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On the distribution of primitive abundant numbers

by

Michael R. Avidon (Atlanta, Ga.)

A number m is primitive abundant if it is abundant (σ(m) ≥ 2m), and
all its proper divisors d are deficient (σ(d) < 2d), where σ(m) is the sum
of the divisors of m. Let P (n) represent the number of primitive abundant
numbers (p.a.n.) ≤ n. In 1935, Erdős [2] proved the following result. For n
sufficiently large,

n · exp[−c1
√

log n · log log n] ≤ P (n) ≤ n · exp[−c2
√

log n · log log n]

with c1 = 8 and c2 = 1/25. In 1985, Ivić [4] improved this, proving the
inequalities with c1 =

√
6 + ε and c2 = 1/

√
12 − ε. In this paper, we

improve it to the following.

Theorem. For n ≥ n0(ε)

n · exp[−(
√

2 + ε)
√

log n · log log n] ≤ P (n)

≤ n · exp[−(1− ε)
√

log n · log log n].

I would like to thank Professor Carl Pomerance for suggesting the prob-
lem and for his abundant assistance.

The following notation will be standard throughout:

• h(m) = σ(m)/m,

• E = e
√

log n·log log n, L =
√

log n/ log log n,
• p1 = p1(m) = largest prime divisor of m,
• q = largest squarefull divisor of m

(n is squarefull means p |n⇒ p2 |n for all primes p),
• f = squarefree part of m; i.e. f = m/q,
• p, pj = prime numbers,
• ε = arbitrarily small, positive numbers, not necessarily the same at

each occurrence.

The method of proof, for both bounds, is a refinement of the one in [2]
and [4]. For the upper bound, rather than divide into 3 cases (small p1,
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large q, or large p1 and small q), we divide into many cases, where both p1

and q are restricted to short intervals. We are consequently able to combine
either 2 or 3 bounds from the 3 original cases (Lemmas 7 and 9). Further,
in the main case (large p1 and small q), we are able to get an improvement
by removing the restriction that the map constructed is 1-1 (Lemmas 10
and 11).

As for the lower bound, we still consider only numbers of the form
2l · pk . . . p1. Rather than choosing all the primes from one small inter-
val, the smallest is chosen to essentially be as small as possible, which has
the effect of allowing the others to be chosen larger; hence there are more
choices. At the same time, one must still restrict each to a short interval,
to get sharp approximations of h(pj).

The upper bound. We first state some results from other papers that
are used.

Lemma 1. Let F (x) be the number of squarefull numbers n ≤ x. Then

F (x) ∼ ζ(3/2)
ζ(3)

x1/2.

This result is proved in [3].

Lemma 2. Let ψ(x, y) =
∑

n≤x, p1(n)≤y 1 and u = log x/ log y. Suppose
log x < y < xo(1). Then

ψ(x, y) ≤ x/u(1+o(1))u.

This result is proved in [1].

Lemma 3. Suppose η ≥ 1, m = p1 . . . pt, p1 ≥ . . . ≥ pt and

pi ≤ η · (pi+1 . . . pt), 1 ≤ i ≤ t− 1.

Then for any D with 1 ≤ D < m, there exists d |m with

D/(ηpt) < d ≤ D.

This is equivalent to Lemma 4 of [5], with ai = log pi.

We now prove some preliminary results.

Lemma 4. If m is a p.a.n., m ≤ n, and m = p1 . . . pt, where p1 ≥ . . .
≥ pt, then

pi ≤ 2 log n · pi+1 . . . pt + 1, i = 1, . . . , t.

P r o o f. Let v = p1 . . . pi and u = pi+1 . . . pt (if i = t, then u = 1). If
the lemma is false, there exists i such that pi − 1 > 2 log n · u. Note that u



Distribution of primitive abundant numbers 197

is deficient, and since v ≤ n, the number of distinct prime divisors v has is
≤ log n. Thus

h(m) = h(u)h(v) ≤
(

2− 1
u

) ∏
p|v

(
1 +

1
p− 1

)

<

(
2− 1

u

) ∏
p|v

(
1 +

1
2 log n · u

)
<

(
2− 1

u

)(
1 +

1
2 log n · u

)log n

<

(
2− 1

u

)(
1 +

1
2u

+
1

(2u)2
+ . . .

