## Laplace ultradistributions on a half line and a strong quasi-analyticity principle

by Grzegorz Łysik (Warszawa)

**Abstract.** Several representations of the space of Laplace ultradistributions supported by a half line are given. A strong version of the quasi-analyticity principle of Phragmén–Lindelöf type is derived.

The theory of ultradistributions was founded by Buerling and Roumieu in the sixties as a generalization of the theory of Schwartz distributions. Since then it was extensively studied by many authors: Björk, Braun, Komatsu, Meise, Pilipović, Taylor, ..., to mention but a few. The most systematic treatment was presented by Komatsu [2], [3]. He derived, in particular, the boundary value representation of the space  $D^{(M_p)'}(\Omega)$  of ultradistributions on an open set  $\Omega \subset \mathbb{R}^n$ , structure theorems for  $D^{(M_p)'}(\Omega)$  and described the image of the space  $D_K^{(M_p)'}$  of ultradistributions with compact support in K under the Fourier-Laplace transformation. Following his approach Pilipović [9] recently introduced and investigated the space  $S^{(M_p)'}(\mathbb{R})$  of tempered ultradistributions. On the other hand, in the study of the Laplace transformation it is convenient to consider the space  $L'_{(\omega)}(\Gamma)$ of Laplace distributions of type  $\omega \in \mathbb{R}$  supported by a half line  $\Gamma$ . Since in the logarithmic variables the Laplace transformation is the Mellin transformation we refer here to the book of Szmydt and Ziemian [11], where the latter transformation was systematically studied following the approach of Zemanian [12].

The aim of the present paper is to unify the theory of ultradistributions with that of Laplace distributions. We present it in the case of the space  $L_{(\omega)}^{(M_p)'}(\Gamma)$  of Laplace ultradistributions of Buerling type. Our theory is based on the Seeley type extension theorems for ultradifferentiable functions re-

<sup>1991</sup> Mathematics Subject Classification: Primary 46F12, 44A10, 30D15. Key words and phrases: ultradistributions, boundary values, quasi-analyticity. Supported by KBN grant No. 2104591091.

cently proved by Langenbruch [4] and Meise and Taylor [7]. We describe the image of the space  $L_{(\omega)}^{(M_p)'}(\Gamma)$  under the Laplace, Taylor and (modified) Cauchy transformations. In the latter case we follow the method of Morimoto [8]. As an application of our theory we give, in the final section, a version of the quasi-analyticity principle of Phragmén–Lindelöf type. It says that a function holomorphic and of exponential type in the half plane  $\{\text{Re } z>0\}$  vanishes if it satisfies some growth conditions along vertical lines and decreases superexponentially along a ray in  $\{\text{Re } z>0\}$ .

**0. Notation.** Let t > 0. We denote by  $\widetilde{B}(t)$  the universal covering of the punctured disc  $B(t) \setminus \{0\}$  and by  $\widetilde{\mathbb{C}}$  that of  $\mathbb{C} \setminus \{0\}$ . We treat  $\widetilde{B}(t)$  and  $\widetilde{\mathbb{C}}$  as Riemann manifolds. Recall that any point  $x \in \widetilde{B}(t)$  can be written in the form  $x = |x| \exp i \arg x$  with |x| < t.

We denote by  $\mu: \mathbb{C} \to \widetilde{\mathbb{C}}$  the biholomorphism

$$\mu(z) = e^{-z}$$
 for  $z \in \mathbb{C}$ ,

i.e.  $\mu(z) = x \in \widetilde{\mathbb{C}}$  with  $|x| = e^{-\operatorname{Re} z}$ ,  $\arg x = -\operatorname{Im} z$ . Then the inverse mapping  $\mu^{-1} : \widetilde{\mathbb{C}} \to \mathbb{C}$  is given by

$$\mu^{-1}(x) = -\ln x \quad \text{ for } x \in \widetilde{\mathbb{C}}.$$

Let  $v \in \mathbb{R}$ . We set

$$\Gamma_v = [v, \infty)$$
 and  $I_v = (0, e^{-v}].$ 

Observe that  $I_v = \mu(\Gamma_v)$ . In the following we omit the subscript v as long as it is fixed. For  $z \in \mathbb{C}$  we define the function  $\exp_z : \mathbb{R} \to \mathbb{C}$  by

$$\exp_z y = e^{yz}, \quad y \in \mathbb{R}.$$

For  $A \subset \mathbb{C}$  we set

$$A_{\varepsilon} = \{ z \in \mathbb{C} : \operatorname{dist}(z, A) < \varepsilon \}, \quad \varepsilon > 0.$$

We write D for the differential operator d/dx.

Let  $\{P_{\tau}\}_{\tau \in T}$  be a family of multivalued vector spaces. Then  $\lim_{\tau \in T} T_{\tau}$  (resp.  $\lim_{\tau \in T} P_{\tau}$ ) denotes the inductive limit (resp. projective limit) of  $P_{\tau}$ ,  $\tau \in T$ 

 $\mathcal{O}(W)$  denotes the set of holomorphic functions on an open subset W of some Riemann manifold. The value of a functional S on a test function  $\varphi$  is denoted by  $S[\varphi]$ .

