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1. Introduction. An old problem of Erdős and Heilbronn (see [5]) has
been to prove the existence of a constant c such that every subset S of an
abelian group G with |S| ≥ c|G|1/2 contains a nonempty subset summing to
0. They also conjectured that the above statement holds for c = 2. It was
later stipulated by Erdős [3] that the result holds with c =

√
2. A slightly

more precise conjecture when G is of prime order is attributed to Selfridge [4,
p. 95].

The existence of c was first proved by Szemerédi [10] . The validity of the
above conjecture with c = 2 in the case when G is a group of prime order
follows using a more general result by Olson [7]. The validity of the above
conjecture with c = 3 in the case of an arbitrary finite group was obtained
later [8].

In this paper we further reduce the constant c and get arbitrarily close
to c =

√
2 in the following sense. We prove that, when G is of prime order,

any subset S of G such that |S| ≥ √2|G|1/2 + 5 ln |G| contains a nonempty
subset summing to zero (Theorem 3.3). When G is an arbitrary abelian
group, we prove that any subset S of G such that |S| ≥ √2|G|1/2 + ε(|G|)
contains a nonempty subset summing to zero, where ε(n) = O(n1/3 lnn)
(Theorem 4.5).

2. Notation and preliminaries. Let G be a finite abelian group. For
S ⊂ G, denote by Σ(S) the set of sums of distinct elements of S,

Σ(S) =
{∑

t∈T
t : T ⊂ S

}
,

and

Σ?(S) =
{∑

t∈T
t : T ⊂ S, T 6= ∅

}
.

Denote by 〈X〉 the subgroup of G generated by X. For X ⊂ G such that
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0 6∈ X and X ∪ {0} 6= 〈X〉, define

κ(X) = min
M
|(X +M) \M |

where M ranges over all nonempty subsets of 〈X〉 such that M ∪(X+M) 6=
〈X〉.

We shall make use of the following three classical addition theorems.

Theorem 2.1 (Cauchy–Davenport [1, 2]). Let A and B be nonempty
subsets of Z/pZ. Then

|A+B| ≥ min(p, |A|+ |B| − 1).

Theorem 2.2 (Kneser [6]). Let M and N be finite nonempty subsets of
an abelian group G. There exists a subgroup H of G such that

M +N +H = M +N and |M +N | ≥ |M +H|+ |N +H| − |H|.
Theorem 2.3 (Scherk [9]). Let A and B be nonempty subsets of a finite

abelian group G such that A ∩ (−B) = {0}. Then

|A+B| ≥ |A|+ |B| − 1.

We shall use the following three theorems of Olson:

Theorem 2.4 [7]. Let S ⊂ Z/pZ. Suppose S ∩ (−S) = ∅. Then

|Σ(S)| ≥ min
(
p+ 3

2
,
|S|(|S|+ 1)

2

)
.

Theorem 2.5 [8]. Let G be an abelian group and let S ⊂ G. If |S| ≥
3
√
|G|, then 0 ∈ Σ?(S).

Theorem 2.6 [7]. Let G be a finite group of prime order p. Let S ⊂ G.
If |S| > √4p− 3, then 0 ∈ Σ?(S).

We shall make heavy use of an averaging technique introduced by Erdős
and Heilbronn and developed by Olson. For B ⊂ G and x ∈ G, define

λB(x) = |(B + x) ∩B|.
For any B, x, y we have (see [7])

(1) λB(x) = λB(−x)

and

(2) λB(x+ y) ≤ λB(x) + λB(y).

Lemma 2.7 (Olson). Let A and B be subsets of G such that 0 6∈ A. Let
a = |A| and b = |B|. Suppose that a ≥ 2b− 1. Then

(3)
∑

x∈A
λB(x) ≥ b2
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and

(4) ∃x ∈ A λB(x) ≥ (b+ 1)/2.

The following lemma is essentially in [7]. We give here a slightly modified
version.

Lemma 2.8. Let A and B be subsets of G such that 0 6∈ A. Let S ⊂ A
be such that S ∪ (−S) = A ∪ (−A). Put a = |A| and b = |B|. Suppose that
a < 2b− 1, and let κ = κ(A). Suppose that |〈A〉| ≥ 2b. Then

(5) ∃x ∈ S λB(x) ≥ (κ/2)
(

4b
4b+ κ

)2

.

