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1. Introduction. Let F := (F1, . . . , Fk) : Cn → Ck be a polynomial
map with

degF2 ≥ degF3 ≥ . . . ≥ degFk ≥ degF1 > 0

and G a polynomial in n variables such that G|F−1(0) ≡ 0. The Hilbert
Nullstellensatz guarantees the existence of polynomials A1, . . . , Ak such that

(1.1) Gs = A1F1 + . . .+AkFk

where s is an integer ≥ 0. In the usual proofs of this result, one is not con-
cerned with estimates about the degree of the Aj ’s and the exponent s. This
question was considered by Brownawell [Br1] and later by N. Fitchas [Fi]
and Kollár [K]. Kollár got the best estimates under the technical hypothesis
degFj 6= 2 for j > 1. Namely, it is possible to solve (1.1) with the estimates

(1.2)





max(degAjFj) ≤ (1 + degG)
min(k,n)∏

j=1

degFj ,

s ≤
min(k,n)∏

j=1

degFj .

The result of Brownawell–Kollár is in fact a result about homogeneous ideals
which has also an interpretation in algebraic geometry. This was pointed out
by Brownawell [Br2] (see also [T]) as follows:

Let P1, . . . ,Pm be the isolated prime components of the homogeneous
ideal U := (hF1, . . . ,

hFk) where hF is the homogenized version of F . Then,
if degFi 6= 2 for i > 1, there exist integers e1, . . . , em (depending on the
decomposition of U) such that

(1.3)
m∑

i=1

ei ≤
min(k,n)∏

j=1

degFj , Pe11 ∩ . . . ∩ Pemm ⊂ U .

[165]
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If G ≡ 0 on F−1(0), then hG ∈ P1 ∩ . . . ∩ Pq, where P1, . . . ,Pq are the
isolated prime components which do not contain X0; it follows from (1.3)
that, if

s1 :=
q∑

i=1

ei, s2 :=
m∑

i=q+1

ei,

then
(hG)s1Xs2

0 ∈ (Pe11 ∩ . . . ∩ Peqq ) ∩ (Peq+1
q+1 ∩ . . . ∩ Pemm ) ⊂ U .

This implies, if one restricts the situation to X0 = 1,

(1.4)





Gs1 =
k∑

j=1

AjFj ,

degAjFj ≤ s1 degG+ s2 ≤ (s1 + s2) max(degG, 1)

≤ max(degG, 1)
min(k,n)∏

j=1

degFj .

Note that the value of the exponent s in (1.1) (namely s = s1 +s2) which
is provided that way depends on the decomposition of the homogeneous
ideal.

On the other hand, in the particular case where #F−1(0) <∞, there is
another version of the Nullstellensatz following the work of M. Noether. For
any α ∈ F−1(0), let

να(F ) := min{p ∈ N, (
√
F1Oα + . . .+ FkOα)p ⊂ F1Oα + . . .+ FkOα},

that is, the local Noether exponent of the map F at α. It is well known [GH]
that

να(F ) ≤ µα(F ) := dimC

( Oα
F1Oα + . . .+ FkOα

)
.

If G ≡ 0 on F−1(0), then

(1.5) Gν ∈ (F1, . . . , Fk)

where
ν := max

α∈F−1(0)
να(F ).

Nevertheless, this result, which provides an exponent

ν = max
α∈F−1(0)

να(F ) ≤ max
α∈F−1(0)

µα(F )

depending only on the ideal (F1, . . . , Fk), does not give any information on
the degree of the AjFj ’s where

(1.6) Gν =
k∑

j=1

AjFj .
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The main objective of this paper is, under the hypothesis #F−1(0) <∞, to
find some balance between good estimates for s (that is, estimates depending
on the affine situation and not on the projective one) as in (1.6) and good
control on the degree of the AjFj ’s such as in (1.4).

In order to do that, we consider two different approaches.

• The first one works only if k = n, #F−1(0) < ∞, and the map
(F1, . . . , Fn) is dominant (that is, [C(X1, . . . , Xn) : C(F1, . . . , Fn)] < ∞,
or also F1, . . . , Fn are algebraically independent over C). It uses essentially
two ingredients.

Primo, some variants (which will be detailed in Section 2) of the fact
that for any G ∈ C[X], the map

RF,G:w 7→
[

GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

(where [ ] denotes the total sum of residues in the sense of Grothendieck)
is a rational map.

Secondo, some very classical combinatory argument due to Perron [Pe],
and which is also a basic tool in the work of Jelonek, Płoski and P. Cassou-
Noguès ([Je], [CN], [CNPł], [Pł1], [Pł2]). This first approach allows us to
deal with three particular situations:

(a) (F1, . . . , Fn) is a proper map;
(b) (F1, . . . , Fn) is a proper map over the origin;
(c) (F1, . . . , Fn) satisfies some “separation condition” (as in [PłT]) over

the origin.

(a) In case (a), RF,G is in fact a polynomial, with degree controled by
the Łojasiewicz exponent δ > 0 of the map (F1, . . . , Fn), defined as

δ := min{r > 0 : lim inf
‖ζ‖→∞

‖F (ζ)‖/‖ζ‖r} > 0.

There are in this subcase two different results; either one can profit from the
knowledge of δ and get, using the Cauchy–Weil formula, that if G|F−1(0) ≡
0, then, if D := max1≤j≤n(degFj), ν := maxα∈F−1(0) να(F ),

(1.7)





Gν =
k∑

j=1

AjFj ,

degAjFj ≤ D
(

E
(

2
δ

( n∑

j=1

degFj + ν degG
))
− n

)

(where E(·) denotes the integral part); or one can essentially reinterpret
some algebraic method (already introduced in [CN], [CNPł]), which gives,
for some s ≤ d (where d is the geometric affine degree d := [C(X1, . . . , Xn) :
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C(F1, . . . , Fn)] of the map F ),

(1.8) Gs =
n∑

j=1

AjFj , degAjFj ≤ degG
n∏

j=1

degFj .

Such estimates were obtained by P. Cassou-Noguès in [CN]. One can com-
pare these estimates with (1.7) only if one has some estimate from below
for the Łojasiewicz exponent.

