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The large sieve in Riemann surfaces
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Fernando Chamizo (Madrid)

1. Introduction. In analytic number theory it is sometimes needed to
get non-trivial estimates for sums of exponential or character sums whose
coefficients are only controlled in average. Under the general denomination
of “large sieve” there are several inequalities for this purpose; perhaps one of
the most representative examples is the following result (see Th. 4 of [Bo]):

Given x1, . . . , xR ∈ R/Z, if ‖xν − xµ‖ > δ > 0 for ν 6= µ, then

(1.1)
R∑
ν=1

∣∣∣
∑

n≤N
ane

2πinxν
∣∣∣
2
≤ (N + δ−1)

∑

n≤N
|an|2.

(Here ‖ · ‖ is the distance function in R/Z, i.e. ‖x‖ = minn∈Z |x− n|.)
In the last years, the harmonic analysis in the upper half-plane

H = {x + iy : x ∈ R, y ∈ R+} has entered broadly in analytic number
theory giving different perspectives of old problems and opening new ques-
tions (see the surveys [Iw1] and [Iw2]). One of the main interests is the study
of harmonic analysis in the Riemann surfaces Γ\H where Γ is a Fuchsian
group of the first kind, specially a congruence group. Keeping this idea in
mind one can ask first, what is the analogue of (1.1) with Γ\H instead of
R/Z and secondly, what are its consequences.

In this paper we focus on the first objective leaving some of the ap-
plications for a second part of this work. Moreover, we show that under a
compactness condition the result extends to Riemannian manifolds.
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2. Review on Selberg’s theory and main results. Before stating
our main results we give a brief overview of harmonic analysis in Riemann
surfaces in order to fix notation and quote some results. The main contribu-
tor to the theory was Selberg (see [Se]), but he did not publish the proofs of
most of his results. A self-contained introduction with complete proofs can
be found in [Iw3].

We consider the upper half-plane H endowed with the Poincaré metric,
which induces the element of volume dµ and the distance function % given
by

dµ(x+ iy) =
dxdy

y2 ,

%(z, w) = arc cosh(1 + 2u(z, w)) where u(z, w) =
|z − w|2

4 Im z Imw
.

The direct isometries of H are the real Möbius transformations, which
can be identified with PSL2(R) in the usual way. They leave invariant the
Laplace–Beltrami operator in H,

∆ = y2
(
∂2

∂x2 +
∂2

∂y2

)
= −(z − z)2 ∂

∂z

∂

∂z
.

If Γ is a Fuchsian group of the first kind then Γ\H has finite volume
and a structure of Riemann surface. The distance function in H induces a
distance in Γ\H given by

d(z, w) = inf
γ∈Γ

%(γz, w);

here and subsequently we identify each point in Γ\H with one of its repre-
sentatives in H.

A point in R∪{∞} which is the only fixed point of some element of Γ is
called a cusp. The cusps of Γ\H are in some sense the points at infinity of
the Riemann surface Γ\H; with this idea in mind, it is convenient to define
for each cusp a an element σa of PSL2(R) such that

σa∞ = a and σ−1
a Γaσa =

{(
1 n
0 1

)/{±I} : n ∈ Z
}

with Γa = {γ ∈ Γ : γa = a}.
We also define the function

yΓ (z) = max
a

max
γ∈Γ

Imσ−1
a γz

which measures, so to speak, how close a point z ∈ Γ\H is to the cusps.
The smooth functions in Γ\H having exponential decay to zero at every

cusp and being eigenfunctions of ∆ are called Maaß cusp forms. They belong
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to L2
(
Γ\H), the space of functions such that 〈f, f〉 is finite, where

〈f, g〉 =
\

Γ\H
f(z)g(z) dµ(z).

Other important functions are the Eisenstein series, defined for each cusp
a and s ∈ C with Re s > 1 by

Ea(z, s) =
∑

γ∈Γa\Γ
(Imσ−1

a γz)s.

It can be proved by quite advanced methods that Ea(z, s) has a meromorphic
continuation in C as a function of s; moreover, its poles in Re s > 1/2 are
simple, real and the residues are eigenfunctions of ∆ in L2

(
Γ\H).