P r o o f. Define Am = (A ∪ (A + A) ∪ . . . ∪mA) \ {0}. Let m and r be
such that 2b − 1 = mκ + r, with 0 ≤ r < κ. Note that, since κ ≤ a, Am+1

must have at least 2b elements. Throw away elements of mA, and if need be
of (m−1)A, and so on to obtain a set A′ ⊂ Am+1 with exactly |A′| = 2b−1
elements. Put α = maxx∈S λB(x). Notice that, because of (1), λB(x) ≤ α,
for every x ∈ A.

Using (2), we obtain
∑

x∈A′
λB(x) ≤ ακ+ 2ακ+ . . .+mακ+ (m+ 1)rα.

Hence, applying (3), we have

b2 ≤ α
(
m(m+ 1)

2
κ+ (m+ 1)r

)
,

2b2 ≤ α(m+ 1)(2b− 1 + r),

hence, writing (m+ 1)κ = mκ+ r + κ− r = 2b− 1 + κ− r, we get

2b2κ ≤ α(2b− 1 + κ− r)(2b− 1 + r)

and minimizing

α ≥ κ 2b2

(2b− 1 + u)(2b− 1 + v)
for u ≥ 0, v ≥ 0, u+ v = κ, we obtain

α ≥ κ 2b2

(2b+ κ/2)(2b− 1 + κ/2)
,

hence the result.

The following lemma is an application of Lemma 2.7.

Lemma 2.9. Let G be a finite abelian group. Let S ⊂ G be such that
S ∩ (−S) = ∅ and let k ≥ 2 be an integer such that |S| ≥ k+ log3/2 k. There
exists S0 ⊂ S such that |S \ S0| ≥ k and |Σ?(S0)| ≥ k.



146 Y. O. Hamidoune and G. Zémor

P r o o f. Prove by induction on v the existence of a set V ⊂ S such that
|V | = v and |Σ?(V )| ≥ min((3/2)v, k). This is clear for v = 2. Suppose V
exists for |V | = v. Let B = Σ?(V ), and suppose |B| ≤ k, otherwise there is
nothing to prove. Let A = (S \ V ) ∪ −(S \ V ), and note that 2|B| ≤ |A|.
Apply Lemma 2.7(4) to A and B to deduce that there exists x ∈ A such
that λ(x) ≥ |B|/2. Note that (1) implies that we may suppose x ∈ S \ V .
Now V ∪ {x} gives the result for v + 1. The lemma is proved by chosing for
S0 a set V with v = dlog3/2 ke.

3. The prime order case. In this section, we suppose G is a cyclic
group of prime order p. Let S ⊂ G, 0 6∈ S. The following lemma will be
crucial in the proof of Theorem 3.3.

Lemma 3.1. Let S ⊂ G be such that S ∩ (−S) = ∅. Let k ≥ 2 be an
integer such that |S| ≥ k + log3/2 k. Let m ≤ k. There exists T ⊂ S such
that |S \ T | = k −m, and

(6) |Σ?(T )| ≥ min
(
p+ 1

2
,

m∑

i=0

(k − i)− 9
4

m∑

i=1

k

i

)
.

P r o o f. Choose S0 as in Lemma 2.9 and let K = S\S0. We have k = |K|.
Let us prove by induction on m the existence of a set Mm ⊂ K such that
|Mm| = m and such that T = S0 ∪Mm satisfies

(7) |Σ?(T )| ≥ min
(
p+ 1

2
,

4
9

m∑

i=0

(k − i)
)

together with (6). The result holds clearly for m = 0, since |Σ?(S0)| ≥ k.
Assume it is proved for m.

Suppose m + 1 ≤ k. Let K ′ = K \Mm. Set A = K ′ ∪ (−K ′). We have
|A| = 2|K ′|. Set B = Σ?(Mm∪S0). Note that |A| < 2|B|−1, so that we can
apply Lemma 2.8 whenever |B| ≤ (p+1)/2. Choose x ∈ K ′ which maximizes
λB(x) among x ∈ K ′, and set Mm+1 = Mm ∪ {x}. Let δ = λB(x).

By the Cauchy–Davenport theorem we have

κ(A) = |A| = 2|K ′| = 2(k −m),

so that, by Lemma 2.8,

(8) δ ≥ |K ′|
(

2|B|
2|B|+ |K ′|

)2

.