(b) In case (b), the method that leads to (1.8) works exactly the same
and provides exactly the same result (already obtained in [CNPł]). The
main difference with [CNPł] is that here we can extend the method to some
particular situation when the map is not proper at the origin, namely in
case (c).

(c) In this case, if G|F−1(0) ≡ 0, then, for some s ≤ d (d being again
the geometric degree of F ),

(1.9) Gs =
n∑

j=1

AjFj , degAjFj ≤ n(degG+ 1)(degF1 · . . . · degFn + d).

• The second approach works in the general case where #F−1(0) <∞,
but it profits from the knowledge of the Łojasiewicz exponent q at infinity
of the map (F1, . . . , Fk); since the case of proper maps has already been
treated, this approach is interesting in the case when q ≤ 0. Note that, from
Brownawell [Br1], we know that

q ≥ 1− (n− 1)
min(k,n)∏

j=1

degFj .

One just interprets the condition

(1.10) ‖F (ζ)‖ ≥ κ‖ζ‖q, ‖ζ‖ � 1,

as a condition on the map (hF1, . . . ,
hFk) on the unit sphere S2n+1. The key

algebraic ingredient is the Briançon–Skoda theorem about integral closures
of ideals ([BS], [LT]); if G|F−1(0) ≡ 0, then

(1.11) Gγν =
k∑

j=1

AjFj , degAjFj ≤ γ(ν degG+D + max(−q, 0)),

with

γ := min(n+ 1, k), ν := max
α∈F−1(0)

να(F ), D := max
1≤j≤k

(degFj).

Moreover, this result can be improved if one assumes that the maximal ideal
(X0, . . . , Xn) is not an embedded prime component in the decomposition of
(hF1, . . . ,

hFk) (or the depth of hF1n+1O0 + . . . + hFk n+1O0 is ≥ 2); in this
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case, if G|F−1(0) ≡ 0, then

(1.12) Gν =
k∑

j=1

AjFj , degAjFj ≤ ν degG+ n[D + max(−q, 0)].

Note that such results englobe the result obtained in [CNPł] for “stably
inconsistent maps” in the sense of [Fi] (#{F−1(w)} = 0 for ‖w‖ � 1).

In order to be able to compare the different versions of the Nullstellensatz
which we propose here, it is of course necessary to remark that estimates
(1.7), (1.11), (1.12) have the advantage of being much more precise than
(1.8) or (1.9), but need some a priori information about the Łojasiewicz
exponent (δ in the proper case, q in the general case). Note that, if the map
(F1, . . . , Fn) is proper at 0, and if G|F−1(0) ≡ 0, then one has from (1.11),

(1.13) G(n+1)ν =
n∑

j=1

AjFj , degAjFj ≤ (n+ 1)(ν degG+D),

which seems clearly in general better than estimates (1.8); this shows the
real power of the Briançon–Skoda theorem. We will see that, though the
first approach does not seem to lead to such estimates, it has the advan-
tage of being completely constructive (in terms of computations of total
sums of residues). Another interesting remark is that the methods in Sec-
tion 3 provide some effective Nullstellensätze independently of the results of
Brownawell. Such methods could be a starting point to get some complete
analytic proof of the Brownawell–Kollár results. Note also that all the re-
sults here have been obtained in the case when the zero set of the entries
is discrete. This is a rather good situation for effectivity problems, since
one knows in this particular case that the Buchberger algorithm (to get a
standard basis for the ideal) runs in subexponential time (see [CoS]). The
search for estimates depending on the affine degree instead of the projective
one in such effectivity problems, dealing with the non-discrete situation, has
recently been investigated in [HGi].

Ackowledgements. Part of this work was inspired by discussions with
A. Płoski and by a lecture he gave in Bordeaux as an invited Professor
in March 1995. We also would like to thank Pierrette Cassou-Noguès who
suggested in [CN] this kind of problems in relation with [BGVY]. This paper
was written while the third author was invited to the University of Calabria;
he would like to take here the opportunity to thank warmly this institution.

2. Newton sums and total sums of residues. Let f = (f1, . . . , fn)
be a polynomial map from Cn to Cn such that #f−1(0) < ∞. For any
r ∈ C(X1, . . . , Xn) with no poles on V = f−1(0), one can define the total
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sum of residues of r with respect to f as

(2.1)
[
rdX1 ∧ . . . ∧ dXn

f1, . . . , fn

]
:= lim

ε→0

(−1)n(n−1)/2(n− 1)!
(2iπ)n

×
∑

α∈V

\
‖ζ−α‖=ε

∑n
j=1(−1)j−1fj(ζ)

∧
l 6=j dfl(ζ) ∧ r(ζ)dζ

‖f(ζ)‖2n .

If r, f1, . . . , fn belong respectively to F(X1, . . . , Xn), F[X1, . . . , Xn], where
F is a subfield of C, then the total sum of residues of r with respect to f is
also in F. If J(f) denotes the Jacobian of the map (f1, . . . , fn), then

(2.2)
[
rJ(f)dX1 ∧ . . . ∧ dXn

f1, . . . , fn

]
=
∑

α∈V
µf (α)r(α)

where µf (α) is the local multiplicity of the map f at α. In particular,
[
rJ(f)dX1 ∧ . . . ∧ dXn

f1, . . . , fn

]

can be interpreted as the trace of the multiplication operator

r : C[X]/(f1, . . . , fn)→ C[X]/(f1, . . . , fn)

defined (if r = r1/r2), as r = r1 · r−1
2 , where

r1 : g 7→ gr1, r2 : g 7→ gr2.

Moreover, if

d := dimCC[X]/(f1, . . . , fn),

then the symmetric functions of the collection {r(α) : α ∈ V }, σ1, . . . , σd,
can be computed in terms of the Newton sums S1, . . . , Sd of these numbers,
namely

(2.3) Sj =
[
rjJ(f)dX1 ∧ . . . ∧ dXn

f1, . . . , fn

]
.

