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Gauss sums for O+(2n, q)

by

Dae San Kim and In-Sok Lee (Seoul)

1. Introduction. Let λ be a nontrivial additive character of the finite
field Fq, and let χ be a multiplicative character of Fq. Throughout this
paper, we assume that q is a power of an odd prime. Then we consider the
exponential sum

(1.1)
∑

g∈SO+(2n,q)

λ(tr g),

where SO+(2n, q) is a special orthogonal group over Fq (cf. (2.6)) and tr g
is the trace of g. Also, we consider

(1.2)
∑

g∈O+(2n,q)

χ(det g)λ(tr g),

where O+(2n, q) is an orthogonal group over Fq (cf. (2.2)) and det g is the
determinant of g.

The purpose of this paper is to find explicit expressions for the sums
(1.1) and (1.2). It turns out that both of them are polynomials in q with
coefficients involving powers of ordinary Kloosterman sums.

In [5], Hodges expressed certain exponential sums in terms of what
we call the “generalized Kloosterman sum over nonsingular symmetric
matrices” Ksym,t(A,B) (for m even in the main theorem of [5]) and the
“signed generalized Kloosterman sum over nonsingular symmetric matri-
ces” Lsym,t(A,B) (for m odd in the main theorem of [5]), where A, B are
t× t symmetric matrices over Fq (cf. (6.1) and [10], (7.1)).

Some of their general properties were investigated in [5], and, for A or
B zero, they were evaluated in [4] (see also [5], Theorem 10). However, they
have never been explicitly computed for both A and B nonzero.
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From a corollary to the main theorem in [5] and using an explicit expres-
sion of the similar sum to (1.2) but over O(2n+ 1, q), we were able to find,
in [10], an expression for Lsym,2n+1

(
a2

4 C
−1, C

)
, where C is a nonsingular

symmetric matrix of size 2n+ 1 and 0 6= a ∈ Fq.
In this paper, from the corollary mentioned above and Theorem 5.1, we

will be able to find an explicit expression for Ksym,2n
(
a2

4 C
−1, C

)
, where C

is now a nonsingular symmetric matrix of size 2n with C ∼ J+ (cf. (2.3) and
(2.13)) and 0 6= a ∈ Fq as before. On the other hand, Ksym,2n

(
a2

4 C
−1, C

)
for C ∼ J− (cf. (2.14)) was determined in [9].

Similar sums for other classical groups over a finite field have been con-
sidered and the results for these sums will appear in various places.

Finally, we would like to state the main results of this paper. For some
symbols, one is referred to the next section.

Theorem A. The sum
∑
g∈SO+(2n,q) λ(tr g) in (1.1) equals

qn
2−n−1

[n/2]∑
r=0

qr(r+1)
[
n
2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1),

where K(λ; 1, 1) is the usual Kloosterman sum as in (2.7) and the innermost
sum is over all integers j1, . . . , jl−1 satisfying 2l−3 ≤ j1 ≤ n−2r−1, 2l−5 ≤
j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2.

Theorem B. The sum
∑
g∈O+(2n,q) χ(det g)λ(tr g) in (1.2) equals

qn
2−n−1

{ [n/2]∑
r=0

qr(r+1)
[
n
2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

+ χ(−1)
[(n−1)/2]∑
r=0

qr(r+1)
[

n
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (jjl−1 − 1)
}
,

where the first unspecified sum runs over the same set of integers as in
Theorem A above and the second unspecified sum runs over all integers
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j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ n − 2r − 2, 2l − 5 ≤ j2 ≤ j1 − 2, . . . ,
1 ≤ jl−1 ≤ jl−2 − 2.

Theorem C. Let 0 6= a ∈ Fq. Then, for any nonsingular symmetric
matrix over Fq of size 2n with C ∼ J+, the Kloosterman sum below over
nonsingular symmetric matrices (cf. (6.1)) is independent of C, and

Ksym,2n

(
a2

4
C−1, C

)
= qn

∑

g∈O+(2n,q)

λa(tr g),

so that it equals qn times the expression in Theorem B above with χ trivial ,
λ = λa (cf. (2.1)).