)
= 2.

This contradicts the abundance of m.

Corollary. If m is a p.a.n., m ≤ n, and 1 ≤ D < m, then there exists
d |m with

D/(2 log n+ 1)2 < d ≤ D.

P r o o f. This follows immediately from Lemmas 3 and 4, since pt ≤
2 log n+ 1.

Lemma 5. Let S be the set of m that satisfy (i) m ≤ n and (ii) q ≥ Eζ .
Then

|S| � n/Eζ/2.

P r o o f. Using Lemma 1 and partial summation we obtain∑
m≤n

q≥Eζ

1 ≤
∑

Eζ≤q≤n

n

q
=

∑
Eζ≤q≤n

1 + n
n∫

Eζ

( ∑
Eζ≤q≤t

1
)dt
t2

� n1/2 + n
n∫

Eζ

t−3/2 dt� n · E−ζ/2.

Lemma 6. Let S be the set of m that satisfy (i) m ≤ n and (ii) p1 ≤ Eβ.
Then for each ε > 0 there is a number n0(ε) such that if n ≥ n0(ε) then

|S| ≤ n/E1/(2β)−ε.

P r o o f. This follows from Lemma 2 with x = n, y = Eβ , since

uu = exp[u · log u]

≥ exp
[

log n
β
√

log n · log log n
log([log n]1/2−ε)

]
= exp

[
1/2− ε

β

√
log n · log log n

]
.
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Lemma 7. Let S be the set of m that satisfy (i) m ≤ n, (ii) p1 ≤ Eβ ,
and (iii) Eζ ≤ q. Then for each ε > 0 there is a number n0(ε) such that if
n ≥ n0(ε) then

|S| ≤ n/E1/(2β)+ζ/2−ε.

P r o o f. By Lemma 5, we may assume that q < E1/β+ζ . Then we may
apply Lemma 6 to obtain

ψ(n/q;Eβ) ≤ n/q

E1/(2β)−ε
.

Then, as in Lemma 5,∑
m≤n, p1≤Eβ

Eζ≤q<E1/β+ζ

1 ≤
∑

Eζ≤q<E1/β+ζ

ψ(n/q;Eβ)

≤ 1
E1/(2β)−ε

∑
Eζ≤q<E1/β+ζ

n

q
≤ n

E1/(2β)+ζ/2−ε
.

Lemma 8. Let m be a p.a.n. with p1 ≥ Eβ and p2
1 -m. Then

2 ≤ h(m) < 2 + 2/Eβ .

P r o o f. Since p2
1 -m, we have (m/p1, p1) = 1. Also m/p1 is deficient.

Therefore

h(m) = h(m/p1)h(p1) < 2(1 + 1/p1) ≤ 2(1 + 1/Eβ).

Lemma 9. Let S be the set of p.a.n.s m that satisfy (i) m ≤ n, (ii)
Eβ ≤ p1 ≤ Eα, 0 < β ≤ α, (iii) Eζ ≤ q ≤ Eγ , 0 < ζ ≤ γ, and β > γ/2,
(iv) there exists d | f such that Ec ≤ d ≤ 1

2E
β/2. Then for each ε > 0 there

is a number n0(ε) such that if n ≥ n0(ε) then

|S| ≤ n/Ec+1/(2α)+ζ/2−ε.

P r o o f. Define a map from S to [1, n/Ec] by m 7→ m/d. We claim that
this map is 1-1.

If m1 6= m2 and d1 = d2 then m1/d1 6= m2/d2. So consider m1 6= m2

and d1 6= d2 and suppose that m1/d1 = m2/d2. Then

h(m1/d1) = h(m2/d2).

Since (mi/di, di) = 1 we have

h(mi) = h(mi/di)h(di), i = 1, 2.