Then, the characteristic polynomial of the multiplication operator r,

Xd − σ1X
d−1 + . . .+ (−1)dσd

can be expressed in terms of total sums of residues modulo the Newton
relations.

Let now F = (F1, . . . , Fn) be a dominant polynomial map from Cn to
Cn, i.e. a polynomial map such that [C(X1, . . . , Xn) : C(F1, . . . , Fn)] < ∞.
We have the following:

Lemma 2.1. There exists some algebraic hypersurface Σ in Cn such that ,
for any w ∈ Cn \ Σ, #{ζ : Fj(ζ) = wj , j = 1, . . . , n} < ∞ and , for any
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G ∈ C[X1, . . . , Xn], there exists RF,G ∈ C(X1, . . . , Xn), with poles on Σ,
such that , for any w ∈ Cn \Σ,

[
GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
= RF,G(w).

P r o o f. For any j ∈ {1, . . . , n}, there are Nj ∈ N∗ and Aj,0, . . . , Aj,Nj ∈
C[X1, . . . , Xn] such that

(2.4) Aj,0(F )XNj
j +Aj,1(F )XNj−1

j + . . .+Aj,Nj (F ) ≡ 0

(since [C(X1, . . . , Xn) : C(F1, . . . , Fn)] < ∞). For such j, one can rewrite
(2.4) as

(2.5)
Nj∑

k=0

Aj,k(w)XNj−k
j =

n∑

k=1

(Fk − wk)Qj,k(F,w)

where Qj,k, k = 1, . . . , n, is in C[X1, . . . , Xn, Y1, . . . , Yn]. This can be done
for each j ∈ {1, . . . , n}. For any w ∈ Cn \ {∏n

j=1Aj,0(w) = 0}, one has
#{Fj = wj : j = 1, . . . , n} <∞. For such w,

(2.6)
[

GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

=




Gdet[Qj,k] 1≤j≤n
1≤k≤n

(F,w)dX1 ∧ . . . ∧ dXn

N1∑

k=0

A1,k(w)XN1−k
1 , . . . ,

Nn∑

k=0

An,k(w)XNn−k
n


 .

This follows from the transformation law for total sums of residues (see
[Aiz]). On the other hand, for any (α1, . . . , αn) ∈ Nn,

(2.7)




Xα1
1 · . . . ·Xαn

n dX1 ∧ . . . ∧ dXn
N1∑

k=0

A1,k(w)XN1−k
1 , . . . ,

Nn∑

k=0

An,k(w)XNn−k
n




=
n∏

j=1




XαjdX
Nj∑

k=0

Aj,k(w)XNj−k


 .

It is well known that the expression (2.7) is a rational function of w, with
denominator

n∏

j=1

(Aj,0(w))1+max(αj−Nj+1,0).

This implies that (2.6) equals RF,G, where RF,G is a rational function of w
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with denominator ( n∏

j=1

Aj,0(w)
)n+degG

.

This completes the proof of Lemma 2.1. Note that such a lemma was
proved in [Bie1] using a completely different method.

When F = (F1, . . . , Fn) is a proper map then, for anyG ∈ C[X1, . . . , Xn],
RF,G is a polynomial (since the Aj,0 in (2.4) can be taken as equal to 1).
We have in fact in this case the following more precise result:

Lemma 2.2. Let F = (F1, . . . , Fn) be a polynomial proper map from Cn
to Cn with Łojasiewicz exponent δ > 0. Then, for any G ∈ C[X1, . . . , Xn],
the map

w 7→
[

GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

is a polynomial map from Cn to Cn with degree at most :

E
(

1
δ

(
degG+ max

k

(∑

j 6=k
degFj

)
+ n

))
− 2n+ 1.

P r o o f. When F = (F1, . . . , Fn) is a proper map, one has ‖F (ζ)‖ ≥ η > 0
for ‖ζ‖ ≥ R. Therefore, it follows from the Bochner–Martinelli formula in
its general form (see [Aiz] or [BGVY]) that, for ‖w‖ � 1,

(2.8)
[

GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

=
(−1)n(n−1)/2(n− 1)!

(2iπ)n

\
‖ζ‖=R

G(ζ)(
∑n
j=1(−1)j−1Fj(ζ)

∧
k 6=j dFk(ζ)) ∧ dζ

(
∑n
j=1 Fj(ζ)(Fj(ζ)− wj))n

=
∑

m∈Nn
τn,m(R)

n∏

j=1

w
mj
j

where, for any m = (m1, . . . ,mn) ∈ Nn, |m| = m1 + . . .+mn and

τn,m(R) =
(−1)n(n−1)/2(n+ |m| − 1)!

(2iπ)n

×
\

‖ζ‖=R

G
∏n
j=1 F

mj
j (
∑n
j=1(−1)j−1F j

∧
k 6=j dF k) ∧ dζ

‖F‖2(n+|m|) .

Since ‖F (ζ)‖ ≥ γ‖ζ‖δ for ‖ζ‖ � 1, the Stokes formula and standard
estimates show that\
‖ζ‖=R

G
∏n
j=1 F

mj
j (
∑m
j=1(−1)j−1F j

∧
k 6=j dF k) ∧ dζ

‖F‖2(n+|m|) = lim
R→∞

\
‖ζ‖=R

(·) = 0
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if

δ(n+ |m|) > degG+ max
k

(∑

j 6=k
degFj

)
− (n− 1)δ + n.

This implies that (2.8) is a polynomial identity which is valid everywhere.

R e m a r k. Note that this result (which already appeared in [BY1],
[BY2] or [BGVY], Section 4) was also obtained by G. Biernat in [Bie1]
using a different argument (in particular, the estimate for degFG we give
here does not follow from such an argument). This was pointed out to us by
M. Elkadi.

When F = (F1, . . . , Fn) is a polynomial map proper at the origin (that
is, A0,1, . . . , A0,n in (2.4) can be taken such that A0,1(0) · . . . ·A0,n(0) 6= 0),
one has:

Lemma 2.3. Let F = (F1, . . . , Fn) be a proper map at the origin; then
there exists an algebraic hypersurface Σ in Cn with 0 6∈ Σ such that for
any w ∈ Cn \ Σ, #{ζ : Fj(ζ) = wj , j = 1, . . . , n} is finite and , for any
G ∈ C[X1, . . . , Xn], there exists a rational function RF,G in n variables with
no poles at the origin such that , for w 6∈ Σ,

[
GdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
= RF,G(w).