The above Theorems A, B, and C are respectively stated as Theorem 4.3,
Theorem 5.1, and Theorem 6.2.

2. Preliminaries. In this section, we will fix some notations that will
be used throughout this paper, describe some basic groups, recall the usual
Kloosterman sum and mention the q-binomial theorem. One may refer to
[1] and [12] for some elementary facts of the following.

Let Fq denote the finite field with q elements, q = pd (p > 2 an odd
prime, d a positive integer).

Let λ be an additive character of Fq. Then λ = λa for a unique a ∈ Fq,
where, for α ∈ Fq,

(2.1) λa(α) = exp
{

2πi
p

(aα+ (aα)p + . . .+ (aα)pd−1)
}
.

It is nontrivial if a 6= 0.
trA and detA denote respectively the trace of A and the determinant

of A for a square matrix A, and tB denotes the transpose of B for any
matrix B.

GL(n, q) is the group of all nonsingular n × n matrices with entries in
Fq. Then

(2.2) O+(2n, q) = {g ∈ GL(2n, q) | tgJ+g = J+},
where

(2.3) J+ =
[

0 1n
1n 0

]
.

We write g ∈ O+(2n, q) as

g =
[
A B
C D

]
,
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where A, B, C, D are of size n. Then (2.2) is given by

(2.4) O+(2n, q) =
{[

A B
C D

]
∈ GL(2n, q)

∣∣∣∣ tAC + tCA = 0,

tAD + tCB = 1n, tBD + tDB = 0
}

=
{[

A B
C D

]
∈ GL(2n, q)

∣∣∣∣AtB +BtA = 0,

AtD +BtC = 1n, CtD +DtC = 0
}
.

P (2n, q) is the maximal parabolic subgroup of O+(2n, q) defined by

(2.5) P (2n, q) =
{[

A 0
0 tA−1

] [
1n B
0 1n

] ∣∣∣∣A ∈ GL(n, q), tB = −B
}
.

Moreover,

(2.6) SO+(2n, q) = {g ∈ O+(2n, q) | det g = 1},
which is a subgroup of index 2 in O+(2n, q).

For a nontrivial additive character λ of Fq, a, b ∈ Fq, K(λ; a, b) is the
Kloosterman sum defined by

(2.7) K(λ; a, b) =
∑

α∈F×q

λ(aα+ bα−1).

For integers n, r with 0 ≤ r ≤ n, we define the q-binomial coefficients as

(2.8)
[
n
r

]

q

=
r−1∏

j=0

(qn−j − 1)/(qr−j − 1).

The order of the group GL(n, q) is denoted by

(2.9) gn =
n−1∏

j=0

(qn − qj) = q(
n
2)

n∏

j=1

(qj − 1).

Then we have

(2.10)
gn

gn−rgr
= qr(n−r)

[
n
r

]

q

,

for integers n, r with 0 ≤ r ≤ n.
For x an indeterminate, n a nonnegative integer,

(2.11) (x; q)n = (1− x)(1− xq) . . . (1− xqn−1).
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Then the q-binomial theorem says

(2.12)
n∑
r=0

[
n
r

]

q

(−1)rq(
r
2)xr = (x; q)n.

[y] denotes the greatest integer ≤ y, for a real number y.
For n × n matrices A, B over Fq, we will say A is equivalent to B and

write

(2.13) A ∼ B if and only if B = tgAg for some g ∈ GL(n, q).

Finally, for a fixed element ε in F×q − F×2
q ,

(2.14) J− =




0 1n−1 0 0
...

1n−1 0 0 0
0 . . . 0 1 0
0 . . . 0 0 −ε



.

3. Bruhat decomposition. In this section, we will discuss the Bruhat
decomposition of O+(2n, q) with respect to the maximal parabolic subgroup
P (2n, q) of O+(2n, q) (cf. (2.5)).

This decomposition will play a key role in deriving the main theorems
in Sections 4 and 5, and an elementary proof of that will be provided.