1. Laplace ultradistributions on a half line. Let  $(M_p)_{p \in \mathbb{N}_0}$  be a sequence of positive numbers. Throughout the paper we assume that  $(M_p)$  satisfies the following conditions:

(M.1) (Logarithmic convexity)

$$M_p^2 \le M_{p-1} M_{p+1}$$
 for  $p \in \mathbb{N}$ ;

(M.2) (Stability under ultradifferential operators) There are constants A, H such that

$$M_p \le AH^p \min_{0 \le q \le p} M_q M_{p-q} \quad \text{ for } p \in \mathbb{N}_0;$$

(M.3) (Strong non-quasi-analyticity) There is a constant A such that

$$\sum_{q=p+1}^{\infty} \frac{M_{q-1}}{M_q} \le Ap \frac{M_p}{M_{p+1}} \quad \text{ for } p \in \mathbb{N}.$$

Some results remain valid when (M.2), (M.3) are replaced by the following weaker conditions:

(M.2') (Stability under differential operators) There are constants A, H such that

$$M_{p+1} \le AH^p M_p$$
 for  $p \in \mathbb{N}_0$ ;

(M.3') (Non-quasi-analyticity)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty.$$

Define

$$m_p = M_p/M_{p-1}$$
 for  $p \in \mathbb{N}$ .

Then (M.1) is equivalent to saying that the sequence  $m_p$  is non-decreasing, and by (M.3') it follows that  $m_p \to \infty$ .

Note that the condition (M.3') implies the following: for every h>0 there exists  $\delta>0$  such that

(1) 
$$M_p h^p \ge \delta \quad \text{for } p \in \mathbb{N}_0,$$

which is equivalent to the finiteness of the associated function M defined by

(2) 
$$M(\varrho) = \sup_{p \in \mathbb{N}_0} \ln \frac{\varrho^p M_0}{M_p} \quad \text{ for } \varrho > 0.$$

If  $M_p/p!$  satisfies (1) the growth function  $M^*$  is defined by

(3) 
$$M^*(\varrho) = \sup_{p \in \mathbb{N}_0} \ln \frac{\varrho^p p! M_0}{M_p} \quad \text{for } \varrho > 0.$$

Example 1. The Gevrey sequence of order s>1 is defined by  $M_p=(p!)^s,\ p\in\mathbb{N}_0$ . It satisfies all conditions (M.1)–(M.3) and  $M(\varrho)\sim\varrho^{1/s},$   $M^*(\varrho)\sim\varrho^{1/s-1}$  as  $\varrho\to\infty$ .

Remark 1. It follows from Lemma 4.1 of [2] that if  $M_p$  satisfies (M.1) and (M.3') then the associated function M is sublinear, i.e.  $M(\varrho)/\varrho \to 0$  as  $\varrho \to \infty$ .

Remark 2. If  $M_p$  satisfies (M.1) and (M.3') then

(4) 
$$\lim_{p \to \infty} (M_p/p!)^{1/p} = \infty.$$

Proof. Take any  $l < \infty$ . Then by (M.1) and (M.3') there exists  $p_l \in \mathbb{N}$  such that  $M_p \geq lpM_{p-1}$  for  $p \geq p_l$ . Hence

$$M_p \ge C_l \cdot l^p \cdot p!$$
 for  $p \ge p_l$ , where  $C_l = \frac{M_{p_l-1}}{M_0(p_l-1)!} l^{1-p_l}$ ,

and we easily get (4).

DEFINITION. Let  $\Gamma = [v, \infty)$  with  $v \in \mathbb{R}$ . The space  $D^{(M_p)'}(\Gamma)$  of ultradistributions on  $\Gamma$  of class  $(M_p)$  is defined as the dual space of

$$D^{(M_p)}(\Gamma) = \lim_{K \subset \Gamma} \varprojlim_{h>0} D_{K,h}^{(M_p)}(\Gamma),$$

where for any compact set  $K \subset \Gamma$  and h > 0,

$$D_{K,h}^{(M_p)}(\Gamma)$$

$$= \bigg\{ \varphi \in C^{\infty}(\Gamma) : \operatorname{supp} \varphi \subset K \text{ and } \|\varphi\|_{K,h}^{(M_p)} = \sup_{y \in K} \sup_{\alpha \in \mathbb{N}_0} \frac{|D^{\alpha}\varphi(y)|}{h^{\alpha}M_{\alpha}} < \infty \bigg\}.$$

By  $\varphi \in C^{\infty}(\Gamma)$  we mean a restriction to  $\Gamma$  of some function  $\widetilde{\varphi} \in C^{\infty}(\mathbb{R})$ .

DEFINITION. Let  $\omega \in \mathbb{R} \cup \{\infty\}$ . We define the space  $L_{(\omega)}^{(M_p)'}(\Gamma)$  of Laplace ultradistributions as the dual space of

$$L_{(\omega)}^{(M_p)}(\Gamma) = \lim_{a < \omega} L_a^{(M_p)}(\Gamma),$$

where for any  $a \in \mathbb{R}$ ,

$$L_a^{(M_p)}(\Gamma) = \varprojlim_{h>0} L_{a,h}^{(M_p)}(\Gamma),$$

$$L_{a,h}^{(M_p)}(\Gamma) = \left\{ \varphi \in C^{\infty}(\Gamma) : \|\varphi\|_{a,h}^{(M_p)} = \sup_{y \in \Gamma} \sup_{\alpha \in \mathbb{N}_0} \frac{|e^{-ay}D^{\alpha}\varphi(y)|}{h^{\alpha}M_{\alpha}} < \infty \right\}.$$

Lemma 1. Assume that  $(M_p)$  satisfies (M.1) and (M.3'). Then  $D^{(M_p)}(\Gamma)$  is a dense subspace of  $L_{(\omega)}^{(M_p)}(\Gamma)$ . Thus,  $L_{(\omega)}^{(M_p)'}(\Gamma)$  is a subspace of the space of ultradistributions  $D^{(M_p)'}(\Gamma)$ .