Now (7) and (6) for m+ 1 will follow from

(9) Σ?(S0 ∪Mm+1) ≥ Σ?(S0 ∪Mm) + δ

with the induction hypothesis to evaluate Σ?(S0∪Mm) and (8) to evaluate δ.
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Since |B| > |K ′|, we deduce from (8) that δ > 4|K ′|/9. Hence, applying
(7) to Σ?(S0 ∪Mm), (9) gives

Σ?(S0 ∪Mm ∪ {x}) ≥ 4
9

m∑

i=0

(k − i) +
4
9

(k −m) >
4
9

m+1∑

i=0

(k − i),

which gives (7) for m+ 1.
Now (8) gives

δ ≥ |K ′|
(

1− |K ′|
2|B|+ |K ′|

)2

≥ |K ′|
(

1− |K
′|

|B|
)
.

By applying (7) to |B| we get

δ ≥ k −m− 9
4
· (k −m)2
∑m
i=0(k − i) ≥ k −m−

9
4
· (k −m)2

m(k −m)
≥ k −m− 9

4
· k
m
.

Hence, (9) gives (6) for m+ 1.

Corollary 3.2. Let S ⊂ G be such that S∩(−S) = ∅. Let k be a positive
integer such that |S| ≥ k + log3/2 k. Then

|Σ?(S)| ≥ min
(
p,
k(k + 1)

2
− 9

4
k(1 + ln k)

)
.

P r o o f. 1. If
k∑

i=0

(k − i)− 9
4

k∑

i=1

k

i
≤ p+ 1

2

then apply Lemma 3.1 with m = k, and bound
∑k
i=1 1/i from above by

1 + ln k to obtain the result.
2. If not, then let m ≤ k be the smallest integer satisfying

m∑

i=0

(k − i)− 9
4

m∑

i=1

k

i
>
p+ 1

2
.

Choose T as in Lemma 3.1, and note that we have

|Σ?(T )| ≥
m−1∑

i=0

(k − i)− 9
4

m−1∑

i=1

k

i
.

Note that Σ?(S) ⊃ Σ?(T )+Σ(S\T ) and |S\T | = k−m. Apply Theorem 2.4
to |Σ(S \ T )| to obtain

|Σ(S \ T )| ≥ min
(
p+ 3

2
,

k∑

i=m

(k − i)
)
.
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The Cauchy–Davenport Theorem 2.1 applied to |Σ?(T ) +Σ(S \ T )| gives

|Σ?(S)| ≥
k∑

i=0

(k − i)− 9
4

k∑

i=1

k

i
,

hence the result.

Theorem 3.3. For any group G of prime order p, and for S ⊂ G,

|S| ≥
√

2p+ 5 ln p implies 0 ∈ Σ?(S).

P r o o f. Suppose the result does not hold. Then we must have S ∩ (−S)
= ∅, if not, 0 ∈ Σ?(S) trivially. Let s = |S|. Let k = s − dlog3/2 se. Corol-
lary 3.2 yields a contradiction provided we check that

(10)
k(k + 1)

2
− 9

4
k(1 + ln k) ≥ p.

To check (10), note that one may suppose p ≥ 1000, because otherwise
Theorem 2.6 implies the result. Similarly, we may suppose s < 2

√
p. Hence

k ≥ s − log3/2(2
√
p) − 1 ≥ √2p + 3 ln p. Using this lower bound on k and

the upper bound ln k ≤ ln p it is a straightforward computation to obtain
(10).

4. The case of an arbitrary abelian group G. Let G be an ar-
bitrary abelian group with n elements. This section is devoted to proving
Theorem 4.5.

The proof shall follow similar lines to the case when G is of prime order,
but we need to accomodate several points. When switching to an arbitrary
abelian group, the proof of Theorem 3.3 fails essentially because of two
differences with the prime order case.

1. It is not necessarily true that 0 6∈ Σ?(S) implies S ∩ (−S) = ∅. And
more importantly, it is not necessarily true that κ(A) = |A| as in Lemma 3.1,
because the Cauchy–Davenport theorem does not hold any more.