As a simple application, we will demonstrate that this decomposition,
when combined with the q-binomial theorem, can be used to derive the order
of the group O+(2n, q).

Theorem 3.1. (a) There is a one-to-one correspondence

P (2n, q)\O+(2n, q)→ GL(n, q)\Λ
given by

P (2n, q)
[
A B
C D

]
7→ GL(n, q)[C D],

where

Λ = {[C D] | C,D n×n matrices over Fq, rank[C D] = n, CtD+DtC = 0}.
(b) For given [C D] ∈ Λ, there exists a unique r (0 ≤ r ≤ n), g ∈

GL(n, q), p ∈ P (2n, q) such that

g[C D]p =
[

1r 0 0 0
0 0 0 1n−r

]
.

(c) We have

O+(2n, q) =
n∐
r=0

PσrP,
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where P = P (2n, q) and

(3.1) σr =




0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r


 ∈ O+(2n, q).

P r o o f. The map in (a) is clearly well-defined and it is easy to see that it
is injective. For the surjectivity, it suffices to show that, for a given [C D] ∈
Λ, there exists

[
A B
C D

]
∈ O+(2n, q) (cf. (2.4)) whose lower half is the given

[C D].
Choose g′ ∈ GL(n, q) so that g′[C D] is a row echelon matrix. Let r

(0 ≤ r ≤ n) be the number of pivots in g′C. Then, for some h ∈ GL(n, q),

(3.2) g′[C D]
[
h 0
0 th−1

]
=




1r 0
D′

0 0


 .

Write

D′ =
[
D′1 D′2
D′3 D′4

]
,

where D′1 is of size r, and D′4 is of size (n− r), etc.
One can check directly that g̃[C D]p̃ ∈ Λ, for any g̃ ∈ GL(n, q), p̃ ∈

P (2n, q). Thus, in (3.2),
[

1r 0
0 0

]
tD′ = −D′t

[
1r 0
0 0

]

must be satisfied, i.e., tD′1 = −D′1, D′3 = 0.
Write

p′ =




−D′1 −D′2
1n

tD′2 0

0 1n



∈ P (2n, q).

Then (3.2) right multiplied by p′ is

(3.3)
[

1r 0 0 0
0 0 0 D′4

]
.

Since (3.3) is of full rank, D′4 must be invertible. Thus, with

g =
[

1r 0
0 D′4

−1

]
g′ ∈ GL(n, q), p =

[
h 0
0 th−1

]
p′ ∈ P (2n, q),
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we have

g[C D]p =
[

1r 0 0 0
0 0 0 1n−r

]
.

So (b) is proved. Moreover,
[
tg 0
0 g−1

]
σrp
−1

is a matrix in O+(2n, q) whose lower half is the given [C D]. Thus the proof
of (a) is complete.

In view of (a), the Bruhat decomposition in (c) is equivalent to

(3.4) Λ =
n∐
r=0

G

[
1r 0 0 0
0 0 0 1n−r

]
P,

where G = GL(n, q), P = P (2n, q). Λ is such a union of double cosets as in
(3.4) by (b). The disjointness in (3.4) is easy to check.

Write, for each r (0 ≤ r ≤ n),

(3.5) Ar = Ar(q) = {p ∈ P (2n, q) | σrpσ−1
r ∈ P (2n, q)}.

Expressing O+(2n, q) as a disjoint union of right cosets of P = P (2n, q), the
Bruhat decomposition in (c) of Theorem 3.1 can be rewritten as follows.

Corollary 3.2.

(3.6) O+(2n, q) =
n∐
r=0

Pσr(Ar\P ),

where P = P (2n, q), σr is as in (3.1) and Ar is as in (3.5).

Observing that det g = 1 for g ∈ P (2n, q) and detσr = (−1)r, we get
the following.

Corollary 3.3.

SO+(2n, q) =
∐

0≤r≤n
r even

Pσr(Ar\P ),(3.7)

O+(2n, q) =
∐

0≤r≤n
r even

Pσr(Ar\P )(3.8)

q
∐

0≤r≤n
r odd

Pσr(Ar\P ).