Proof. Making a translation if necessary we can assume that  $\Gamma = \overline{\mathbb{R}}_+$ . Let  $\varphi \in L_{(\omega)}^{(M_p)}(\Gamma)$ . Then there exist  $a < b < \omega$  such that  $\varphi \in L_a^{(M_p)}(\Gamma) \subset L_b^{(M_p)}(\Gamma)$ . By the Denjoy–Carleman–Mandelbrojt theorem (cf. [2], [6]) there exists a function  $\psi \in D^{(M_p)}(\Gamma)$  such that  $0 \le \psi(y) \le 1$  for  $y \in \Gamma$ ,  $\psi(y) = 1$  for  $0 \le y \le 1$  and  $\psi(y) = 0$  for  $y \ge 2$ . Put  $\varphi_{\nu}(y) = \psi(y/\nu)\varphi(y)$  for  $y \in \Gamma$ ,  $\nu \in \mathbb{N}$ . Then  $\varphi_{\nu} \in D^{(M_p)}(\Gamma)$  and we shall show that  $\varphi_{\nu} \to \varphi$  in  $L_b^{(M_p)}(\Gamma)$  as  $\nu \to \infty$ . To this end take any h > 0. Noting that (M.1) implies  $M_q M_{p-q} \le M_0 M_p$  for  $0 \le q \le p$ , by the Leibniz formula we get

$$\begin{split} \|\varphi_{\nu} - \varphi\|_{b,h}^{(M_p)} &= \sup_{y \in \Gamma} \sup_{\alpha \in \mathbb{N}_0} \frac{|e^{-by} D^{\alpha}(\varphi(y)(\psi(y/\nu) - 1))|}{h^{\alpha} M_{\alpha}} \\ &\leq \sup_{y \in \Gamma} \sup_{\alpha \in \mathbb{N}_0} \frac{e^{-ay} |D^{\alpha} \varphi(y)|}{h^{\alpha} M_{\alpha}} e^{(a-b)y} |\psi(y/\nu) - 1| \\ &+ \sup_{y \in \Gamma} \sup_{\alpha \in \mathbb{N}} \sum_{0 \leq \beta \leq \alpha} \binom{\alpha}{\beta} \frac{e^{-ay} |D^{\beta} \varphi(y)|}{h^{\beta} M_{\beta}} \cdot \frac{e^{(a-b)y} |D^{\alpha - \beta}(\psi(y/\nu) - 1)| M_0}{h^{\alpha - \beta} M_{\alpha - \beta}}. \end{split}$$

Since  $\psi(y/\nu) = 1$  for  $0 \le y \le \nu$  the first summand tends to zero as  $\nu \to \infty$ . Put K = [1, 2]. Then for  $\beta < \alpha$  and any  $h_1 > 0$  we have

$$|D^{\alpha-\beta}(\psi(y/\nu)-1)| = |\nu^{-(\alpha-\beta)}\psi^{(\alpha-\beta)}(y/\nu)| \le \nu^{-1} ||\psi||_{K,h_1}^{(M_p)} h_1^{\alpha-\beta} M_{\alpha-\beta}.$$

We also have for any  $h_2 > 0$  and  $\beta \ge 0$ ,  $e^{-ay}|D^{\beta}\varphi(y)| \le ||\varphi||_{a,h_2}^{(M_p)}h_2^{\beta}M_{\beta}$ . So the second summand is bounded by

$$\frac{M_0 e^{(a-b)\nu}}{\nu} \sup_{\alpha \in \mathbb{N}} \sum_{\beta < \alpha} {\alpha \choose \beta} \|\varphi\|_{a,h_2}^{(M_p)} \left(\frac{h_2}{h}\right)^{\beta} \|\psi\|_{K,h_1}^{(M_p)} \left(\frac{h_1}{h}\right)^{\alpha - \beta} \\
\leq \frac{M_0}{\nu} \|\varphi\|_{a,h_2}^{(M_p)} \|\psi\|_{K,h_1}^{(M_p)} \quad \text{if } h_2 + h_1 \leq h$$

and thus tends to zero as  $\nu \to \infty$ , proving the lemma.

EXAMPLE 2. Let  $(M_p)$  satisfy (1). Then the function

$$\Gamma \ni y \to \exp_z y = e^{yz}$$

belongs to  $L_{(\omega)}^{(M_p)}(\Gamma)$  if and only if  $\operatorname{Re} z < \omega$ . Furthermore, in this case for any  $a < \omega$  and h > 0 we have

$$\|\exp_z\|_{a,h}^{(M_p)} = M_0^{-1} \exp\{(\operatorname{Re} z - a)v + M(|z|/h)\}.$$

Let  $(M_p)$  satisfy (M.1) and (1), and let  $z \in \mathbb{C}$ . Then the operation of multiplication

$$\exp_z: L_{(\omega)}^{(M_p)}(\Gamma) \to L_{(\omega + \operatorname{Re} z)}^{(M_p)}(\Gamma)$$

is continuous. Thus the formula

$$\exp_z S[\varphi] = S[\exp_z \varphi] \quad \text{ for } \varphi \in L_{(\omega + \operatorname{Re} z)}^{(M_p)}(\varGamma), \ S \in L_{(\omega)}^{(M_p)'}(\varGamma)$$

defines a continuous operation

$$\exp_z: L_{(\omega)}^{(M_p)\prime}(\Gamma) \to L_{(\omega-\operatorname{Re}z)}^{(M_p)\prime}(\Gamma).$$

Let  $(M_p)$  satisfy (M.2). An ultradifferential operator P(D) of class  $(M_p)$  is defined by

$$P(D) = \sum_{\alpha=0}^{\infty} a_{\alpha} D^{\alpha},$$

where  $a_{\alpha} \in \mathbb{C}$  satisfy the following condition: there are constants  $K < \infty$  and  $C < \infty$  such that

(5) 
$$|a_{\alpha}| \leq C \frac{K^{\alpha}}{M_{\alpha}} \quad \text{for } \alpha \in \mathbb{N}_{0}.$$

