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1. Introduction. For x ≥ 2 real, and q and a coprime positive integers,
set

θ(x; q, a) =
∑

p≤x
p≡a (mod q)

log p =
x

ϕ(q)
(1 +∆(x; q, a)),

where ϕ is Euler’s function.
The prime number theorem for arithmetic progressions is equivalent to

the statement that ∆(x; q, a) = o(1) as x → ∞, for fixed q and a. The
Siegel–Walfisz theorem gave a uniform upper estimate for the function ∆,
and the Bombieri–Vinogradov theorem gave a mean value estimate for ∆.

Montgomery conjectured that if (a, q) = 1 then

(1) |∆(x; q, a)| �ε (q/x)1/2−ε log x

uniformly for q ≤ x, for any given ε > 0.
Recently, Friedlander and Granville [1] disproved Montgomery’s conjec-

ture (1). They showed that for any A > 0 there exist arbitrarily large
values of x and integers q ≤ x/(log x)A and a with (a, q) = 1 for which
|∆(x; q, a)| � 1.

Then Friedlander, Granville, Hildebrand and Maier [2] further showed
that (1) fails to hold for almost all moduli q as small as x exp{−(log x)1/3−δ},
for any fixed δ > 0, if the parameter ε in (1) is sufficiently small.

They also showed the following

Theorem A [2]. Let ε > 0. There exist N(ε) > 0 and q0 = q0(ε) > 0
such that for any q > q0 and any x with

q(log q)N(ε) < x ≤ q exp{(log q)1/3},
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there exist numbers x± with x/2 < x± ≤ 2x and integers a± coprime to q
such that

∆(x+; q, a+) ≥ ( log x)−5y−(1+ε)δ1(x,y),(2)

∆(x−; q, a−) ≤ − (log x)−5y−(1+ε)δ1(x,y),(3)

where y = x/q and δ1(x, y) = 3 log(log y/ log2 x)/ log(log x log y). (Here
log2 x = log log x.)

It follows from Theorem A that (1) fails to hold for all moduli q with

x/(log x)N(ε) ≥ q > x exp{−(log x)1/5−δ}.
In this note, our purpose is to extend the above result by showing the

following

Theorem. For ε > 0, there exists q0(ε) > 0 such that for any q > q0(ε)
and any x with

(4) q(log q)1+ε < x ≤ q exp{(log q)1/3},
there exist numbers x± with x/2 < x± ≤ 2x and integers a± coprime to q
such that

∆(x+; q, a+) ≥ ( log x)−3y−(1+ε)δ2(x,y),(5)

∆(x−; q, a−) ≤ − (log x)−3y−(1+ε)δ2(x,y),(6)

where y = x/q and δ2(x, y) = 2 log2 y/ log2 x.

It follows from the Theorem that (1) fails to hold for all moduli q with

x/(log x)6+ε ≥ q > x exp{−(log x)1/4−δ}.
The exponent 1/4 is the best possible, using this method.

Moreover, we note that the estimates (5) and (6) are slightly better than
(2) and (3) for q < x exp{−(log2 x)4}.

2. Some lemmas. The following two lemmas are Theorem B2 and
Proposition 11.1 of [2], respectively.

Lemma 1 [2]. For z ≥ z0, h ≤ z/2, k ≥ 1, and P the product of any k
primes all of which are in the interval (z − h, z], we have

(−1)j−1rP (y) := (−1)j−1
( ∑

n≤y,(n,P )=1

1− ϕ(P )
P

y

)
≥ 1

4
y

(
k

j

)
z−j ,

for every integer j with 1 ≤ j ≤ k/5 and every real y with (z − h)j ≥ y ≥
4jzj/(k − j + 1).

Lemma 2 [2]. Fix ε > 0. For any squarefree integer n > 1 all of whose
prime factors are ≤ n1−ε, there exists a divisor P of n, with n/P prime,
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such that if (a, P ) = 1, x ≥ P 2, and x ≥ h ≥ x exp(−√log x), then

θ(x+ h;P, a)− θ(x;P, a) =
h

ϕ(P )
(1 +O(e−c log x/ logP + e−c

√
log x)),

where c is a constant depending only on ε.

3. Proof of Theorem. For the proof of this result we use combinatorial
means. This is a simple modification of the argument in [2]. We only prove
(5), the proof of (6) is similar.

