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A note on the number of solutions of the generalized
Ramanujan—Nagell equation z? — D = k"

by

MAOHUA LE (Zhanjiang)

1. Introduction. Let Z, N be the sets of integers and positive integers
respectively. Let D be a nonzero integer, and let k be a positive integer such
that £ > 1 and ged(D, k) = 1. Further let N(D, k) denote the number of
solutions (x,n) of the generalized Ramanujan—Nagell equation

(1) >~ D=k", x,neN.

There have been many papers concerned with upper bounds for N (D, k).
Let C; (i = 1,2,...) denote effectively computable absolute constants. The
known results include the following:

1 (Apéry [1, 2]). If D < O, k is a prime and (D,k) # (—7,2), then
N(D,k) <2.

2 (Beukers [3]). If D < —7, then N(—23,2) = N(—-2" +1,2) = 2 for
some r € N, otherwise N(D,2) < 1.

3 (Le [10]). If D < 0, k is an odd prime and |D| > Cy, then N(—3s? —
1,4s% + 1) = 2 for some s € N, otherwise N(D, k) < 1.

4 (Xu and Le [15]). If D < 0, 2tk and |D| > Cy, then

2w(k)=1 41 if D= —3s*+ and k" =4s> F 1
N(D,k) < for some r,s € N,
Qu(k)—1 otherwise,

where w(k) is the number of distinct prime factors of k.

5 (Beukers [3, 4]). If D > 0 and k is a prime, then N(D, k) < 4.

6 (Le [9]). If D > 0, then N(2* — 3.2t 4+ 1,2) = 4 for some r € N,
otherwise N(D,2) < 3.

7 (Le [8]). If D > 0, k is an odd prime and max(D,k) > Cj, then
N(D, k) < 3.
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8 (Chen and Le [6]). If D > 0, 21k and max(D, k) > Cy4, then N(D, k) <
320141,

So far we have not been able to find references to the case where 2|k
and k is not a power of 2. In this note we prove the following general result:

THEOREM. Let w(D) be the number of distinct prime factors of |D|.
Then

qu(D)+1 if D <0,

N(D,k) <
(D, )—{2w<D>+1+1 if D> 0.

2. Preliminaries

LEMMA 1. If D > 0 and D is not a square, then (1) has at most one
solution (x,n) with k™ < V/D.

Proof. By [7, Theorem 10 -8 - 2], if ¥ < /D, then z/1 must be a con-
vergent of VD with x /1> v/D. Notice that v/D has at most one convergent
p/q satisfying ¢ = 1 and p/q > v/D. The lemma is proved.

LEMMA 2. If k is not a square and the equation
(2) X?—kY?=D, X, Y€Z, ged(X,Y)=1

has solutions (X,Y), then all solutions of (2) can be put into at most 2*(P)~1
classes. Moreover, every solution (X,Y) in the class T' can be expressed as

X +YVk=(Xo+6YoVE)(u+oVEk), 6e{-1,1},

where (Xo, Yo) is a fixed positive integer solution in T, (u,v) is a solution
of the equation

(3) u? — k=1, w,veZ.
Proof. This is a special case of [11, Theorem 2] for D; =1 and z = 1.
LEMMA 3. For 1 < D <5, the equation
X?4+D=Y", X, Y,neN, ged(X,Y)=1, n>3
has no solutions (X,Y,n).
Proof. This follows immediately from the results of [5], [12] and [13].

LEMMA 4. For r,v’ € N with r < r’, let S, S’ be the sets of positive
integer solutions (u,v) of (3) satisfying

(4) E" v, ged(k,v/k") =1,
and

(5) kv, ged(k,v/k") =1,
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respectively. If S # 0, S" # 0, (U, V) and (U', V') are least solutions of S
and S’ respectively, then
(6) U+V'VE=U+VVEF .

Proof. Since (U, V) is the least solution of S, U + (V/k")Vk?>+! is the
fundamental solution of the equation
(7) u? BT =1, 40 € Z.
Further, since (U’,V'/k") is a positive integer solution of (7), there exists a
suitable ¢ € N such that

/
U/+ V 1/kQT-{-l — <U+ ]Z/;,/kQT—‘,-l)

t
kT ’

whence we get

(8) U +V'VEk=(U+VVE)?
Let s = [(t — 1)/2]. From (8), we get

U\ t t—2i—1(7.1,2Yi
Q V=YY (5 oty

Notice that r </, k™ |V, k™" | V' and ged(k, V/k") = ged(k, U) = 1. We see
from (9) that k|t and
(10) LA Z P U212y = 0 (mod k77

%4 P 2i4+1 - '

Let k = p{"...p%m be the factorization of k, and let pfj |t for j =

1,...,m. Further, let p}ij |2i +1 for any ¢ € Nand j = 1,...,m. Then we
have 7;; < (log(2i 4+ 1))/logp; < 2i, and hence,

t i » o [t =1\ (kV?)!
11 t—2i—1 2\ — t—21—1
(11) <2i+1>U Vo) =t <2z’>2i—|—1
jJrl)

=0 (mod p; , j=1,....m.

