime,
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such that if (a, P) =1, x > P2, and © > h > zvexp(—+/logz), then
h
0o+ s Poa) = 00 Poa) = s (1+ O e1ose/108 4 cmevoe),

where ¢ is a constant depending only on €.

3. Proof of Theorem. For the proof of this result we use combinatorial
means. This is a simple modification of the argument in [2]. We only prove
(5), the proof of (6) is similar.

Let y = z/q. Define v to be the positive solution of the equation

(7) (Avlogy x -logz/logy)” =y,

where A =1+ N/logy,1 < N < 9logy, and the positive integer N will be
given in the latter part of the proof.
We pick j = [v] — 1 or j = [v] so that j is odd. Then we take

(8) I =y (logy/logz),

and

9) z=(+1/2)logz/logy, h=(1/2)logz/logy,

so that (z — h)7 = y. By the definition of v, we have v < logy and
(10) v > (logy/log, x)(1 + O(logz z/ log, x)).

From this and the definition of v, we deduce
(11) v <logy/log, x.
Using the estimates (10) and (11), we obtain

(12)  Mlogy(1 + O(logs z/log, z)) <1 < Mogyexp{(5/2)log3 z/logy}.

Now take k = 1+[clog 2/(207 log3 z)], where c is the constant ¢ of Lemma 2.
From this, the definition of j, (10), (11) and the first inequality of (12), we
deduce

(13) (z =Y =y >4527 /(k—j+1).

Let n be the product of any k + 1 primes in (z — h, z] that do not divide
q. By Huxley’s theorem (cf. [2]) we have w(z) — w(z — h) ~ h/logz as
z — 00. Now we choose N in (7). First we note that the number of distinct
prime factors of ¢ does not exceed (1 + ¢€)logz/log, . When N runs over
1,2,...,[9logy]|, the intervals (z — h, z] do not overlap. Thus, there is at
least one N such that the corresponding interval (z — h, z] contains less than
vy =[(1+¢)logx/(8logy -log, x)] primes that divide ¢. By this we see that
the interval (z—h, z| contains at least v, +k+1 primes. Moreover, we choose
P as in Lemma 2, with ¢ = 1/2.
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As in [2], we consider the matrix M = (a,s), where a,; = log(rP + gs)
if rP + gs is prime, and a,s = 0 otherwise, and where r and s run over the
values R <r < 2R and 1 < s <y with

(14) R = (z/P)exp{—+/logz}.

Let |M| denote the sum of the entries of M. For given s, the sum of entries
in the sth column equals

O(2RP + qs; P,qs) — O(RP + gqs; P, qs).
This vanishes if (¢s,P) > 1. Now we consider the case when s satisfies
(¢s, P) = 1. Applying Lemma 2 with z = PR+ ¢s, h = PR, a = ¢s yields

RP _
M= Y S0,
- _, »(P)
n_y7(n7P)_1

where we have used the inequalities

clogx/log P > clogx/(klogz) > 3logy,

which follows from (9)—(11) and the second inequality of (12).
By the definition of rp(y), we further have

(15) M| = R{y + (P/o(P))rp(y)} (1 + O(y~)).

On the other hand, the number of r satisfying R < r < 2R and (r,q) = 1
equals

Re(q)/q+ O(7(q)) = Re(q)/q(1+ O(y~?)).

Therefore we may choose some such row (say row rg) such that the sum of
the entries in this row is more than

(16) (a/e(a){y + (P/e(P))rp(y)}(1 + O(y~)).

Let xg = x4 =roP +qy and a = a4 = roP, so (a,q) = 1. Now, the sum of
the entries in row rg equals

0(roP + qy; q,70P) — 0(roP; q, 70 P) = 0(x0; ¢, a).

(Since, by (14), roP < 2RP < q, we have therefore 0(rqP;q,roP) = 0.) By
the definitions of # and A and (14) we obtain

(17) 0(x01¢.a) = (qy/¢(0)(1 + A(z0; ¢, 0)) (1 + O(y~?)).
Combining (16) and (17) yields

(17 Al gy) 2 (-1 PO o),
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Thus, by Lemma 1, (9)—(11) and the second inequality of (12) we obtain
T 1/k\ 1 1 [ek)’ clo J
(—1y1 ) () > () > <1ng>
y 4\j) = = Vi\ijz j?llogs x

lo 5logs x
> exp{ - (1+6)10ggi<210g2y+ Qk)%gzy)}
2

(where ¢; = ce/30). From this, the desired estimate (5) follows.
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