The entire function  $\mathbb{C} \ni z \to P(z)$  is called a *symbol of class*  $(M_p)$ . As in the proof of Theorem 2.12 of [2] one can show that an ultradifferential operator of class  $(M_p)$  defines linear continuous mappings

$$P(D): L_{(\omega)}^{(M_p)}(\varGamma) \to L_{(\omega)}^{(M_p)}(\varGamma), \quad P(D): L_{(\omega)}^{(M_p)\prime}(\varGamma) \to L_{(\omega)}^{(M_p)\prime}(\varGamma),$$

where for  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  and  $\varphi \in L_{(\omega)}^{(M_p)}(\Gamma)$ ,

$$P(D)S[\varphi] = S[P^*(D)\varphi]$$
 with  $P^*(D) = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} a_{\alpha} D^{\alpha}$ .

For  $a \in \mathbb{R}$  and  $\omega \in \mathbb{R} \cup {\infty}$  we define

(6) 
$$Y_a = \operatorname{span}\{\exp_c\}_{c \le a}, \quad Y_{(\omega)} = \bigcup_{a < \omega} Y_a.$$

PROPOSITION 1. Let b < a. Then  $L_b^{(M_p)}(\Gamma)$  is contained in the closure of  $Y_a$  in  $L_a^{(M_p)}(\Gamma)$ . Thus  $Y_{(\omega)}$  is dense in  $L_{(\omega)}^{(M_p)}(\Gamma)$ .

Proof. Since the multiplication by  $\exp_{-a}$  is a continuous isomorphism of  $L_c^{(M_p)}(\Gamma)$  onto  $L_{c-a}^{(M_p)}(\Gamma)$  and  $Y_c$  onto  $Y_{c-a}$ , where  $c \in \mathbb{R}$ , it is sufficient to assume that a=0. Let  $\varphi \in L_b^{(M_p)}(\Gamma)$ . It is enough to show that for every  $\varepsilon>0$  and h>0 there exists  $\psi \in Y_0$  such that  $\|\varphi-\psi\|_{0,h}^{(M_p)}<\varepsilon$ . To this end fix  $\varepsilon>0$  and h>0. By the proof of Lemma 1 there exists  $\widetilde{\psi} \in D^{(M_p)}(\Gamma)$  such that  $\|\varphi-\widetilde{\psi}\|_{0,h}^{(M_p)}<\varepsilon/2$ . Put  $\eta(x)=\psi\circ\mu^{-1}(x)$  for  $x\in I$ . Then  $\eta$  has compact support in  $I=\mu(\Gamma)$  and by the Roumieu theorem ([10], Théorème 13),  $\eta\in D^{(M_p)}(I)$ . By the Weierstrass type theorem ([2], Theorem 7.3) for any  $\delta>0$  and  $h_1>0$  there exists a polynomial  $p=\sum_{\nu=0}^N c_\nu x^\nu$  such that

(7) 
$$\|\eta - p\|_{\bar{I}, h_1}^{(M_p)} < \delta.$$

Put  $\psi(y) = p \circ \mu(y) = \sum_{\nu=0}^{N} c_{\nu} e^{-\nu y}$  for  $y \in \Gamma$ . Then  $\psi \in Y_0$  and we shall show that for a suitable choice of  $\delta$  and  $h_1$ ,  $\|\widetilde{\psi} - \psi\|_{0,h}^{(M_p)} < \varepsilon/2$ . To this end

put  $f = \eta - p$ . Following the proof of Théorème 13 of [10] one can show that the derivatives  $D^{\alpha} f \circ \mu$  are estimated by

(8) 
$$||f||_{\bar{I},h_1}^{(M_p)} \cdot \sum_{\beta=1}^{\alpha} e^{-v\beta} \frac{M_{\beta}}{\beta!} h_1^{\beta} \frac{(\alpha-1)!\alpha!}{(\alpha-\beta)!(\beta-1)!}.$$

For  $\gamma \in \mathbb{N}_0$  put

(9) 
$$H_{\gamma} = \sup_{\beta \ge \gamma} (\beta!/M_{\beta})^{1/\beta}.$$

Then by Remark 2,  $H_{\gamma} \to 0$  as  $\gamma \to \infty$ . Hence we can find  $\gamma \in \mathbb{N}_0$  and  $h_1 > 0$  such that

$$(10) \qquad (\sqrt{e^{-v}h_1} + \sqrt{H_\gamma})^2 \cdot H < h,$$

where H is the constant in (M.2). Since by (M.2),  $M_{p+q} \leq AH^{p+q}M_pM_q$  for  $p, q \in \mathbb{N}_0$  and by (M.1),  $M_{\beta}M_{\alpha-\beta} \leq M_1M_{\alpha}$  for  $0 \leq \beta \leq \alpha$ , we get for  $\alpha \in \mathbb{N}_0$ ,  $0 \leq \beta \leq \alpha$ ,

(11) 
$$M_{\beta}M_{\alpha-\beta+\gamma} \leq M_{\beta}AH^{\alpha-\beta+\gamma}M_{\alpha-\beta}M_{\gamma} \leq C_{\gamma}H^{\alpha}M_{\alpha},$$
  
where  $C_{\gamma} = AM_{1}M_{\gamma}\max(H^{\gamma}, 1).$ 

Observe also that

$$\alpha < \beta(\alpha - \beta + \gamma)$$
 for  $1 \le \beta \le \alpha$ ,  $\alpha \in \mathbb{N}$ ,

and

$$\sum_{\beta=1}^{\alpha} {\alpha-1 \choose \beta-1}^2 x^{\beta-1} y^{\alpha-\beta} \le (\sqrt{x} + \sqrt{y})^{2\alpha-2} \quad \text{for } \alpha \in \mathbb{N}, \ x \ge 0, \ y \ge 0.$$