Write p ∈ P (2n, q) as

(3.9) p =
[
A 0
0 tA−1

] [
1n B
0 1n

]
,
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with

(3.10)
A =

[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12

−tB12 B22

]
,

tB11 = −B11,
tB22 = −B22.

Here A11, A12, A21, and A22 are respectively of sizes r × r, r × (n − r),
(n− r)× r, and (n− r)× (n− r), and similarly for tA−1 and B.

Then, by multiplying out, we see that

σrpσ
−1
r ∈ P (2n, q)

if and only if A11B11−A12
tB12 = 0, A12 = 0, E21 = 0 if and only if A12 = 0,

B11 = 0. Hence

(3.11) |Ar(q)| = grgn−rq(
n
2)qr(2n−3r+1)/2

where gn is as in (2.9). Also,

(3.12) |P (2n, q)| = q(
n
2)gn.

From (2.10), (3.11) and (3.12), we get

(3.13) |Ar(q)\P (2n, q)| = q(
r
2)
[
n
r

]

q

.

This will be used later in Sections 4 and 5. Also, from (3.12) and (3.13),

(3.14) |P (2n, q)|2|Ar(q)|−1 = q(
n
2)gn

[
n
r

]

q

q(
r
2).

From (3.6),

(3.15) |O+(2n, q)| =
n∑
r=0

|P (2n, q)|2|Ar(q)|−1.

Applying the binomial theorem (2.12) with x = −1 and from (3.14) and
(3.15), we get the following theorem. We note here that this result was
already shown in [3]. See also Theorem 6.21 in [14].

Theorem 3.4.

(3.16) |O+(2n, q)| = 2qn
2−n(qn − 1)

n−1∏

j=1

(q2j − 1).
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P r o o f.

|O+(2n, q)| = q(
n
2)gn

n∑
r=0

[
n
r

]

q

q(
r
2) = q(

n
2)gn(−1; q)n

= 2qn
2−n

n∏

j=1

(qj − 1)
n−1∏

j=1

(qj + 1)

= 2qn
2−n(qn − 1)

n−1∏

j=1

(q2j − 1).

4. SO+(2n, q) case. In this section, we will consider the sum in (1.1)
∑

g∈SO+(2n,q)

λ(tr g)

for any nontrivial additive character λ of Fq and find an explicit expression
for this by using the decomposition in (3.7).

The sum in (1.1) can be written, using (3.7), as

(4.1)
∑

0≤r≤n
r even

|Ar\P |
∑

g∈P
λ(tr gσr),

where P = P (2n, q), Ar = Ar(q) is as in (3.5), and σr is as in (3.1).
Here one has to note that, for each h ∈ P ,

∑

g∈P
λ(tr gσrh) =

∑

g∈P
λ(trhgσr) =

∑

g∈P
λ(tr gσr).

Write g ∈ P as in (3.9) with A, tA−1, B as in (3.10). Then gσr is



M A12

∗
N A22

0 E12

∗
0 E22



,

where M = A11B11 − A12
tB12, N = A21B11 − A22

tB12. So, for any r (0 ≤
r ≤ n),

(4.2)
∑

g∈P
λ(tr gσr) =

∑

A,B

λ(trA11B11 − trA12
tB12 + trA22 + trE22).

For each fixed A, the subsum over B in (4.2) is

(4.3)
∑

B

λ(trA11B11 − trA12
tB12),
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where the sum is over all B11,B12,B22 satisfying tB11 = −B11, tB22 = −B22.
Since the summand is independent of B22, it equals

(4.4) q(
n−r

2 )
∑

B11

λ(trA11B11)
∑

B12

λ(− trA12
tB12).

The sum over B12 in (4.4) is nonzero if and only if A12 = 0, in which case
it is qr(n−r). On the other hand, we claim that the sum over B11 in (4.4) is

nonzero if and only if A11 is symmetric, in which case it is q(
r
2). To see this,

we let A11 = (αij), B11 = (βij). Then, since tB11 = −B11,

trA11B11 =
r∑

i,j=1

αijβji =
∑

1≤i<j≤r
(αji − αij)βij .