It follows that
h(d1)
h(d2)

=
h(m1)
h(m2)

<
2 + 2/Eβ

2
= 1 +

1
Eβ

using Lemma 8 (which is valid by (ii) and (iii)).
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On the other hand, since d1 and d2 are squarefree, h(d1) 6= h(d2). There-
fore, we may assume that h(d1)/h(d2) > 1. Thus, since d2 is deficient,

h(d1)
h(d2)

=
σ(d1)d2

d1σ(d2)
≥ 1 +

1
d1σ(d2)

> 1 +
1

2d1d2
≥ 1 +

2
Eβ

by (iv), which is a contradiction. Hence, the map is 1-1.
This gives us a 1-1 correspondence between S and a subset T of [1, n/Ec].

Since d | f , the squarefull part of m/d is the same as that of m, and since
d ≤ 1

2E
β/2, p1 is the same for both. Thus m/d satisfies (ii) and (iii).

Applying Lemma 7 to T yields the result.

Lemma 10. Let S be the set of p.a.n.s m that satisfy (i) m ≤ n, (ii)
Eβ ≤ p1 ≤ Eα, (iii) Eζ ≤ q ≤ Eγ , where β > γ/2, (iv) there exists d | f
such that Eλ ≤ d ≤ Eη, where η ≥ β/2. Then

|S| ≤ n/E2λ−3η+β+1/(2α)+ζ/2−ε.

P r o o f. We follow the proof of Lemma 9, except that the map is not
necessarily 1-1. Suppose it is at worst N to 1. If d1 and d2 are divisors as
in (iv), we know that repeats satisfy

1 +
1
Eβ

>
σ(d1)d2

d1σ(d2)
> 1

with σ(di) < 2di. It follows that
2d1d2

Eβ
> σ(d1)d2 − d1σ(d2) > 0

and thus, by (iv),
2E2η−β

τ
> D > 0,

where

D =
σ(d1)
τ

d2 −
d1

τ
σ(d2) and τ = (d1, σ(d1)).

For given values of D and d1, d2 is fixed mod d1/τ , so the number of possi-
bilities for d2 is

<
Eη

d1/τ
≤ Eη−λτ.

Thus, given d1, the total number of possibilities for d2 is

<
2E2η−β

τ
Eη−λτ = 2E3η−λ−β .

This is a bound for N . It follows, as in Lemma 9, that

|S| ≤ 2E3η−λ−β n

Eλ+1/(2α)+ζ/2−ε
,

and the result follows.
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Lemma 11. Let S be the set of p.a.n.s m that satisfy (i) m ≤ n, (ii)
Eβ ≤ p1 ≤ Eβ+ε, (iii) Eζ ≤ q ≤ Eζ+ε, where β > (ζ + ε)/2, (iv) there
exists d | f with Eβ/2−ζ/4 ≤ d ≤ Eβ/2+ζ/2−δ, where δ = (ζ/2) · (2/3)J−1 and
J = Eo(1). Then

|S| ≤ n/E1−ε.

P r o o f. Let ηj = β/2 + ζ/2− (3/2)j−1δ and λj = ηj+1 for j = 1, . . . , J .
Note that ηJ = β/2. Let Sj be the set of p.a.n.s that satisfy (i)–(iii) and
for which there exists d | f with Eλj ≤ d ≤ Eηj . Then S =

⋃J
j=1 Sj and

therefore |S| ≤
∑J

j=1 |Sj |. Now Lemma 10 applies to Sj and

2λj − 3ηj + β + 1/(2β) + ζ/2− ε = β/2 + 1/(2β)− ε

so it follows that

|Sj | ≤ n/Eβ/2+1/(2β)−ε ≤ n/E1−ε.

Since J = Eo(1), the result follows.

Lemma 12. Let S be the set of p.a.n.s m that satisfy (i) m ≤ n, (ii)
Eβ ≤ p1 ≤ Eβ+ε, (iii) Eζ ≤ q ≤ Eζ+ε, where β > (ζ+ε)/2, (iv) there exists
d | f with Eβ/2−ζ/2−δ−ε ≤ d ≤ Eβ/2−ζ/4, where δ = o(1). Then

|S| ≤ n/E1−ε.

P r o o f. This follows immediately from Lemma 9, since min(β/2+1/(2β))
= 1.

We now proceed to establish

P (n) ≤ n/E1−ε.