P r o o f. This follows from formulas (2.6) and (2.7) and from the fact that
a denominator for RF,G in Lemma 2.1 is

( n∏

j=1

Aj,0(w)
)n+degG

.

When F is just dominant, few things can be said about the rational
function RF,G. Nevertheless, there are two interesting situations that will
be discussed later.

Definition 2.1. Let F = (F1, . . . , Fn) be a dominant polynomial map
from Cn to Cn. The map F satisfies the separation condition over the origin
if and only if there are constants c > 0, 0 < K1,j < K2,j <∞, j = 1, . . . , n,
such that for any j ∈ {1, . . . , n},
(2.9) ‖w‖ ≤ c and F (ζ) = w ⇒ |ζj | ≤ K1,j or |ζj | ≥ K2,j .

Example. Suppose the map F = (F1, . . . , Fn) is commode in the sense
of Płoski (see for example [PłT]), that is, there are q, κ,K > 0 such that for
any j ∈ {1, . . . , n}, either |ζj | ≤ K or ‖F (ζ)‖ ≥ κ|ζj |−q. Then the map F
satisfies the separation condition over the origin. This is immediate to check:
if F (ζ) = w, w ∈ (Cn)∗, one has, for any j ∈ {1, . . . , n}, either |ζj | ≤ K or
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|ζj | ≥ (κ/‖w‖)1/q; for w ∈ (Cn)∗, ‖w‖ � 1, we have, for any j ∈ {1, . . . , n},
(2.10) F (ζ) = w ⇒ |ζj | ≤ K or |ζj | ≥ K + 1.

One can take K large enough so that (2.10) remains valid when w = 0. So
that (2.9) is fulfilled with K1,j = K, j = 1, . . . , n, K2,j = K+1, j = 1, . . . , n.

R e m a r k. Note that the separation condition over the origin implies
that the fiber F−1(w) remains discrete when ‖w‖ � 1. This follows from the
maximum principle: let Γ be an irreducible branch with positive dimension
of the fiber F−1(w), where ‖w‖ � c. Then, on Γ , the function

ζ 7→ 1
((K1,j +K2,j)/2)− ζj

is a bounded holomorphic function, therefore a constant, which is a contra-
diction (since this is true for any j ∈ {1, . . . , n}).

Under such a separation condition, we have the following lemma.

Lemma 2.4. Let F = (F1, . . . , Fn) be a dominant polynomial map from
Cn to Cn which satisfies the separation condition over the origin (with con-
stants c,K1,j , K2,j , j = 1, . . . , n). Let J be the Jacobian of F . There exists
some algebraic hypersurface Σ in Cn such that for any w 6∈ Σ, the variety
F−1(w) is discrete, the polynomial

∏n
j=1(((K1,j +K2,j)/2)−Xj) does not

vanish on it , and for any G ∈ C[X1, . . . , Xn], for any w outside Σ,



(
GJ /

n∏

j=1

(
K1,j +K2,j

2
−Xj

)degG)
dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn


 = R̃F,G(w),

where R̃F,G is a rational function with no poles at the origin.

P r o o f. Let

d = deg(F1, . . . , Fn) = dimC(w)

(
C(w)[X1, . . . , Xn]

F1 − w1, . . . , Fn − wn

)
.

If

H(X) :=
n∏

j=1

(
K1,j +K2,j

2
−Xj

)
,

then for ‖w‖ ≤ c, H does not vanish on the set F−1(w). For w outside some
algebraic hypersurface, the fiber F−1(w) is discrete and the polynomial H
does not vanish on it (this is just classical elimination theory). We can in
fact be more precise: there are polynomials θ1, . . . , θd in w, with θd(0) 6= 0,
such that, as linear operators in C(w)[X1, . . . , Xn]/(F1 −w1, . . . , Fn −wn),
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one has:

(2.11) H−1 ≡ 1
θd(w)

( d−1∑

k=0

θk(w)Hd−1−k
)
.

For w outside the hypersurface

Σ = {A1,0 . . . An,0 θd(w) = 0}
the fiber F−1(w) is discrete and the polynomial H does not vanish on it.
Moreover, for such w,

[
(GJ/HdegG)dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

equals exactly the trace of the operator

1
(θd(w))degGG ·

( d−1∑

k=0

θk(w)Hd−1−k
)degG

as an operator in C[X1, . . . , Xn]/(F1−w1, . . . , Fn−wn); then from the com-
putations in Lemma 2.1, it is a rational expression in w with denominator

(θd(w))degG
( n∏

j=1

Aj,0(w)
)n(1+(d−1) degG)

.

It remains to see that, in fact, this rational function has no poles at the
origin. Let w ∈ Cn \Σ, ‖w‖ ≤ c; then

[
(GJ/HdegG)dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
=

∑

α∈F−1(w)

G(α)
HdegG(α)

.

It is immediate to see that, if k1, . . . , kn are positive integers with k1 + . . .+
kn ≤ degG and if α ∈ F−1(w), then

(2.12)
|αN1

1 . . . αNnn |
|(((K1,1 +K2,1)/2)− α1)degG . . . (((K1,n +K2,n)/2)− αn)degG|

=
n∏

j=1

|αj |kj
|((K1,j +K2,j)/2)− αj |degG ≤ CG(k1, . . . , kn)

for some constant CG(k1, . . . , kn) independent of α. This follows from the
separation condition over the origin (in fact ζ 7→ ζj/(((K1,j +K2,j)/2)− ζj)
is bounded on

⋃
‖w‖≤c F

−1(w), for any j ∈ {1, . . . , n}). Therefore, since
#F−1(w) ≤ d(F1, . . . , Fn) for ‖w‖ ≤ c, one has, for ‖w‖ ≤ c, w 6∈ Σ,

∣∣∣∣
[

(GJ/HdegG)dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]∣∣∣∣ ≤ C
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for some constant C independent of w. Then R̃F,G has in fact no poles at
the origin and the lemma is proved.