Hence using (8), (9) and (11) we derive for  $\alpha \in \mathbb{N}$ ,  $y \in \Gamma$ ,

$$|D^{\alpha}f\circ\mu(y)|$$

$$\leq \|f\|_{\bar{I},h_1}^{(M_p)} \cdot \sum_{\beta=1}^{\alpha} e^{-v\beta} h_1^{\beta} H_{\gamma}^{\alpha-\beta+\gamma} \frac{(\alpha-1)!\alpha!}{(\alpha-\beta)!(\alpha-\beta+\gamma)!\beta!(\beta-1)!} M_{\beta} M_{\alpha-\beta+\gamma}$$

$$\leq \|f\|_{\bar{I},h_1}^{(M_p)} \cdot C_{\gamma} H_{\gamma}^{\gamma} e^{-v} h_1 \sum_{\beta=1}^{\alpha} (e^{-v} h_1)^{\beta-1} H_{\gamma}^{\alpha-\beta} \left( \frac{(\alpha-1)!}{(\alpha-\beta)!(\beta-1)!} \right)^2 H^{\alpha} M_{\alpha}$$

$$\leq \|f\|_{\bar{I},h_1}^{(M_p)} \cdot C_{\gamma} H_{\gamma}^{\gamma} e^{-v} h_1 (\sqrt{e^{-v}h_1} + \sqrt{H_{\gamma}})^{-2} ((\sqrt{e^{-v}h_1} + \sqrt{H_{\gamma}})^2 H)^{\alpha} M_{\alpha}$$

$$\leq \widetilde{C}_{\gamma} M_{\alpha} L^{\alpha} \|f\|_{\bar{I}, h_1}^{(M_p)}, \quad \text{ where } L = (\sqrt{e^{-v} h_1} + \sqrt{H_{\gamma}})^2 H.$$

Finally, choosing  $\delta < \varepsilon/(2\widetilde{C}_{\gamma})$  in (7) we get by (10),

$$\|\widetilde{\psi} - \psi\|_{0,h}^{(M_p)} = \sup_{y \in \Gamma} \sup_{\alpha \in \mathbb{N}_0} \frac{|D^{\alpha} f \circ \mu(y)|}{h^{\alpha} M_{\alpha}} \le \sup_{\alpha \in \mathbb{N}_0} \frac{\widetilde{C}_{\gamma} L^{\alpha}}{h^{\alpha}} \|f\|_{\bar{I}, h_1}^{(M_p)} < \frac{\varepsilon}{2}.$$

To end this section we quote the following version of

Seeley extension theorem ([4], [7]). Let  $\Gamma = [v, \infty)$ ,  $\Gamma_1 = [v_1, \infty)$  with  $v_1 < v$  and  $a \in \mathbb{R}$ . Then there exists a linear continuous extension operator

(12) 
$$\mathcal{E}: L_a^{(M_p)}(\Gamma) \to L_a^{(M_p)}(\Gamma_1)$$

such that for every  $\varphi \in L_a^{(M_p)}(\Gamma)$ , supp  $\mathcal{E}\varphi \subset (v_1, \infty)$ .

Corollary 1. Let S be a linear functional on  $L_{(\omega)}^{(M_p)}(\Gamma)$ . Then  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  if and only if for every  $a < \omega$  there exist h > 0 and  $C < \infty$  such that

(13) 
$$|S[\varphi]| \le C ||\varphi||_{a,h}^{(M_p)} \quad \text{for } \varphi \in L_a^{(M_p)}(\Gamma).$$

2. The Paley–Wiener type theorem for Laplace ultradistributions. We assume the conditions (M.1), (M.2) and (M.3). Let  $\Gamma = [v, \infty)$  with  $v \in \mathbb{R}$ . By Example 2 the function  $\exp_z$  belongs to  $L_{(\omega)}^{(M_p)}(\Gamma)$  if and only if  $\operatorname{Re} z < \omega$ . Hence we can define the Laplace transform of  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  by

$$\mathcal{L}S(z) = S[\exp_z] \quad \text{ for } \operatorname{Re} z < \omega.$$

Since the mapping

$${\operatorname{Re}} z < \omega \} \ni z \to \exp_z \in L^{(M_p)}_{(\omega)}(\Gamma)$$

is holomorphic,  $\mathcal{L}S$  is a holomorphic function on  $\{\operatorname{Re} z < \omega\}$ .

(14) 
$$\mathcal{O}_v^{(M_p)}(\operatorname{Re} z < \omega)$$
  
=  $\{F \in \mathcal{O}(\operatorname{Re} z < \omega) :$ 

for every  $a<\omega$  there exist h>0 and  $C<\infty$  such that

$$|F(z)| \le C \exp\{v \operatorname{Re} z + M(|z|/h)\} \text{ for } \operatorname{Re} z \le a\}.$$

Applying Corollary 1 with  $\varphi = \exp_z$  and Re  $z \leq a$ , by Example 2 we get

THEOREM 1. Let  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  and  $F(z) = \mathcal{L}S(z)$  for  $\operatorname{Re} z < \omega$ . Then  $F \in \mathcal{O}_v^{(M_p)}(\operatorname{Re} z < \omega)$ .

THEOREM 2. Let  $\omega_1 \leq \omega_2$ ,  $S_1 \in L_{(\omega_1)}^{(M_p)'}(\Gamma)$  and  $S_2 \in L_{(\omega_2)}^{(M_p)'}(\Gamma)$ . If (15)  $\mathcal{L}S_1(z) = \mathcal{L}S_2(z)$  for  $\text{Re } z < \omega_1$ 

then 
$$S_1 = S_2$$
 in  $L_{(\omega_1)}^{(M_p)'}(\Gamma)$ .