2. The proof of Lemma 3.1 may fail because 〈A〉 6= G, so that Lemma 2.8
may not apply any more.

To deal with the first problem we shall use the following lemma.

Lemma 4.1. Let S ⊂ G be such that 0 6∈ Σ?(S) and |S| ≥ k + log2 n.

(i) There is a subset K ⊂ S such that |K| = k and K ∩ (−K) = ∅.
(ii) Let A = S ∪ (−S). Then

κ(A) ≥ 2k − 6
√
k.

P r o o f. To prove (i), notice that the set of elements x of G such that
x + x = 0 is a vector space over the field on two elements, and that its
dimension is at most log2 n. Hence the number of selfinverse elements of
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S must be smaller than log2 n, otherwise some nonempty subset of those
elements sums to zero.

(ii) Set Y = K ∪ (−K) and suppose first that Y ∪ {0} 6= 〈Y 〉; we intend
to show that κ(Y ) ≥ 2|K| − 6

√
|K|.

By definition of κ = κ(Y ), there exists M ⊂ 〈Y 〉 such that M ∪ (M +Y )
6= 〈Y 〉 and |(M + Y ) \M | = κ. Set N = Y ∪ {0}.

By Kneser’s Theorem 2.2 there is a subgroup H such that H+M +N =
M + N and κ = |(M + N) \M | ≥ |(N + H)| − |H| (observe that 0 ∈ N).
Clearly, we may suppose |H| ≥ 2, otherwise we have κ ≥ |Y | and the result
holds. We now claim |(H +N) \H| ≥ 2|H|. Otherwise N ⊂ H ∪ b+H, for
some b where 2b ∈ H. But this implies 〈Y 〉 = H ∪ b + H = H + N + M =
M ∪M +N , which contradicts the definition of M . It follows that

|H| ≤ κ/2 ≤ |Y |/2 = |K|.
Now we have, by Olson’s Theorem 2.5, |K ∩ H| ≤ 3

√
|H| ≤ 3

√
|K|.

Therefore |Y ∩H| ≤ 6
√
|K|. Now since κ = |(M+Y )\M | = |M+N |−|M | ≥

|N +H| − |H| ≥ |N \H|, it follows that

κ ≥ |N | − |N ∩H| ≥ |Y |+ 1− (|Y ∩H|+ 1) ≥ 2|K| − 6
√
|K|.

If Y ∪ {0} = 〈Y 〉, then argue as above after replacing K by K ∪ {x} for
some x ∈ S \K.

The following lemma replaces Lemma 3.1 in the prime order case.

Lemma 4.2. Let S ⊂ G be such that 0 6∈ Σ?(G). Let k, d, r and ∆ ≥
log2 n be nonnegative integers such that |S| ≥ ∆+ k+ r log3/2 k. Let m ≤ k
and suppose that any subset X ⊂ S with |X| ≥ ∆ is such that |〈X〉| ≥ n/d.
Then there exists T ⊂ S such that |S \T | ≥ ∆+k−m+ (r− 1) log3/2 k and

(11) |Σ?(T )| ≥ min
(
n

2d
,

m∑

i=0

(k − i− 4
√
k − i)− 3

m∑

i=1

k

i

)
.

P r o o f. The proof is basically the same as that of Lemma 3.1. Apply
Lemma 2.9 to obtain S0 such that |S \ S0| ≥ ∆ + (r − 1) log3/2 k + k and
|Σ?(S0)| > k. Let K = S \ S0 and, as in Lemma 3.1, prove by induction on
m the existence of Mm ⊂ K of size m such that T = S0 ∪Mm satisfies (11)
together with

(12) |Σ?(T )| ≥ min
(
n

2d
,

1
3

m∑

i=0

(k − i− 4
√
i)
)
.

Mimic the proof of Lemma 3.1. (12) is obtained by writing

δ ≥ κ(A)
2

(
2|B|

2|B|+ |K ′|
)2

≥ 4
9
· κ(A)

2
≥ 1

3
(k −m− 4

√
m),

the last inequality being given by Lemma 4.1.
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Then (11) is obtained by writing

δ ≥ κ(A)
2

(
1− κ(A)/2

|B|
)

and applying (12) to |B|, so that we get

δ ≥ k −m− 4
√
k −m− 3

(k −m− 4
√
k −m)2

∑m
i=0(k − i− 4

√
k − i)

≥ k −m− 4
√
k −m− 3

(k −m− 4
√
k −m)2

m(k −m− 4
√
k −m)

≥ k −m− 4
√
k −m− 3

k

m
.