R e m a r k 1. Suppose that (F1, . . . , Fn) is separated over the origin and
not proper over the origin. There are some constants K, q, κ > 0 such that

‖ζ‖ ≥ K ⇒ ‖F (ζ)‖ ≥ κ‖ζ‖−q.
This implies that if ζ ∈ F−1(w), w 6= 0, then either ‖ζ‖ ≤ K or ‖ζ‖ ≥
(κ/‖w‖)1/q. Following exactly the proof of Lemma 2.4, one can see then
that [ GJ

HdegG+1 dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
=

∑

α∈F−1(w)
‖α‖≤K

G(α)
HdegG+1(α)

+ ε(w)

where ε(w)→ 0 as ‖w‖ → 0.

R e m a r k 2. In fact, what we really used in the proof of Lemma 2.4 or in
Remark 1 above was the fact that for any w, ‖w‖ ≤ c, and any ζ ∈ F−1(w),

|H(ζ)| ≥ κ(1 + |ζ1|) . . . (1 + |ζn|)
for some positive constant κ.

The above remark leads us to introduce the following weaker separation
condition:

Definition 2.2. Let δ > 0 and H be a polynomial in n variables. A
dominant map (F1, . . . , Fn) satisfies the (H-δ) separation condition over the
origin if and only if there are positive constants κ, c such that

‖w‖ ≤ c
F (ζ) = w

}
⇒ |H(ζ)| ≥ κ(1 + ‖ζ‖)δ.

According to the above definition, we have the following:

Lemma 2.5. Let F = (F1, . . . , Fn) be a dominant polynomial map from
Cn to Cn which satisfies the (H-δ) separation condition over the origin. Let
J be the Jacobian of F . There exists some algebraic hypersurface Σ in Cn
such that for any w 6∈ Σ, the fiber F−1(w) is discrete, H does not vanish
on it , and for any G ∈ C[X1, . . . , Xn], and any w outside Σ,

[ GJ

HE(degG/δ)+1
dX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
= R̃F,G(w),

where R̃F,G is a rational function with no poles at the origin.

P r o o f. The proof is exactly the same as the proof of Lemma 2.4, except
that estimate (2.12) has to be replaced by the following: if ‖w‖ ≤ c and
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F (α) = w, then, for k ∈ Nn,

|αk1
1 . . . αknn |

|H(α)|E(degG/δ)+1
≤ κ̃G ‖α‖degG

(1 + ‖α‖)δ(1+E(degG/δ))
≤ CG

for some positive constants κ̃G and CG since

δ(1 + E(degG/δ)) ≥ degG.

So the function ζ → G(ζ)/H(ζ)E(degG/δ)+1 is bounded on
⋃
‖w‖≤c F

−1(w),
and the lemma follows exactly as in the proof of Lemma 2.4. There is also
in this case a remark analogous to Remark 1 above.

3. A first approach to the Nullstellensatz. The first result we will
prove in this section is some explicit version of the algebraic Nullstellensatz
for proper polynomial maps F : Cn → Cn with Łojasiewicz exponent δ > 0.
The methods here are inspired by those used to provide a solution with eco-
nomic bounds (taking into account the projective degree, that is, in general,
the product of the degrees of the entries) for the algebraic Bézout identity
(see for example [BY2], [BGVY], Section 5, [ElY], [Y]).

Theorem 3.1. Let F = (F1, . . . , Fn) be a polynomial map from Cn to
Cn such that

‖Z‖ ≥ K ⇒ ‖P (Z)‖ ≥ κ‖Z‖δ
for some K ≥ 0, κ > 0, δ > 0. Let G be some element in C[X1, . . . , Xn]
such that G|F−1(0) ≡ 0. Then, if

D := max
1≤j≤n

(degFj) and ν := max
α∈F−1(0)

να(F ),

we have

(3.1)





Gν =
n∑

j=1

AjFj ,

degAjFj ≤ D
(

E
(

2
δ

( n∑

j=1

degFj + ν degG
))
− n

)
.

P r o o f. Let Q1,1, . . . , Qn,n be polynomials in 2n variables such that
deg(Qj,k) ≤ degFj − 1 for j, k = 1, . . . , n and

(3.2) ∀Z ∈ Cn, ∀ζ ∈ Cn, Fj(Z)− Fj(ζ) =
n∑

k=1

Qj,k(Z, ζ)(zk − ζk);

let ∆(Z, ζ) be the determinant of the matrix [Qj,k]1≤j,k≤n (a Bézoutian for

the map (F1, . . . , Fn)). For any Z ∈ Cn, the set F−1(F (Z)) is finite (since
F is a proper map). Then one can apply the global transformation law for
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multidimensional residues [Aiz] and get, for any G such that G|F−1(0) ≡ 0,
and any Z in Cn,

(3.3) Gν(Z) =
[
G(X)ν∆(Z,X)dX1 ∧ . . . ∧ dXn

F1 − F1(Z), . . . , Fn − Fn(Z)

]
.

Let

∆(Z,X) =
∑

|α|+|β|≤∑n
j=1 degFj−n

cα,βz
α1
1 . . . zαnn Xβ1

1 . . . Xβn
n .

One has, from (3.3), for any Z ∈ Cn,

(3.4) Gν(Z) =
∑

|α|+|β|≤∑n
j=1 degFj−n

cα,β

[
G(X)νXβdX1 ∧ . . . ∧ dXn

F1 − F1(X), . . . , Fn − Fn(X)

]

where we used the abridged notation Xβ := Xβ1
1 . . . Xβn

n . From Lemma 2.2,
we know that [

G(X)νXβdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]
= Qβ [G](w),

where Qβ [G] is a polynomial with total degree at most

E
(

1
δ

(
ν degG+ |β|+ max

k

(∑

j 6=k
degFj

)
+ n

))
− 2n+ 1.