If {uj(z)} is a complete orthonormal system in the space generated by
Maaß cusp forms and residues of Eisenstein series, then the spectral theorem
asserts that every function f in L2

(
Γ\H) can be expanded as

f(z) =
∑

j

〈f, uj〉uj(z) +
1

4π

∑
a

∞\
−∞
〈f,Ea(·, 1/2 + it)〉Ea(z, 1/2 + it) dt.

A consequence of this is the following expansion for automorphic kernels
created by the method of images:∑

γ∈Γ
k(u(γz, w)) =

∑

j

h(tj)uj(z)uj(w)

+
1

4π

∑
a

∞\
−∞

h(t)Ea(z, 1/2 + it)Ea(w, 1/2 + it) dt,

where 1/4 + t2j is the eigenvalue corresponding to uj and h is the Selberg–
Harish-Chandra transform of k, an even function defined by

h(t) =
\
H
k(u(z, i))(Im z)1/2+itdµ(z)

= 2
∞\
0

∞\
0

k

(
x2 + (y − 1)2

4y

)
y−3/2+it dx dy.

It is useful to invert this transform in order to recover the left hand side
from the right hand side in the above expansion of automorphic kernels. The
corresponding formula for the Selberg–Harish-Chandra inverse transform is

k

(
coshu− 1

2

)
=

√
2

4π2

∞\
u

∞\
−∞

th(t) sin(wt)√
coshw − coshu

dw dt.

Now we state our main results.
By the spectral theorem we can consider the following to be the analogue

of (1.1) in Γ\H.
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Theorem 2.1. Given T > 1 and z1, . . . , zR ∈ Γ\H, if d(zν , zµ) > δ > 0
for ν 6= µ, then
R∑
ν=1

∣∣∣∣
∑

|tj |≤T
ajuj(zν) +

1
4π

∑
a

T\
−T

aa(t)Ea(zν , 1/2 + it) dt
∣∣∣∣
2

� (T 2 + δ−2)‖a‖2∗

where

‖a‖∗ =
( ∑

|tj |≤T
|aj |2 +

1
4π

∑
a

T\
−T
|aa(t)|2 dt

)1/2

and the “�” constant depends on Γ and max yΓ (zν).

R e m a r k. Note that by Parseval’s identity in Γ\H, the theorem is best
possible when δ is small. The dependence of the constant on max yΓ (zν) is
given more precisely in [Ch].

We can also ask about cancellation considering exponential sums over
the eigenvalues instead of sums of eigenfunctions (both concepts coincide
in R/Z). In the following result we study this kind of exponential sums
but weighted with the eigenfunctions uj(z), which allows a considerable
simplification in the proof (avoiding the use of Selberg’s trace formula).

Theorem 2.2. Given z ∈ Γ\H, T,X > 1 and x1, . . . , xR ∈ [X, 2X], if
|xν − xµ| > δ > 0 for ν 6= µ, then

R∑
ν=1

∣∣∣∣
∑

|tj |≤T
ajx

itj
ν uj(z) +

1
4π

∑
a

T\
−T

aa(t)xitν Ea(z, 1/2 + it) dt
∣∣∣∣
2

� (T 2 +XTδ−1)‖a‖2∗
where ‖a‖∗ is as in Theorem 2.1 and the “�” constant depends on Γ and
yΓ (z).

If Γ is a co-compact group, i.e. if Γ\H is compact, the spectral theo-
rem becomes much simpler. In general, if M is a Riemannian manifold of
dimension n, some classical results (see §8.12 in [Gi-Tr]) assure that the
eigenfunctions φ1, φ2, . . . of the Laplace–Beltrami operator in M ,

∆ =
1√
g

n∑

i=1

∂

∂xi

(√
g

n∑

k=1

gik
∂

∂xk

)
,

can be chosen to be a complete orthonormal system in the space of square
integrable functions and the corresponding eigenvalues, µ1, µ2, . . . , are non-
positive. We shall write µi = −λi.

In M the natural distance function d is given by the minimal length of a
path joinning two points; by the Hopf–Rinow theorem this minimal length



Large sieve in Riemann surfaces 307

is actually attained by some geodesic. Note that this definition of d agrees
with that for Γ\H.