Lemma 4.3. Let S ⊂ G be such that 0 6∈ Σ?(G). Let k, d and ∆ ≥ log2 n
be nonnegative integers such that |S| ≥ ∆+ k + 2d log3/2 k. Let m ≤ k and
j ≤ 2d. Suppose that any subset X ⊂ S with |X| ≥ ∆ is such that |〈X〉| ≥
n/d. Then there exists T ⊂ S such that |S\T | ≥ ∆+k−m+(2d−j) log3/2 k
and

|Σ?(T )| ≥ min
(
jn

2d
,

m∑

i=0

(k − i− 4
√
k − i)− 3jk(1 + ln k)

)
.

P r o o f. Use induction on j. The result holds for j = 1 by a direct
application of Lemma 4.2. Suppose the lemma holds for j < 2d, and let m
be given. Let m1 be the smallest integer such that

m1∑

i=0

(k − i− 4
√
k − i)− jk(1 + ln k) >

jn

2d
.

If m1 > m, there is nothing to prove. If not, then let T1 be such that
Σ?(T1) ≥ jn/(2d), and |S \ T1| ≥ ∆ + k − m1 + (2d − j) log3/2 k. Apply
Lemma 4.2 to obtain T2 ⊂ S \ T1 such that

|S \ (T1 ∪ T2)| ≥ ∆+ k −m+ (2d− j − 1) log3/2 k

and, using
∑s
i=1 1/i ≤ 1 + ln k,

|Σ?(T2)| ≥ min
(
n

2d
,

m∑

i=m1

(k − i− 4
√
k − i)− 3k(1 + ln k)

)
.

Let now A = {0} ∪Σ?(T1) and B = {0} ∪Σ?(T2). Since 0 6∈ Σ?(S), A and
B satisfy the hypothesis of Theorem 2.3, so that we obtain

|Σ?(T1 ∪ T2)| ≥ |(A+B) \ {0}| ≥ |Σ?(T1)|+ |Σ?(T2)|
and T = T1 ∪ T2 satisfies the conclusion of the lemma for j + 1.
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Corollary 4.4. Let S ⊂ G be such that 0 6∈ Σ?(G), and let k, d,
∆ ≥ log2 n be nonnegative integers such that |S| ≥ ∆ + k + 2d log3/2 k.
Suppose that any subset X ⊂ S with |X| ≥ ∆ is such that |〈X〉| ≥ n/d.
Then there exists T ⊂ S such that |S \ T | = ∆ and

(13) |Σ?(T )| ≥ min
(
n,

1
2
k(k + 1)− 3(k + 1)3/2 − 3dk(1 + ln k)

)
.

P r o o f. Apply Lemma 4.3 with j = 2d, and bound
∑k
i=1

√
i from above

by 2
3 (k + 1)3/2.

Theorem 4.5. There is a function ε(n) = O(n1/3 lnn) such that for any
subset S of any finite abelian group G of order n,

|S| >
√

2n+ ε(n) implies 0 ∈ Σ?(S).

P r o o f. Suppose S ⊂ G is such that 0 6∈ Σ?(G). Apply Corollary 4.4 to
obtain |Σ?(S)| ≥ n and hence a contradiction.

By Theorem 2.5, the hypothesis of Corollary 4.4 holds if

(14) |S| > 3

√
n

d
+ k + 2d log3/2 n.

We must choose k such that 1
2k(k + 1)− 3(k + 1)3/2 − 3dk(1 + ln k) > n.

Therefore, the desired contradiction is obtained when |S| satisfies (14),
together with

k >
√

2n
(

1 +
3

(2n)1/4
+

3d lnn√
2n

)
.

Choose d ∼ n1/3 to optimize.
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227–229.

Yahya Ould Hamidoune Gilles Zémor
E. Combinatoire, Case 189 Ecole Nationale Supérieure des Télécommunications
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4 Place Jussieu 46 rue Barrault
75005 Paris, France 75634 Paris 13, France
E-mail: yha@ccr.jussieu.fr E-mail: zemor@res.enst.fr

Received on 18.1.1996 (2915)