By (10) and (11), we get & =" |t and t = k" ~"t;, where t; € N. Therefore,
by (4), if (U’, V') satisfies (6), then it is the least positive integer solution
of (3) satisfying (5). The lemma is proved.

LEMMA 5 ([14, Theorem 1-2]). If k is not a square and (x,n) is a solution
of (1) satisfying k™ > 4'+3/7D?+s/ for some r, s € N, then

n\ 1/s
L/ — 1 > 8 81k k,fn/(1+u)/2
kn'/2 2187kn(3+v/2) 4

for any o',n’ € N with 2{n/, where v satisfies k™ = 9(81k™/4)"/*.
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LEMMA 6. If k is not a square and (1) has a solution (x,n) such that
k™ > max(10°,43D%), then every solution (x',n’) of (1) with 24n’ satisfies
n' < 39n.

Proof. Let (',n’) be a solution of (1) with 2¢n’. Then
! B D - D

B kn//Q(k.n’/2 +$/) fn'”

12) o 7E
Since k™ > max(10°,43D*), by Lemma 5, we get

' 8 81k \ 2
- —n'(14v)/2
(13) 2 1'> 2187k”(3+V/2)< 1 ) k ;
where
] log(81/4) 1
(14) _ log9  log(81/4) + = < 0.8215.

V= log k" 2log k™ 2
The combination of (12) and (13) yields

D 8 81k*\'/? _
el —n/(14+v)/2
(15> kn’ > 2187/€n(3+”/2) < ) k :

4
Since D < (k"/64)'/* and k™ > 10°, from (5) we get
(16) kn(6+u)/2 > 6075Dk,n(5+v)/2 > kn/(lfv)/Q'

This implies that

(17) n < (?J:Z)n

Substituting (14) into (17), we obtain n’ < 39n. The lemma is proved.

3. Proof of Theorem. By the known results of [1]-[4], we may assume
that k is not a prime power.

If k is a square, then from (1) we get = + k"2 = Dy and x — k™2 = Ds,
where Dy, Dy are integers satisfying D1 Dy = D, ged(Dy1,D2) <2, D; >0
and Dy > D,. Notice that there exist at most 2¢(2)~! such pairs (D1, D>).
So we have N(D, k) < 2¢(P)=1 in this case. From the above, we may assume
that k is not a square. Similarly, we see that (1) has at most 2¢(P)~1 solutions
(z,n) with 2|n.

If (x,n) is a solution of (1) with 2t n, then the equation (2) has a solution
(X,Y) = (2,k™=1/2). By Lemma 2, all solutions (X,Y") of (2) can be put
into at most 2¢(P)~1 classes.

First we consider the case D > 0. We now suppose that (1) has five so-
lutions (z;,n;) (i =1,...,5) such that n; < ... < ns, k™ < VD, 2{n; (i =
1,...,5) and (X,Y) = (x;, k~1/2) (i = 1,...,7n) belong to the same class
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T of (2). By Lemma 2, there exists a fixed positive integer solution (Xo, Yp)
of (2) which satisfies

(18) x4+ kMY 2VE = (X + 6:;YoVE) (ui + viVk),

5 € {-1,1}, i=1,...,5,
where (u;,v;) (i =1,...,5) are solutions of (3). We find from (18) that
(19) @41 4 05 kM= D/2\/

= (z; + 0KV 2VE) (W +0iVE),  j=1,...,4,

where (u},v}) (j = 1,...,4) are also solutions of (3). Since 71 < ... < w5,
we see from (19) that

(20) ajin kP2
) @ RO TORVE) (i VE) i 6 = 6,
- ($j _ k("j*l)/g\/ﬁ)(u;’ + U;-/\/E) if 5j 75 5j+1,

j=1,...,4, where (u},v]) are positive integer solutions of (3). Notice that
Zj41 > xj and

(21) :L']_A'_l S $]+1 + k‘(n]'+171)/2\/E
T T + k(”jfl)/Q\/E
- Tip1 + k(nisi-1)/2,/
T — k(mi—1)/2\/k
From (20) and (21), we obtain

(22) xi“ Sl +0VE j=1,...,4
j
On the other hand, by (20), we get
(23) e(nie=D/2 = gl £ D2 =14
Since ged(D, k) = ged(zj,k) =1 (j =1,...,4), we see from (23) that
(24) R D2 =1, 4,

and v;-’/k:(”i_l)/2 is a positive integer satisfying

v

(25) R TR = s =1

Since ged(uf, k) =1 (j = 1,...,4), from (25) we get
(26) ged(k, v /KDy =1, j=1,... 4.