Proof. We have to prove that for arbitrary  $\varphi \in L_{(\omega_1)}^{(M_p)}(\Gamma)$ ,  $S_1[\varphi] = S_2[\varphi]$ . To this end fix  $\varphi \in L_{(\omega_1)}^{(M_p)}(\Gamma)$ , choose  $b < \omega_1$  such that  $\varphi \in L_b^{(M_p)}(\Gamma)$  and take  $b < a < \omega_1$ . Since by (15),  $S_1[\exp_c] = S_2[\exp_c]$  for  $c \leq a$  the proof follows from Proposition 1.

To prove the converse of Theorem 1 we need two lemmas. The first one is a restatement of Lemma 9.1 of [11] (cf. also [12]).

LEMMA 2. Let  $a \in \mathbb{R}$ . Suppose that G is holomorphic on the set  $\{\text{Re } z \leq b\}$  and satisfies there the estimate

$$|G(z)| \le \frac{C}{\langle z \rangle^2} e^{v \operatorname{Re} z}$$

with some  $C < \infty$ ,  $v \in \mathbb{R}$ . Put

$$g(y) = \frac{1}{2\pi i} \int_{c+i\mathbb{R}} G(z)e^{-zy} dz$$
 for  $y \in \mathbb{R}$ .

Then g does not depend on the choice of  $c \leq b$ ; it is a continuous function on  $\mathbb{R}$  with support in  $\Gamma = [v, \infty)$ ; the function  $\Gamma \ni y \to e^{by}g(y)$  is bounded;  $g \in L_{(b)}^{(M_p)'}(\Gamma)$  and  $G(z) = \mathcal{L}g(z)$  for  $\operatorname{Re} z < b$ .

LEMMA 3. Let  $\widetilde{\omega} \in \mathbb{R}$  and k > 0. Then there exists a symbol P of class  $(M_p)$  not vanishing on  $\{\operatorname{Re} z < \widetilde{\omega} + 1\}$  such that

(16) 
$$\frac{\exp M(k|z|)}{P(z)} \le \frac{1}{\langle z \rangle^2} \quad \text{for } \operatorname{Re} z \le \widetilde{\omega}.$$

Proof. Since  $m_p \to \infty$  as  $p \to \infty$  (by (M.3')) we can find  $p_0 \in \mathbb{N}$  such that  $m_p > 2k|\widetilde{\omega}| + k$  and  $|m_p - kz| \ge k|z|$  for  $p \ge p_0$  and  $\operatorname{Re} z \le \widetilde{\omega}$ . Put

$$P(z) = (z - \widetilde{\omega} - 1)^{p_0 + 1} \prod_{p=p_0}^{\infty} \left(1 - \frac{kz}{m_p}\right)$$
 for  $z \in \mathbb{C}$ .

Then P does not vanish on  $\{\operatorname{Re} z < \widetilde{\omega}\}$  and by the Hadamard factorization theorem (cf. [2], Propositions 4.5 and 4.6) it is a symbol of class  $(M_p)$ . On the other hand, if  $\operatorname{Re} z \leq \widetilde{\omega}$  we estimate from below:

$$\left| \prod_{p=p_0}^{\infty} \left( 1 - \frac{kz}{m_p} \right) \right| \ge \prod_{p=p_0}^{\infty} \left( 1 - \frac{k|\widetilde{\omega}|}{m_p} \right) \sup_{q \ge p_0} \prod_{p=p_0}^{q} \left| 1 - \frac{kz}{m_p} \right|$$

$$\ge \prod_{p=p_0}^{\infty} \left( 1 - \frac{k|\widetilde{\omega}|}{m_p} \right) \sup_{q \ge p_0} \prod_{p=p_0}^{q} \frac{k|z|}{m_p}$$

$$= C|z|^{-p_0+1} \exp M(k|z|),$$

where

$$C = \frac{M_{p_0-1}}{M_0} \prod_{p=p_0}^{\infty} \left(1 - \frac{k|\widetilde{\omega}|}{m_p}\right) > 0.$$

Hence, possibly multiplying P by a suitable constant, we get (16).

THEOREM 3. Let  $\omega \in \mathbb{R} \cup \{\infty\}$  and let  $F \in \mathcal{O}_v^{(M_p)}(\operatorname{Re} z < \omega)$ . Then there exists a Laplace ultradistribution  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  such that

(17) 
$$F(z) = \mathcal{L}S(z) \quad \text{for } \operatorname{Re} z < \omega.$$

Proof. Fix  $a < \omega$ . Choose  $\widetilde{\omega} \in \mathbb{R}$  such that  $a < \widetilde{\omega} < \omega$  and assume (14). By Lemma 3 we can find a symbol P of class  $(M_p)$ , not vanishing on  $\{\text{Re } z < \widetilde{\omega} + 1\}$  and satisfying (16). Next we apply Lemma 2 to the function

$$G(z) = \frac{F(z)}{P(z)}, \quad \operatorname{Re} z \le \widetilde{\omega}.$$

We get a continuous function g which belongs to  $L_{(a)}^{(M_p)'}(\Gamma)$  and satisfies  $\mathcal{L}g(z)=G(z)$  for  $\operatorname{Re} z< a$ . Put S=P(-D)g. Then  $S\in L_{(a)}^{(M_p)'}(\Gamma)$  and  $\mathcal{L}S(z)=P(z)\mathcal{L}g(z)=F(z)$  for  $\operatorname{Re} z< a$ .