First, by Lemma 5, those m with q ≥ E2 can be ignored. Next, it
follows from the Corollary to Lemma 4 that if q < E2, there exists d | f with
E1−ε < d ≤ 1

2E
3. Thus, by Lemma 9, those m with p1 ≥ E6 and q < E2

also can be ignored.
We take the remaining set of p.a.n.s m ≤ n, with p1 < E6 and q < E2,

divide it into � (log n)2 = Eo(1) subsets, and establish the desired bound
on each of these.

Specifically, let Sj,k be the set of p.a.n.s m ≤ n, with

ej/L ≤ p1 ≤ e(j+1)/L and ek/L ≤ q ≤ e(k+1)/L

for 0 ≤ j ≤ 6 log n and 0 ≤ k ≤ 2 log n.
First, we will handle those Sj,k with j < k. Noting that, with β =

(j + 1)/ log n and ζ = k/ log n, we have β − ε < ζ, Lemma 7 yields

|Sj,k| ≤ n/E1/(2β)+β/2−ε ≤ n/E1−ε.

Now, for those with j ≥ k, we will use Lemmas 11 and 12. First note
that, by the Corollary to Lemma 4, if q ≤ Eζ+ε then there exists a d | f
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with Eβ/2−ζ/2−δ−ε ≤ d ≤ Eβ/2+ζ/2−δ. With J and δ as in Lemma 11, let
J = log n = Eo(1), so that δ = o(1). Since j ≥ k, setting β = j/ log n and
ζ = k/ log n, we have β ≥ ζ. Thus the conditions of Lemmas 11 or 12 are
satisfied by the p.a.n.s in Sj,k, and hence we have the desired bound.

The lower bound. Here we construct a set of numbers, show them to
be primitive abundant, and underestimate the cardinality of the set. We
first need to define many parameters.

(1) α ∈ (
√

2− 1/L,
√

2]

is chosen so that

(2) k = αL ∈ N.

Now define

(3) δ =
1

8kek
,

(4) t = [8k2ek].

We consider sequences (kj) with

(5) kj ∈ {0, 1},
t∑

j=1

kj = k − 2, and kt+1 = 1.

For each sequence we will define a set of numbers which will be shown to be
primitive abundant. These sets will be disjoint, so P (n) is at least the sum
of their cardinalities. Now define β by

(6) n = 8Eβ(k+1)(4k)k−1(1 + δ)Σ
t+1
j=1jkj .

We can now define

(7) l =
[
β logE
log 2

]
,

(8) S =
t∑

j=1

kj

2k(1 + δ)j−1
.

Note that, by (5),

(9) 0 < S < 1/2.

We claim that it follows from (6) that

(10) β = 1/
√

2 + o(1).

Therefore, from (2) and (7),

(11) k = o(l).
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Indeed, since we have n = EL from the definitions of E and L, (6) implies

Eβk < EL < Eβk+βek log 4ketkδ < Eβk+βek2(1+ε) = Eβk+o(k).

Thus βαL < L < βαL+ o(L) by (2), which implies 1− o(1) < βα < 1.
Our set of numbers will be those of the form m = 2lpk . . . p1, where

pk < pk−1 < . . . < p1 are primes chosen as follows:

(12) pk ∈
[

1
1− S

2l+1,
1 + δ

1− S
2l+1

]
.

We define intervals Ij by

(13) Ij = [k(1 + δ)j−12l+2, k(1 + δ)j2l+2), j = 1, . . . , t,

and we choose kj primes from Ij to give us pk−1, . . . , p2. Finally, we choose
p1 with

(14) p1 ∈ [k(1 + δ)t2l+2, k(1 + δ)t2l+3].

Note that, for any number m with p1 ≥ 2q, which holds for the numbers
m of the above form (here q = 2l), if we have h(m/p1) < 2 then it follows
that h(d) < 2 for all proper divisors d of m. Thus, we need to establish:

(A) h(m/p1) < 2,
(B) h(m) ≥ 2,
(C) m ≤ n,

(D) #{m} ≥ n/E
√

2+ε.

P r o o f o f (A). Since q = 2l,

(15) h(q) = 2− 1
2l

= 2
(

1− 1
2l+1

)
.

From (12) we have

(16) h(pk) = 1 +
1
pk
≤ 1 +

1− S

2l+1
.