Thus the sum over B11 in (4.4) is nonzero if and only if αij = αji for

1 ≤ i < j ≤ r, i.e., A11 is symmetric. Further, it is q(
r
2) in that case.

In summary, we have shown that the sum in (4.3) is nonzero if and only
if

A =
[
A11 0
A21 A22

]

with A11 nonsingular symmetric, in which case it equals

q(
n−r

2 )+(r2)+r(n−r) = q(
n
2).

For such an A, [
E11 E12

E21 E22

]
=
[
tA−1

11 ∗
0 tA−1

22

]
,

and hence the sum in (4.2) is

q(
n
2)

∑

A11,A21

∑

A22

λ(trA22 + trA−1
22 ) = q(

n
2)+r(n−r)srKGL(n−r,q)(λ; 1, 1),

where sr denotes the number of r × r nonsingular symmetric matrices for
r ≥ 1 (also we agree that sr = 1 for r = 0) and in [11], for a, b ∈ Fq,
KGL(t,q)(λ; a, b) is defined as

(4.5) KGL(t,q)(λ; a, b) =
∑

g∈GL(t,q)

λ(a tr g + b tr g−1).

Putting everything together, the sum in (4.1) can now be written as

(4.6) q(
n
2)

∑

0≤r≤n
r even

|Ar\P |qr(n−r)srKGL(n−r,q)(λ; 1, 1).

The next proposition was shown in [2]. See also the elegant proof in [13].
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Proposition 4.1. For each positive integer r, let sr denote the number
of all r × r nonsingular symmetric matrices over Fq. Then

(4.7) sr =





qr(r+2)/4
r/2∏

i=1

(q2i−1 − 1) if r is even,

q(r2−1)/4
(r+1)/2∏

i=1

(q2i−1 − 1) if r is odd .

An explicit expression for (4.5) was obtained in [11].

Theorem 4.2. For integers t ≥ 1 and nonzero elements a, b of Fq, the
Kloosterman sum KGL(t,q)(λ; a, b) is given by

(4.8) KGL(t,q)(λ; a, b)

= q(t−2)(t+1)/2
[(t+2)/2]∑

l=1

qlK(λ; a, b)t+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1),

where K(λ; a, b) is the usual Kloosterman sum in (2.7) and the inner sum
is over all integers j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ t− 1, 2l − 5 ≤ j2 ≤
j1− 2, . . . , 1 ≤ jl−1 ≤ jl−2− 2. Here we adopt the convention that the inner
sum in (4.8) is 1 for l = 1, and that j0 = t+ 1 for l = 2.

From (4.6), (3.13), (4.7), (4.8) and replacing r by 2r, we get the following
theorem.

Theorem 4.3. For any nontrivial additive character λ of Fq, the Gauss
sum over SO+(2n, q)

∑

g∈SO+(2n,q)

λ(tr g)

is given by

(4.9) qn
2−n−1

[n/2]∑
r=0

qr(r+1)
[
n
2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1),

where K(λ; 1, 1) is the usual Kloosterman sum as in (2.7) and the innermost
sum is over all integers j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ n − 2r − 1,
2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2.
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R e m a r k. Comparing the expression of the Gauss sum over SO+(2n, q)
in the above theorem and that over Sp(2n, q) in [11], we see that

∑

g∈SO+(2n,q)

λ(tr g) = q−n
∑

g∈Sp(2n,q)

λ(tr g).

5. O+(2n, q) case. Let χ be a multiplicative character of Fq, and let λ
be a nontrivial additive character of Fq. We will consider the sum in (1.2)

∑

g∈O+(2n,q)

χ(det g)λ(tr g)

and find an explicit expression for it.
From the decompositions in (3.7) and (3.8), the sum in (1.2) is∑
g∈SO+(2n,q) λ(tr g) plus

(5.1) χ(−1)
∑

0≤r≤n
r odd

|Ar\P |
∑

g∈P
λ(tr gσr).