Since Gν is in the ideal (F1, . . . , Fn) because of Noether’s theorem, one has
Qβ [G](0) = 0. Therefore

Qβ [G](w) =
n∑

j=1

wjQ[j]
β [G](w)

for some polynomials Q[j]
β . Formula (3.4) can be written as

(3.5) Gν(Z) =
∑

|α|+|β|≤∑n
j=1 degFj−n

n∑

k=1

cα,βFk(Z)ZαQ[k]
β [G](F (Z)).

It is clear that (3.5) is a formula of the form Gν =
∑n
j=1AjFj where

degAjFj
≤ max
|α|+|β|≤∑n

j=1 degFj−n
[|α|+D deg(Qβ [G])]

≤ max
α,β

(
|α|+D

(
E
(

1
δ

(
ν degG+ |β|+ max

k

∑

j 6=k
degFj + n

))
−2n+1

))

≤ D
(

E
(

2
δ

( n∑

j=1

degFj + ν degG
))
− n

)
.
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R e m a r k. When F = (F1, . . . , Fn) is proper over the origin, and
G|F−1(0) ≡ 0, then one knows from Lemma 2.3 that

Qβ [G](w) =
Nβ [G](w)

(
∏n
j=1Aj,0(w))n+|β|+ν degG

where Nβ [G] is a polynomial in w vanishing at 0 and the Aj,0 come from
(2.4). The same method as above can be applied for ‖w‖ � 1 and we obtain
for ‖Z‖ close to 0,

(3.6) Gν(Z)

=
∑

|α|+|β|≤∑n
j=1 degFj−n

cα,βFk(Z)Zα
N [k]
β [G](F (Z))

(
∏n
j=1Aj,0F (Z))n+|β|+ν degG

where

Nβ [G](w) =
n∑

j=1

wjN [j]
β [G](w).

Raising denominators in (3.6) provides also some effective Nullstellensatz
since Aj,0(0) 6= 0. The problem one has doing that is that the bounds for
the degrees of the Aj,0 and the N [j]

β [G] can only be estimated using for
example Perron’s theorem ([Pe], Satz 57) and the transformation law.

In fact, with respect to the Nullstellensatz, nice estimates (for the case
of maps proper over the origin) can be obtained following a method due to
A. Płoski and P. Cassou-Noguès. In order to be complete, we will recall here
their result and its proof.

Theorem 3.2 [CNPł]. Let F = (F1, . . . , Fn) be a dominant polyno-
mial map from Cn to Cn proper over the origin, and G ∈ C[X] such that
G|F−1(0) ≡ 0. Then for some exponent s ≤ d = degF ,

Gs =
n∑

j=1

AjFj , degAjFj ≤ degGdegF1 . . . degFn.

P r o o f. For any w close to 0,

#F−1(w) = d = [C(X1, . . . , Xn) : C(F1, . . . , Fn)]

if the points are counted with multiplicities. Let S1(w), . . . , Sd(w) be the
Newton symmetric polynomials in the values (G(ζ1(w)), . . . , G(ζd(w))),
where {ζ1(w), . . . , ζd(w)} = F−1(w). Since for 1 ≤ j ≤ d,

Sj(w) =
[
GjJdX1 ∧ . . . ∧ dXn

F1 − w1, . . . , Fn − wn

]

(J as usual being the jacobian of F ), it follows from Lemma 2.3 that Sj is
a rational function with no poles at 0. The same is true for the symmetric
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functions σ1(w), . . . , σd(w) of {ζ1(w), . . . , ζd(w)}. For any w close to zero
and such that F−1(w) contains only simple points,

Gd − σ1(w)Gd−1 + . . .+ (−1)dσd(w) ∈ (F1 − w1, . . . , Fn − wn).

If
σj(w) = Aj(w)/A0(w)

with Aj ∈ C[w], then one has the polynomial identity

(3.7) A0(F )Gd −A1(F )Gd−1 + . . .+ (−1)dAd(F ) ≡ 0

where A0(0) 6= 0, A1(0) = . . . = Ad(0) = 0 (all G(ζj(0)) are zero since
G|F−1(0) ≡ 0). One has also an equation for G:

(3.8) Ã0(F )Gs + Ã1(F )Gs−1 + . . .+ Ãs(F ) ≡ 0

(s ≤ d), which is irreducible over C[F1, . . . , Fn] and such that Ã0(0) 6= 0,
Ã1(0) = . . . = Ãs(0) = 0. Let

Q(X1, . . . , Xn, Y ) = Ã0(X)Y s + . . .+ Ãs(X).

Since the polynomials F1, . . . , Fn, G are algebraically dependent, there exists
from Perron’s theorem ([Pe], Satz 56&57, pp. 125–126) some polynomial Q̃
in n+ 1 variables such that




Q̃(F1, . . . , Fn, G) ≡ 0,
degwn+1

Q̃ > 0,

degw Q̃(wdegF1
1 , . . . , wdegFn

n , wdegG
n+1 ) ≤ degGdegF1 . . . degFn.

We now use an argument of Jelonek (see the proof of Proposition 12 in [Je]).
Since Q is irreducible, Q divides Q̃, so that we can compare the weighted
degrees:

degwQ(wdegF1
1 , . . . , wdegFn

n , wdegG
n+1 ) ≤ degw Q̃(wdegF1

1 , . . . , wdegFn
n , wdegG

n+1 ).

Now, one can rewrite (3.8) as

Ã0(0)Gs = −Gs
( n∑

k=1

FkB̃0,k(F )
)

+
s∑

l=1

Gs−l
( n∑

k=1

FkB̃j,k(F )
)

where

Ãj(w) = Ãj(0) +
n∑

k=1

wkB̃j,k(w).

This provides the Nullstellensatz with the convenient estimates.

When (F1, . . . , Fn) is dominant and separated over the origin (Defini-
tion 2.1) one has:

Theorem 3.3. Let F = (F1, . . . , Fn) be a dominant polynomial map from
Cn to Cn which is separated over the origin; let G ∈ C[X], G|F−1(0) ≡ 0.
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Then, for some s ≤ d = [C(X1, . . . , Xn) : C(F1, . . . , Fn)],

Gs =
n∑

j=1

AjFj , degAjFj ≤ n(degG+ 1)[degF1 . . . degFn + d].