In this general setting the following large sieve inequality holds, which
will be proved using some properties of the heat equation:

Theorem 2.3. Given Λ > 1 and x1, . . . , xR ∈ M , if d(xν , xµ) > δ > 0
for ν 6= µ, then

R∑
ν=1

∣∣∣
∑
√
λj≤Λ

ajφj(xν)
∣∣∣
2
� (Λn + δ−n)

∑
√
λj≤Λ

|aj |2.

R e m a r k. Note that this result gives (1.1) up to a constant upon taking
M = R/Z, and Theorem 2.1 for Γ co-compact upon taking M = Γ\H.

3. Proofs of the main results. In the proofs of Theorems 2.1 and 2.2
we shall use two lemmas; the first one gives estimates for functions having
a certain type of Selberg–Harish-Chandra transform and the second one is
a variant of a standard elementary inequality used in large sieve theory (see
for instance (1.18) in [Mo]). The proof of these results will be given at the
end of this section.

Lemma 3.1. Given T > 1 and r > 0, let k1 and k2 be the Selberg–Harish-
Chandra inverse transform of

h1(t) = e−t
2/(4T 2) and h2(t) = e−t

2/(4T 2)cos(rt)

respectively. Then

(a) k1(t) is decreasing in t > 0 and for every u,

k1((coshu− 1)/2)� T 2e−T
2u2

.

(b) There exists an absolute positive constant C such that

k2((coshu− 1)/2)� T 2e−CT
2(u−r)2

for u ≥ r and k2(0)� min(T 2, r−2).

Lemma 3.2. Let ~b = (b1, . . . , bR) be a unit complex vector and let
M = (mνµ) be an R×R complex matrix such that |mνµ| = |mµν |. Then

|~b ·M~b| =
∣∣∣

R∑
ν,µ=1

bνbµmνµ

∣∣∣ ≤ max
ν

R∑
µ=1

|mνµ|.

P r o o f o f T h e o r e m 2.1. Let S be the left hand side of the conclu-
sion. By duality there exists a unit complex vector, say ~b = (b1, . . . , bR),
such that

S =
( R∑
ν=1

bν

( ∑

|tj |≤T
ajuj(zν) +

1
4π

∑
a

T\
−T

aa(t)Ea(zν , 1/2 + it) dt
))2

.
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Interchanging the summation and by Cauchy’s inequality in C × . . .× C×
L2(R)× . . .× L2(R) we have

(3.1) S ≤ ‖a‖2∗S̃
where S̃ is the “dual sum”

S̃ =
∑

|tj |≤T

∣∣∣
R∑
ν=1

bνuj(zν)
∣∣∣
2

+
1

4π

∑
a

T\
−T

∣∣∣
R∑
ν=1

bνEa(zν , 1/2 + it)
∣∣∣
2
dt.

By positivity we can smooth the summation and the integration writing

S̃ �
∑

j

e−t
2
j/(4T

2)
∣∣∣
R∑
ν=1

bνuj(zν)
∣∣∣
2

+
1

4π

∑
a

∞\
−∞

e−t
2/(4T 2)

∣∣∣
R∑
ν=1

bνEa(zν , 1/2 + it)
∣∣∣
2
dt.

Opening the squares and interchanging the order of summation, by Lem-
ma 3.2 and (3.1) we obtain

(3.2) S � ‖a‖2∗max
ν

R∑
µ=1

|Sνµ|

where

Sνµ =
∑

j

e−t
2
j/(4T

2)uj(zν)uj(zµ)

+
1

4π

∑
a

∞\
−∞

e−t
2/(4T 2)Ea(zν , 1/2 + it)Ea(zµ, 1/2 + it) dt

and then the problem reduces to giving a suitable estimate for Sνµ.
Considering Sνµ as the spectral expansion of an automorphic kernel (see

Section 2) and using Lemma 3.1(a) for the computations, we have

(3.3) Sνµ � T 2
∑

γ∈Γ
e−T

2%(γzν ,zµ).

By a trivial estimate for the so-called hyperbolic circle problem (see
Prop. I.2.2 of [He] and Lemma 2.11 of [Iw3]) one deduces

log(1 + #{γ ∈ Γ : r < %(γzν , zµ) ≤ 2r})� r + 1 for r > 0,

where the involved constant depends on yΓ (zν), yΓ (zµ) and Γ . Hence sum-
ming by parts in (3.3) we have

(3.4) Sνµ � T 2e−CT
2d2(zν ,zµ)

for some absolute positive constant C.
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Now if we consider a circle of radius r, 0 < r � 1, and center zν , we can
estimate the number of zµ’s inside it by the spacing condition, getting

(3.5) #{zµ : d(zν , zµ) < r} � 1 + r2δ−2.