For j =1,...,4, let (U;,V;) be the least positive integer solution of (3) such
that k(" ~V/2|V; and ged(k, V;/k™~1V/2) = 1. By Lemma 4, we deduce

4.

)
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from (22), (24) and (26) that

.
(27) x: j >y + 0l Vi

> Ujp1 + Vigr Ve = (U; + Vj\/E)k(njHinj)/zv Jj=12,3.

By Lemma 1, we have k"2 > /D. Further, since k("2=1/2 |V}, we infer
from (27) that

x% > :):%(U2 + Vz\/%)2 > 4x§k”2 > 41‘%\/5

This implies that
(28) k" = CC?:, - D> 4x§\/5— D =4(D + k”2)\/f)_ D> 4D32 4+ 3D.
Since k > 6, by the same argument, we can prove that
(29) k™ =22 — D > 22(u + viVEk)> = D > 22(Us + VsVk)> = D

= x%(Uz + ‘/’2\/E)2k("37n2)/2 D> x§(4k"2)k(n3%2>/2 D

> 4D¥2(4DV*)* — D > 4"D%? - D > 4°D*,
and
(30) k" =2~ D>ai(Us+VaVk)’ =D

= 23 (Us + VaV) "% s pratnakeT,

We see from (29) that (x4,7n4) is a solution of (1) with k™ > 43D*. More-
over, if D > 7, then we have k™ > 10°. Since k is not a prime power, k
has at least two distinct prime factors p with (D/p) = 1, where (D/p) is
Legendre’s symbol. So we have £k > 717, 11 - 13 and 11 - 19 for D = 2,3
and 5 respectively. Since ny > 7, this implies that k™ > max(10°,43D*%).
Therefore, by Lemma 6, we get

(31) 394 > ns.
The combination of (30) and (31) yields
(32) 38ny > ngk(mame)/2,

Since ng > 5, if ng < ny/4.6 then ny > 4.6n3 > 23 and
38ny > ngk?/23 > 5. 694/23

by (32). This is impossible for ny > 23. If ng > n4/4.6, then from (22) and
(32) we get

2 D 1/2
174.8n4 > 714]{;("4_”3)/2 =ny (:Lé > > 7”&4E > TL4(U3 + Vg\/E)
1'3 — D xrs3

> 2n4k"™/% > 2. 6%/2ny > 176.3n4,



Ramanujan—Nagell equation 17

a contradiction. Thus, the equation (1) has at most four solutions
(zi,mi) (i = 1,...,4) such that n; < ... < ng, k™ < VD, 2{n; (i =
1,...,4) and (X,Y) = (x;, k™ ~1/2) (i = 1,...,4) belong to the same class
of (2). By the same argument, we can prove that (1) has at most three solu-
tions (24,n;) (i = 1,...,3) such that ny < ... < ng, k™ > /D, 2{n; (i =
1,...,3)and (X,Y) = (x;, k™ ~1/2) (i = 1,...,3) belong to the same class
of (2). Further, by Lemma 1, (1) has at most one solution (x,n) that satisfies
k™ < v/D. This implies that if D > 0, then (1) has at most 3-2“(P)=1 41 so-
lutions (z,7n) with 2¢n. Recall that (1) has at most 2*(P)~1 solutions (z,7)
with 2|n. So we have N(D, k) < 2v(P)+1 1 for D > 0.

We next consider the case D < 0. By Lemma 3, if =5 < D < —1, then
N(D, k) < 3. We may therefore assume that |D| > 6. Notice that (1) has no
solution (z,n) satisfying k™ < |D|. Therefore, by much the same argument
as in the proof of the case D > 0, we can prove that (1) has at most three
solutions (z,n) such that 2¢n and (X,Y) = (z, k»~1/2) belongs to the
same class of (2). So we have N(D, k) < 2¢(P)*+1 for D < 0. The proof is
complete.
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