P r o o f. One can suppose that F is not proper over the origin. Let G ∈
C[X1, . . . , Xn], G|F−1(0) ≡ 0. Let K1,j , K2,j , j = 1, . . . , n, be the constants
corresponding to the fact that the map F is separated at the origin (see
Definition 2.1) and

H(X) :=
n∏

j=1

(
Kj,1 +Kj,2

2
−Xj

)
.

Consider, for ‖w‖ � 1 such that #F−1(w) = d, the Newton sums S(G)
1 , . . .

. . . , S
(G)
d of the values

{
G(ζ1(w))

HdegG+1(ζ1(w))
, . . . ,

G(ζd(w))
HdegG+1(ζd(w))

}

where F−1(w) = {ζ1(w), . . . , ζd(w)}. By Remark 1 after the proof of Lem-
ma 2.4, the functions SGj can be written near the origin as

S
(G)
j (w) =

∑

α∈F−1(w)
‖α‖≤K

(
G(α)

HdegG+1(α)

)j
+ εj(w)

whereK is a constant and limw 7→0 εj(w) = 0. Therefore, sinceG|F−1(0) ≡ 0,
one has

S
(G)
j (0) = 0, j = 1, . . . , d.

The same is true for the symmetric polynomials σ(G)
1 , . . . , σ

(G)
d of the values

{
G(ζ1(w))

HdegG+1(ζ1(w))
, . . . ,

G(ζd(w))
HdegG+1(ζd(w))

}

where F−1(w) = {ζ1(w), . . . , ζd(w)}. As in the proof of Theorem 3.2, for any
w close to zero such that #F−1(w) = d and F−1(w) contains only simple
points, one has
(

G

HdegG+1

)d
− σ(G)

1 (w)
(

G

HdegG+1

)d−1

+ . . .+ σ
(G)
d (w)

∈ (F1 − w1, . . . , Fn − wn).

If G̃ is the rational function G/HdegG+1, then one has the identity

A
(G)
0 (F )G̃d −A(G)

1 (F )G̃d−1 + . . .+ (−1)dA(G)
d (F ) ≡ 0,
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where

σ
(G)
j (w) =

A
(G)
j (w)

A
(G)
0 (w)

with A
(G)
0 (0) 6= 0, A(G)

1 (0) = . . . = A
(G)
d (0) = 0. There is some equation for

G̃ of the form

(3.9) Ã
(G)
0 (F )G̃s + Ã

(G)
1 (F )G̃s−1 + . . .+ Ã(G)

s (F ) = 0

which is irreducible over C[F1, . . . , Fn] and such that Ã(G)
0 (0) 6= 0, Ã(G)

1 (0) =
. . . = Ã

(G)
d (0) = 0. Since G̃ is now a rational function G̃ = G/HdegG+1, we

cannot apply Perron’s theorem immediately as in the proof of Theorem 3.2.
In order to find a substitute argument, we use some variant of the famous
Rabinowicz trick. Let us add some additional variable X0; the polynomials

(F1(X), . . . , Fn(X),HdegG+1(X)−X0G(X), X0)

are algebraically dependent; there exists, by Perron’s theorem ([Pe], Satz 56
and 57), some polynomial QG in n+ 2 variables such that

(3.10)





QG(F1, . . . , Fn, X0,H
degG+1 −X0G) ≡ 0,

degwQG(wdegF1
1 , . . . , wdegFn

n , wn+1, w
n(degG+1)
n+2 )

≤ ndegF1 . . . degFn(degG+ 1).

Then, substituting X0 = HdegG+1/G in (3.10), one gets

(3.11) QG0 (F1, . . . , Fn, 1/G̃) ≡ 0

where

QG0 (X1, . . . , Xn, Xn+1) := QG(X1, . . . , Xn, Xn+1, 0).

One has

(3.12) degwQG(wdegF1
1 , . . . , wdegFn

n , wn+1)

≤ ndegF1 . . . degFn(degG+ 1).

Since (F1, . . . , Fn) is dominant, the relation (3.11) multiplied by G̃degwn+1
QG0

provides an equation for G̃ (which is such that (3.9) divides it, so that we
have estimates on the weighted degrees of the Ã

(G)
k thanks to estimates

(3.10)). The relation (3.9) can be rewritten as

(3.13)
s∑

k=0

Ã
(G)
k (F )Gs−kHk(degG+1) ≡ 0.

Since Ã(G)
0 (0)H(0) 6= 0, the equation (3.13) solves the Nullstellensatz. One

can rewrite (3.13) as
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Gs =
n∑

j=1

AjFj ,

degj Fj ≤ n(degG+ 1) degF1 . . . degFn + sn(degG+ 1)

≤ n(degG+ 1)[degF1 . . . degFn + d].

This concludes the proof of Theorem 3.3.

When F = (F1, . . . , Fn) is dominant and satisfies the (H-δ) separation
condition in Definition 2.2, one has a similar result.

Theorem 3.4. Let F = (F1, . . . , Fn) be a dominant polynomial map
from Cn to Cn which satisfies the (H-δ) condition for some H ∈ C[X] and
δ > 0. Then, for G ∈ C[X] such that G|F−1(0) ≡ 0, one has for some
s ≤ d(F1, . . . , Fn),

Gs =
n∑

j=1

AjFj ,

degAjFj ≤ degH(E(degG/δ) + 1)(degF1 . . . degFn + d).

P r o o f. Let G ∈ C[X] be such that G|F−1(0) ≡ 0. We now let

G̃ = G/HE(degG/δ)+1.

We use Lemma 2.5 instead of Lemma 2.4. We obtain as before a relation of
the form (3.9), with the same conditions on Ã

(G)
0 , . . . , Ã

(G)
s . On the other

hand, by the same argument as in the proof of Theorem 3.3, there is a
relation

(3.14) Q(G)(F1, . . . , Fn, G̃) ≡ 0

with

degwQ(G)(wdegF1
1 , . . . , wdegFn

n , wn+1)

≤ degF1 . . . degFn degH(E(degG/δ) + 1).