Let y = x/q. Define v to be the positive solution of the equation

(7) (λv log2 x · log x/ log y)v = y,

where λ = 1 +N/ log y, 1 ≤ N ≤ 9 log y, and the positive integer N will be
given in the latter part of the proof.

We pick j = [v]− 1 or j = [v] so that j is odd. Then we take

(8) l = y1/j(log y/ log x),

and

(9) z = (l + 1/2) log x/ log y, h = (1/2) log x/ log y,

so that (z − h)j = y. By the definition of v, we have v ≤ log y and

(10) v ≥ (log y/ log2 x)(1 +O(log3 x/ log2 x)).

From this and the definition of v, we deduce

(11) v ≤ log y/ log2 x.

Using the estimates (10) and (11), we obtain

(12) λ log y(1 +O(log3 x/ log2 x)) ≤ l ≤ λ log y exp{(5/2) log2
2 x/ log y}.

Now take k = 1+[c log x/(20j log2
2 x)], where c is the constant c of Lemma 2.

From this, the definition of j, (10), (11) and the first inequality of (12), we
deduce

(13) (z − j)j = y ≥ 4jzj/(k − j + 1).

Let n be the product of any k+ 1 primes in (z− h, z] that do not divide
q. By Huxley’s theorem (cf. [2]) we have π(z) − π(z − h) ∼ h/ log z as
z →∞. Now we choose N in (7). First we note that the number of distinct
prime factors of q does not exceed (1 + ε) log x/ log2 x. When N runs over
1, 2, . . . , [9 log y], the intervals (z − h, z] do not overlap. Thus, there is at
least one N such that the corresponding interval (z−h, z] contains less than
νq = [(1 + ε) log x/(8 log y · log2 x)] primes that divide q. By this we see that
the interval (z−h, z] contains at least νq+k+1 primes. Moreover, we choose
P as in Lemma 2, with ε = 1/2.
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As in [2], we consider the matrix M = (ars), where ars = log(rP + qs)
if rP + qs is prime, and ars = 0 otherwise, and where r and s run over the
values R < r ≤ 2R and 1 ≤ s ≤ y with

(14) R = (x/P ) exp{−
√

log x}.
Let |M| denote the sum of the entries ofM. For given s, the sum of entries
in the sth column equals

θ(2RP + qs;P, qs)− θ(RP + qs;P, qs).

This vanishes if (qs, P ) > 1. Now we consider the case when s satisfies
(qs, P ) = 1. Applying Lemma 2 with x = PR+ qs, h = PR, a = qs yields

|M| =
∑

n≤y,(n,P )=1

RP

ϕ(P )
(1 +O(y−3)),

where we have used the inequalities

c log x/ logP ≥ c log x/(k log z) ≥ 3 log y,

which follows from (9)–(11) and the second inequality of (12).
By the definition of rP (y), we further have

(15) |M| = R{y + (P/ϕ(P ))rP (y)}(1 +O(y−3)).

On the other hand, the number of r satisfying R < r ≤ 2R and (r, q) = 1
equals

Rϕ(q)/q +O(τ(q)) = Rϕ(q)/q(1 +O(y−3)).

Therefore we may choose some such row (say row r0) such that the sum of
the entries in this row is more than

(16) (q/ϕ(q)){y + (P/ϕ(P ))rP (y)}(1 +O(y−3)).

Let x0 = x+ = r0P + qy and a = a+ = r0P , so (a, q) = 1. Now, the sum of
the entries in row r0 equals

θ(r0P + qy; q, r0P )− θ(r0P ; q, r0P ) = θ(x0; q, a).

(Since, by (14), r0P ≤ 2RP < q, we have therefore θ(r0P ; q, r0P ) = 0.) By
the definitions of θ and ∆ and (14) we obtain

(17) θ(x0; q, a) = (qy/ϕ(q))(1 +∆(x0; q, a))(1 +O(y−3)).

Combining (16) and (17) yields

(−1)j−1∆(x0; q, a) ≥ (−1)j−1 P

ϕ(P )
· rP (y)

y
+O(y−2).
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Thus, by Lemma 1, (9)–(11) and the second inequality of (12) we obtain

(−1)j−1 rP (y)
y
≥ 1

4

(
k

j

)
1
zj
� 1√

j

(
ek

jz

)j
�
(
c1 log y

j2l log2
2 x

)j

� exp
{
− (1 + ε)

log y
log2 x

(
2 log2 y +

5 log2
2 x

2 log y

)}

(where c1 = ce/30). From this, the desired estimate (5) follows.
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