From (13) we have

h(pk−1 . . . p2) ≤
t∏

j=1

(
1 +

kj

k(1 + δ)j−1 · 2l+2

)
.

Note that
∏

(1+ εi) < 1+
∑
εi +(

∑
εi)2 when each εi > 0 and

∑
εi < 1/2.

Using this fact with (8) and the above, we have

(17) h(pk−1 . . . p2) < 1 +
S

2l+1
+

S2

22l+2
.
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Combining (15)–(17) with (9), we have

h(m/p1) = h(q)h(pk)h(pk−1 . . . p2)

≤ 2
(

1− 1
2l+1

)(
1 +

1− S

2l+1

)(
1 +

S

2l+1
+

S2

22l+2

)
= 2

(
1− 1

2l+1

)[
1 +

1
2l+1

+
S

22l+2
+O

(
1

23l

)]
< 2

[
1− 1

22l+2
+

1
22l+3

+O

(
1

23l

)]
< 2.

P r o o f o f (B). From (12) and (14) we have

h(pk) ≥ 1 +
1− S

(1 + δ) · 2l+1
,(18)

h(p1) ≥ 1 +
1

k(1 + δ)t · 2l+3
.(19)

From (13) and (8) we have

h(pk−1 . . . p2) >
t∏

j=1

(
1 +

kj

k(1 + δ)j · 2l+2

)
(20)

> 1 +
t∑

j=1

kj

2k(1 + δ)j · 2l+1
= 1 +

S

(1 + δ) · 2l+1
.

Combining (15), (18)–(20) and (9) gives

h(m) > 2
(

1− 1
2l+1

)(
1 +

1− S

(1 + δ) · 2l+1

)(
1 +

S

(1 + δ) · 2l+1

)
×

(
1 +

1
k(1 + δ)t · 2l+3

)
= 2

[
1 +

(
− 1 +

1− S

1 + δ
+

S

1 + δ
+

1
4k(1 + δ)t

)
1

2l+1
+O

(
1

22l

)]
= 2

[
1 +

(
−δ

1 + δ
+

1
4k(1 + δ)t

)
1

2l+1
+O

(
1

22l

)]
.

By (3) and (4), (1 + δ)t < (1 + δ)k/δ < ek and therefore

1
4k(1 + δ)t

− δ

1 + δ
>

1
4kek

− 1
8kek

=
1

8kek
.

It follows from (11) that h(m) > 2.
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P r o o f o f (C). Using (7), (12)–(14), and (9) we have

m = 2lpk(pk−1 . . . p2)p1

≤ Eβ · 4(1 + δ)Eβ(4kEβ)k−2(1 + δ)Σ
t
j=1jkj · 8kEβ(1 + δ)t

= 8Eβ(k+1)(4k)k−1(1 + δ)Σ
t+1
j=1jkj .

Thus, by (6), m ≤ n.

P r o o f o f (D). By (12)–(14), (7) and the prime number theorem,

P (n) �
∑
(kj)

δEβ

logE

t∏
j=1

[
4δk(1 + δ)j−1Eβ

log(4k(1 + δ)jEβ)

]kj k(1 + δ)tEβ

log(8k(1 + δ)tEβ)
.

Note that (3), (4), (11), and (7) tell us

4k(1 + δ)j < 4k(1 + δ)k/δ < 4kek = eo(l) < Eβ .

Likewise, for any constant c, ck = Eo(1). Thus, using (5),

P (n) �
∑
(kj)

δk−1 · kk−1 · Eβk(1 + δ)Σ
t+1
j=1jkj

Eo(1) · (logE)k
.

Note that, by (2), (logE)k = eαL log log E = e(α/2)L log log n(1+o(1)) =
Eα/2+o(1). Therefore, using (6) we find

P (n) �
∑
(kj)

δk−1 · n
Eα/2+β+o(1)

.

Applying (1), (10), (5), (3), and (4) shows that

P (n) �
∑
(kj)

δk−1n

E
√

2+o(1)
=

(
t

k − 2

)
δk−1 n

E
√

2+o(1)

≥
(
t

k

)k−2

δk−1 n

E
√

2+o(1)
=

n

E
√

2+o(1)
.
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