Since (3.9) divides (3.14), one has

Gs =
n∑

j=1

AjFj ,

degAjFj ≤ degF1 . . . degFn degH(E(degG/δ) + 1)

+ s(E(degG/δ) + 1) degH

≤ degH(E(degG/δ) + 1)(degF1 . . . degFn + d).

4. Some consequences of the Briançon–Skoda theorem. In this
section, we prove that for maps with a negative Łojasiewicz exponent, the
Nullstellensatz can be solved with estimates (1.11) or (1.12).
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Theorem 4.1. Let F = (F1, . . . , Fk) be a polynomial map from Cn to
Ck such that
(4.1) ‖X‖ > K ⇒ ‖F (X)‖ ≥ κ‖X‖q

for some K ≥ 0, q ≤ 0 and κ > 0. Let G ∈ C[X1, . . . , Xn], G ≡ 0 on
F−1(0). Then, if

γ := min(n+ 1, k), ν := max
α∈F−1(0)

(να), D := max
1≤j≤k

degFj ,

we have

Gγν =
k∑

j=1

AjFj , degAjFj ≤ γ(ν degG+D + |q|).

P r o o f. From (4.1), for any X̃ = (X0, X) = (X0, . . . , Xn) ∈ Cn+1, X0 6=
0, ‖X‖ ≥ K|X0|,
(4.2) ‖F (X/X0)‖ ≥ κ(‖X‖/|X0|)q,
that is,

(4.3) |X0||q| ≤ 1
κ
‖X‖|q|‖F (X/X0)‖,

so

(4.4) |X0||q|+D ≤ 1
κ
‖X‖|q|

( k∑

j=1

|hFj(X̃)|2|X0|2(D−degFj)
)1/2

.

Let G ∈ C[X1, . . . , Xn], G ≡ 0 on F−1(0); then Gν ∈ (F1, . . . , Fk) by
Noether’s theorem. There exists some constant C > 0 such that, for any
X̃ ∈ S2n+1 := {X̃ ∈ Cn+1 : ‖X̃‖ = 1} with |X0| ≥ 1/(2K),

|hGν(X̃)| ≤ C‖hF (X̃)‖.
On the other hand, because of (4.4), there exists C ′ > 0 such that for

any X̃ ∈ S2n+1 with |X0| ≤ 1/K,

(4.5) |X0||q|+D ≤ C ′‖hF (X̃)‖.
On the unit sphere S2n+1,

|hGν(X̃)|X0||q|+D| ≤ C ′′‖hF (X̃)‖
for some C ′′ > 0. So for any X̃ ∈ Cn+1 \ {0},

|hGν(X̃/‖X̃‖)(X0/‖X̃‖)|q|+D| ≤ C ′′‖hF (X̃/‖X̃‖)‖,
hence

|hGν(X̃)| · |X0||q|+D ≤ C ′′|X0||q|+D+ν degG‖hF (X̃/‖X̃‖)‖,
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and consequently,

(4.6) |hGν(X̃)| · |X0||q|+D

≤ C ′′|X0||q|+ν degG
( k∑

j=1

|hFj(X̃)|2|X0|2(D−degFj)
)1/2

.

The inequality (4.6) remains valid at zero. At any point Z̃ in Cn+1, the germ
at Z̃ of hGνX

|q|+D
0 is in the integral closure of the ideal generated by the

germs of hF1, . . . ,
hFk at this point. Then, by the Briançon–Skoda theorem

([BS], or [LT] for an algebraic version)

(hGνX
|q|+D
0 )γ ∈ (hF1, . . . ,

hFk)loc.

So, there are polynomials Ã1, . . . , Ãk ∈ C[X0, . . . , Xn] such that

(4.7) (hGνX
|q|+D
0 )γ =

k∑

j=1

Ãj(X̃)hFj(X̃).

Taking X0 = 1 in (4.6), we get the result.

Under some additional hypothesis, we have

Theorem 4.2. Let F = (F1, . . . , Fk) be a polynomial map from Cn to
Ck such that

‖X‖ ≥ K ⇒ ‖F (X)‖ ≥ κ‖X‖q

for some constants K ≥ 0, q ≤ 0, κ > 0. Assume that the depth of the ideal
hF1n+1O0 + . . .+ hFk n+1O0

in O0 is greater than 2. Let G ∈ C[X1, . . . , Xn], G ≡ 0 on F−1(0). Then, if
ν := maxα∈F−1(0)(να), D := max1≤j≤k deg(Fj), we have

Gν =
k∑

j=1

AjFj

with the estimates

deg(AjFj) ≤ ν degG+ n(D + |q|).
P r o o f. The proof is exactly similar to the proof of Theorem 4.1. At each

point Z̃ ∈ Cn+1 \ {0} such that |Z0| ≤ 1
K |Z̃|, it follows from (4.5) and the

Briançon–Skoda theorem that

(Xn(|q|+D)
0 )Z̃ ∈ hF1n+1OZ̃ + . . .+ hFk n+1OZ̃ .

At each point Z̃ ∈ Cn+1 \ {0} such that |Z0| ≥ 1
2K ‖Z̃‖,

(hGν)Z̃ ∈ hF1n+1OZ̃ + . . .+ hFk n+1OZ̃ .
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So, at any point Z̃ ∈ Cn+1 \ {0},
(4.8) (Xn(|q|+D)

0
hGν)Z̃ ∈ hF1n+1OZ̃ + . . .+ hFk n+1OZ̃ .

Because of the hypothesis, it follows (as kindly pointed to us by Roger Gay)
from [Ban], Corollary 4.3, p. 42 (which is in fact a variant of the Hartogs
theorem), that (4.8) is also valid at Z̃ = 0. So, once again

X
n(|q|+D)
0

hGν =
k∑

j=1

Ãj(X̃)hFj(X̃).

Taking X0 = 1 provides the result.
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[K] J. Kol l á r, Sharp effective Nullstellensatz , J. Amer. Math. Soc. 1 (1988), 963–
975.

[LT] J. L ipman and B. Teiss i e r, Pseudo-rational local rings and a theorem of
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