Thus for every  $a < \omega$  we can find  $S_a \in L_{(a)}^{(M_p)'}(\Gamma)$  such that  $\mathcal{L}S_a(z) = F(z)$  for Re z < a. By Theorem 2 the definition  $S = S_a$  on  $L_{(a)}^{(M_p)}(\Gamma)$ ,  $a < \omega$ , defines correctly a functional  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  which satisfies (17).

It follows from the proof of Theorem 3 that Laplace ultradistributions can be characterized as follows.

THEOREM 4 (Structure theorem). An ultradistribution  $S \in D^{(M_p)'}(\mathbb{R})$  is in  $L_{(\omega)}^{(M_p)'}(\Gamma)$  if and only if for every  $a < \omega$  there exist an ultradifferential operator  $P_a$  of class  $(M_p)$  and a function  $g_a$  continuous on  $\mathbb{R}$  with support in  $\Gamma$  such that

$$|g_a(y)| \le Ce^{-ay}$$
 for  $y \in \Gamma$ ,  
 $|\mathcal{L}g_a(z)| \le \frac{C}{\langle z \rangle^2} e^{v \operatorname{Re} z}$  for  $\operatorname{Re} z < a$ 

and

(18) 
$$S = P_a(D)g_a \quad \text{in } L_{(a)}^{(M_p)'}(\Gamma).$$

**3. Boundary value representation.** In this section we use the following version of the Phragmén–Lindelöf theorem.

3-LINE THEOREM ([1]). Let R>0 and  $F\in \mathcal{O}(\Gamma_R)\cap C^0(\overline{\Gamma}_R)$ . Suppose that for some k>0 the function

$$\overline{\Gamma}_R \ni z \to \exp\{-k|z|\}F(z)$$

is bounded. If F is bounded on the boundary of  $\overline{\Gamma}_R$  then it is also bounded on  $\Gamma_R$ .

DEFINITION. Let R > 0, k > 0 and  $a \in \mathbb{R}$ . We define the spaces

$$\widetilde{L}_a(\Gamma_R) = \{ \varphi \in \mathcal{O}(\Gamma_R) \cap C^0(\overline{\Gamma}_R) : \|\varphi\|_{a,\Gamma_R} = \sup_{z \in \overline{\Gamma}_R} |\varphi(z)e^{az}| < \infty \},$$

$$\begin{split} \widetilde{L}_{a,k}^{(M_p)}(\varGamma_R \setminus \varGamma) &= \{ \varphi \in \mathcal{O}(\varGamma_R \setminus \varGamma) : \varphi \cdot \exp\{-M^*(k/|\mathrm{Im}\,z|)\} \in C^0(\overline{\varGamma}_R), \\ &\|\varphi\|_{a,k,\varGamma_R}^{(M_p)} = \sup_{z \in \bar{\varGamma}_R} |\varphi(z) \exp\{az - M^*(k/|\mathrm{Im}\,z|)\}| < \infty \}. \end{split}$$

By the 3-line theorem  $\widetilde{L}_a(\Gamma_R)$  is a closed subspace of the Banach space  $\widetilde{L}_{a,k}^{(M_p)}(\Gamma_R \setminus \Gamma)$  and we can define

$$H_{a,k}^{(M_p)}(\varGamma_R,\varGamma) = \widetilde{L}_{a,k}^{(M_p)}(\varGamma_R \setminus \varGamma) / \widetilde{L}_a(\varGamma_R).$$

Further, we define

Further, we define 
$$\widetilde{L}_{a}(\mathbb{C}) = \varprojlim_{R \to \infty} \widetilde{L}_{a}(\Gamma_{R}), \quad \widetilde{L}_{a,k}^{(M_{p})}(\mathbb{C} \setminus \Gamma) = \varprojlim_{R \to \infty} \widetilde{L}_{a,k}^{(M_{p})}(\Gamma_{R} \setminus \Gamma),$$

$$\widetilde{L}_{a}^{(M_{p})}(\mathbb{C} \setminus \Gamma) = \varinjlim_{k \to \infty} \widetilde{L}_{a,k}^{(M_{p})}(\mathbb{C} \setminus \Gamma),$$

$$\widetilde{H}_{a}^{(M_{p})}(\mathbb{C}, \Gamma) = \widetilde{L}_{a}^{(M_{p})}(\mathbb{C} \setminus \Gamma)/\widetilde{L}_{a}(\mathbb{C}), \quad \underbrace{H}_{a}^{(M_{p})}(\Gamma) = \varinjlim_{R \to 0} H_{a,k}^{(M_{p})}(\Gamma_{R}, \Gamma).$$

Let a < b. Then the natural mappings

$$\widetilde{H}_{b}^{(M_{p})}(\mathbb{C},\Gamma) \to \widetilde{H}_{a}^{(M_{p})}(\mathbb{C},\Gamma), \quad \underset{\leftarrow}{H}_{b}^{(M_{p})}(\Gamma) \to \underset{\rightarrow}{H}_{a}^{(M_{p})}(\Gamma)$$

are well defined and by the 3-line theorem they are injections. Thus, for  $\omega \in \mathbb{R} \cup \{\infty\}$ , we can define

$$\widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C},\varGamma) = \varprojlim_{a<\omega} \widetilde{H}_a^{(M_p)}(\mathbb{C},\varGamma), \quad \ \ \underbrace{H}_{(\omega)}^{(M_p)}(\varGamma) = \varprojlim_{a<\omega} \underbrace{H}_a^{(M_p)}(\varGamma).$$

An element  $f \in \widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C}, \Gamma)$  is given by a set  $\{F_a\}_{a<\omega}$  of functions such that for  $a < \omega$ ,  $F_a \in \widetilde{L}_a^{(M_p)}(\mathbb{C} \setminus \Gamma)$  and for  $a < b < \omega$ ,  $F_a - F_b \in \widetilde{L}_a(\mathbb{C})$ . On the other hand, an element  $g \in H_{(\omega)}^{(M_p)}(\Gamma)$  is given by a set  $\{G_a\}_{a<\omega}$  of functions such that for  $a < \omega$  there exist  $R_a > 0$  and  $k_a < \infty$  such that  $G_a \in \widetilde{L}_{a,k_a}^{(M_p)}(\Gamma_{R_a} \setminus \Gamma)$  and for  $a < b < \omega$ ,  $G_a - G_b \in \widetilde{L}_a(\Gamma_{R_a} \cap \Gamma_{R_b}, \Gamma)$ .