Note that one can always find a circle of radius O(1) (depending on
maxν yΓ (zν) and Γ ) containing all of the zν ’s, hence (3.5) holds true for
every r > 0.

Finally, by partial summation we conclude from (3.4) and (3.5) that

R∑
µ=1

|Sνµ| � T 2 + δ−2

and substituting in (3.2) gives the theorem.

P r o o f o f T h e o r e m 2.2. The beginning of the proof is completely
analogous to that of Theorem 2.1 replacing uj(zν) and Ea(zν , 1/2 + it) by
x
itj
ν uj(z) and xitν Ea(z, 1/2 + it) respectively, so if S denotes the left hand

side of the conclusion one proves (3.2), i.e.

(3.6) S � ‖a‖2∗max
ν

R∑
µ=1

|Sνµ|,

but in this case

Sνµ =
∑

j

e−t
2
j/(4T

2) cos(rνµtj)|uj(z)|2

+
1

4π

∑
a

∞\
−∞

e−t
2/(4T 2) cos(rνµt)|Ea(z, 1/2 + it)|2

where

rνµ = |log(xν/xµ)|.
Upon a subdivision of the set x1, . . . , xR into a finite number of subsets

depending on yΓ (z) we can always assume that %(γz, z) > rνµ/2 for every ν
and µ when γ 6= Id. Then by the spectral expansion of automorphic kernels
and Lemma 3.1(b) we deduce

Sνµ � min(T 2, r−2
νµ ) + T 2

∑

γ 6=Id

e−CT
2(%(γz,z)−rνµ)2

for some absolute positive constant C. The trivial estimate for the hyperbolic
circle problem mentioned in the proof of Theorem 2.1 proves that the above
series converges quickly and hence

Sνµ � min(T 2, r−2
νµ ).
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Finally, by the definition of rνµ and the spacing condition we have

R∑
µ=1

|Sνµ| �
R∑
µ=1

min(T 2, X2|xν − xµ|−2)� T 2 +XTδ−1

and substituting in (3.6) completes the proof.

P r o o f o f T h e o r e m 2.3. The left hand side, say S, is formally similar
to that of Theorem 2.1 without the contribution of the Eisenstein series,
hence the first algebraic manipulations can be done in the same way giving
(compare with (3.2))

(3.7) S �
( ∑
√
λj≤Λ

|aj |2
)

max
ν

R∑
µ=1

|Sνµ|

where

Sνµ =
∑

j

e−λj/Λ
2
φj(xν)φj(xµ).

Now observe that Sνµ = u(xν , xµ, Λ−2) where u is the fundamental solution
of the heat equation in M , i.e. u solves

(3.8)
{
Lu(x, y, t) = 0, x, y ∈M , t > 0,
u(x, y, 0) = δ(x− y),

with L = −∂/∂t+∆x and δ = Dirac’s delta.
The asymptotic expansion of u and of other related functions is a well

known problem with interesting applications in geometry and differential
topology. Here we only need an upper bound, so the arguments are much
simpler. The key idea is that the solution of (3.8) can be constructed from
a kind of local approximate solution (a parametrix) by an iterative process.
We shall quote the required results from Chapter III of [Be-Ga-Ma].

Given k > n/2 + 2, by E.III.2 and E.III.3 of [Be-Ga-Ma] there exist
r0 > 0 and functions u1, . . . , uk ∈ C∞(M × M) and η ∈ C∞(R) with
supp η ⊂ [−2, 2], η

∣∣
[−1,1] ≡ 1, such that

Hk(x, y, t) = (4πt)−n/2

× e−d2(x,y)/(4t)(u0(x, y) + tu1(x, y) + . . .+ tkuk(x, y))η(r−1
0 d(x, y))

satisfies

lim
t→0+

Hk(x, y, t) = δ(x− y), LHk ∈ Cl(M ×M × R+) for l < k − n/2

and

LHk(x, y, t) = (4πt)−n/2tke−d
2(x,y)/(4t)∆xuk if d(x, y) < r0.