Glancing through the argument in Section 4, we see that (5.1) equals

(5.2) χ(−1)q(
n
2)

∑

0≤r≤n
r odd

|Ar\P |qr(n−r)srKGL(n−r,q)(λ; 1, 1).

Using (3.13), (4.7), (4.8) and replacing r by 2r + 1, one gets an explicit
expression for (5.2). This expression combined with that in (4.9) yields:

Theorem 5.1. For any multiplicative character χ of Fq and any non-
trivial additive character λ of Fq, the Gauss sum over O+(2n, q)

∑

g∈O+(2n,q)

χ(det g)λ(tr g)

is given by

qn
2−n−1

{ [n/2]∑
r=0

qr(r+1)
[
n
2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

+ χ(−1)
[(n−1)/2]∑
r=0

qr(r+1)
[

n
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
,
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where K(λ; 1, 1) is the usual Kloosterman sum as in (2.7), and the first
and second unspecified sums are respectively over all integers j1, . . . , jl−1

satisfying 2l−3 ≤ j1 ≤ n−2r−1, 2l−5 ≤ j2 ≤ j1−2, . . . , 1 ≤ jl−1 ≤ jl−2−2
and over the same set of integers satisfying 2l − 3 ≤ j1 ≤ n − 2r − 2,
2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2.

6. Application to Hodges’ Kloosterman sum. In [5], the generalized
Kloosterman sum over nonsingular symmetric matrices is defined, for t× t
symmetric matrices A, B over Fq, as

(6.1) Ksym,t(A,B) =
∑
g

λ1(tr(Ag +Bg−1)),

where g runs over the set of all nonsingular symmetric matrices over Fq of
size t.

Unlike his other papers [6]–[8], Hodges neglected to mention an impor-
tant special case of the main theorem in [5]. Namely, if m = t and U is a
nonsingular matrix in the main theorem of [5], then s1 = s2 = 0.

Now, we take m = t = 2n, A = B = J+ in (2.3), U = a
2 12n with

0 6= a ∈ Fq, in the main theorem of [5]. Then we have the identity

(6.2)
∑

g∈O+(2n,q)

λa(tr g) = q−nKsym,2n

(
a2

4
(J+)−1, J+

)
,

where λa is as in (2.1).
We summarize this as the following theorem.

Theorem 6.1. For 0 6= a ∈ Fq, we have the identity

∑

g∈O+(2n,q)

λa(tr g) = q−nKsym,2n

(
a2

4
(J+)−1, J+

)
(6.3)

= q−nKsym,2n

(
a2

4
C−1, C

)
,

where λa is as in (2.1) and C is any nonsingular symmetric matrix over Fq
of size 2n with C ∼ J+ (cf. (2.3)).

R e m a r k. The second identity in (6.3) is clear from the definition of the
Kloosterman sum in (6.1).

Combining Theorem 5.1 and Theorem 6.1, we get the following.

Theorem 6.2. Let 0 6= a ∈ Fq, and let C be any nonsingular symmetric
matrix over Fq of size 2n with C ∼ J+ (cf. (2.3)). Then the generalized
Kloosterman sum below over nonsingular symmetric matrices is the same
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for any such C, and

(6.4) Ksym,2n

(
a2

4
C−1, C

)

= qn
2−1
{ [n/2]∑

r=0

qr(r+1)
[
n
2r

]

q

r∏

j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λa; 1, 1)n−2r+2−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)

+
[(n−1)/2]∑
r=0

qr(r+1)
[

n
2r + 1

]

q

r+1∏

j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λa; 1, 1)n−2r+1−2l
∑

(qj1 − 1) . . . (qjl−1 − 1)
}
,

where K(λa; 1, 1) is the Kloosterman sum as in (2.7), the first unspecified
sum in (6.4) is over all integers j1, . . . , jl−1 satisfying 2l−3 ≤ j1 ≤ n−2r−1,
2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2 and the second one in (6.4) is
over all integers j1, . . . , jl−1 satisfying 2l − 3 ≤ j1 ≤ n − 2r − 2, 2l − 5 ≤
j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2.
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