Large sieve in Riemann surfaces 311

If we define the convolution of two functions A,B ∈ C∞(M ×M ×R+)
by

A ∗B(x, y, t) =
t\
0

\
M

A(x, z, τ)B(z, y, t− τ) dVol dτ,

then the solution u of (3.8) is given by the formula (see E.III.8 of
[Be-Ga-Ma])

u = Hk −Qk ∗Hk where Qk =
∞∑

j=1

(−1)j+1(LHk)∗j .

It is not difficult to prove that Qk is less than a positive power of t
(see E.III.6 of [Be-Ga-Ma]); then recalling the definition of Hk one deduces

u(x, y, t)� t−n/2e−Cd
2(x,y)/t

for some positive constant C and small values of t. Hence

Sνµ � Λne−CΛ
2d2(xν ,xµ).

By the spacing condition

#{xµ : d(xν , xµ) < r} � 1 + δ−n min(rn, diamn(M))

where diam(M) is the diameter of M . Then partial summation gives
R∑
µ=1

|Sνµ| � Λn + δ−n

and by (3.7) this proves the theorem.

We finish this section with the proofs of Lemmas 3.1 and 3.2.

P r o o f o f L e m m a 3.1. Using Parseval’s identity one can simplify
the formula for the Selberg–Harish-Chandra inverse transform at the special
value u = 0 (see Appendix of [Ku]) getting

k(0) =
1

4π

∞\
−∞

t tanh(πt)h(t) dt.

Hence k1(0), k2(0) � T 2 and integrating by parts twice gives k2(0) � r−2.
For non-zero values we consider separately (a) and (b).

(a) Define f(w) = we−w
2T 2

/ sinhw. Then

k1

(
coshu− 1

2

)
=
T 3
√

2
π3/2

∞\
u

f(w)
sinhw√

coshw − coshu
dw.

Integrating by parts and differentiating the result with respect to u we
deduce that k1 is decreasing on the positive axis and then the bound
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k1(0)� T 2 proves (a) for uT � 1. If uT � 1 we write

k1

(
coshu− 1

2

)
=
T 3
√

2
π3/2

α\
u

+
T 3
√

2
π3/2

∞\
α

= I1 + I2

where α = u+ u−1T−2. It is plain that

I1 � T 3f(u)
α\
u

sinhw√
coshw − coshu

dw � T 2e−T
2u2

and

I2 � T 3
√

coshα− coshu

∞\
α

we−w
2T 2

dw � T 2e−T
2u2

.

Hence (a) follows.
(b) In this case we have

k2

(
coshu− 1

2

)
=

T 3

π3/2
√

2

∞\
u

g(w)√
coshw − coshu

dw

with

g(w) = (w + r)e−(w+r)2T 2
+ (w − r)e−(w−r)2T 2

.

If u ≥ r we can also assume r ≥ T−1 because otherwise g(w)� we−Cw
2T 2

for some C > 0 and the proof of (a) applies. Under this assumption we
divide the range of integration

k2

(
coshu− 1

2

)
=

T 3

π3/2
√

2

α\
u

+
T 3

π3/2
√

2

∞\
α

= I1 + I2

where α = u+ T−1. Each of these integrals is bounded as in (a), giving

I1 � T−1e−C(u−r)2T 2
α\
u

1√
coshw − coshu

dw � u−1/2T−3/2e−C(u−r)2T 2

and

I2 � 1√
coshα− coshu

∞\
α

g(w) dw � u−1/2T−3/2e−C(u−r)2T 2
.

Under our hypothesis we have u ≥ T−1 and then (b) follows.

P r o o f o f L e m m a 3.2. The proof reduces to the elementary inequal-
ities
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∣∣∣
R∑

ν,µ=1

bνbµmνµ

∣∣∣ ≤ 1
2

R∑
ν=1

|bν |2
R∑
µ=1

|mνµ|+ 1
2

R∑
µ=1

|bµ|2
R∑
ν=1

|mνµ|

≤
( R∑
ν=1

|bν |2
)

max
ν

R∑
µ=1

|mνµ|

and the term in parenthesis can be omitted because ~b is a unit vector.
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