The natural mapping

(19) 
$$i: \widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C}, \Gamma) \to \underline{H}_{(\omega)}^{(M_p)}(\Gamma)$$

is defined by retaining the same set of defining functions. Obviously it is an injection.

LEMMA 4. Let  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  and  $a < \omega$ . Put

$$C_a S(z) = \frac{1}{2\pi i} S\left[\frac{e^{a(\cdot - z)}}{z - \cdot}\right] \quad \text{for } z \in \mathbb{C} \setminus \Gamma.$$

Then  $C_a S \in \widetilde{L}_a^{(M_p)}(\mathbb{C} \setminus \Gamma)$ . Furthermore, if  $a < b < \omega$  then  $C_a S - C_b S \in \widetilde{L}_a(\mathbb{C})$ .

Proof. Take  $a < c < \omega$ . By Theorem 4 we can find an ultradifferential operator  $P_c$  of class  $(M_p)$  and a continuous function  $g_c$  with support in  $\Gamma$  satisfying  $|g_c(y)| \leq Ce^{-cy}$  for  $y \in \Gamma$  and  $S = P_c(D)g_c$  in  $L_{(c)}^{(M_p)'}(\Gamma)$ . Since for fixed  $z \in \mathbb{C} \setminus \Gamma$  the function

$$\Gamma \ni y \to \frac{e^{a(y-z)}}{z-y}$$

belongs to  $L_{(c)}^{(M_p)}(\Gamma)$  we have

$$C_a(z) = \frac{1}{2\pi i} e^{-az} \int_{\Gamma} g_c(y) P_c^*(D_y) \left(\frac{e^{ay}}{z - y}\right) dy.$$

Let  $P_c^*(D) = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} a_{\alpha} D^{\alpha}$  with  $a_{\alpha}$  satisfying (5) and let R > 0. Then for  $z \in \Gamma_R \setminus \Gamma$  we estimate

$$\left| P_c^*(D) \left( \frac{e^{ay}}{z - y} \right) \right| \le \sum_{\alpha = 0}^{\infty} |a_{\alpha}| \left| D^{\alpha} \left( \frac{e^{ay}}{z - y} \right) \right| \le e^{ay} \sum_{\beta = 0}^{\infty} \frac{|a|^{\beta}}{\beta!} \sum_{\alpha = \beta}^{\infty} \frac{|a_{\alpha}| \alpha!}{|\operatorname{Im} z|^{\alpha - \beta + 1}}$$

$$\le e^{ay} \sum_{\beta = 0}^{\infty} \frac{|a|^{\beta} R^{\beta}}{\beta!} \sum_{\alpha = 0}^{\infty} \frac{|a_{\alpha}| \alpha!}{|\operatorname{Im} z|^{\alpha + 1}}$$

$$\le e^{ay + |a|R} \cdot \frac{AC}{HK} \exp M^* \left( \frac{2HK}{|\operatorname{Im} z|} \right)$$

since by (5) and (M.2') we have

$$\sum_{\alpha=0}^{\infty} \frac{|a_{\alpha}|\alpha!}{|\operatorname{Im} z|^{\alpha+1}} \le C \sum_{\alpha=0}^{\infty} \frac{K^{\alpha} \alpha!}{|\operatorname{Im} z|^{\alpha+1} M_{\alpha}} \le 2C \sup_{\alpha \in \mathbb{N}_{0}} \frac{(2K)^{\alpha} \alpha!}{|\operatorname{Im} z|^{\alpha+1} M_{\alpha}}$$
$$\le \frac{2AC}{2HK} \sup_{\alpha \in \mathbb{N}_{0}} \frac{(2HK)^{\alpha+1} \alpha!}{|\operatorname{Im} z|^{\alpha+1} M_{\alpha+1}} \le \frac{AC}{HK} \exp M^{*} \left(\frac{2HK}{|\operatorname{Im} z|}\right).$$

Put k=2HK. Then for every R>0 there exists  $C<\infty$  such that

$$|\mathcal{C}_a S(z)| \leq C \exp\{-a \operatorname{Re} z + M^*(k/|\operatorname{Im} z|)\}$$
 for  $z \in \Gamma_R \setminus \Gamma$ .

Thus,  $C_a S \in \widetilde{L}_a^{(M_p)}(\mathbb{C} \setminus \Gamma)$ . If  $a < b < \omega$  we take  $c < \omega$  such that b < c and

note that for  $z \in \mathbb{C}$  the function

$$\varGamma\ni y\to \frac{e^{a(y-z)}-e^{b(y-z)}}{z-y}$$

belongs to  $L_{(c)}^{(M_p)}(\Gamma)$ . Thus, the holomorphic extension of  $C_aS - C_bS$  is given by

$$(\mathcal{C}_a S - \mathcal{C}_b S)(z) = \frac{1}{2\pi i} \int_{\Gamma} g_c(y) P_c^*(D) \left( \frac{e^{a(y-z)} - e^{b(y-z)}}{z - y} \right) dy$$

and we easily find that  $C_a - C_b \in \widetilde{L}_a(\mathbb{C})$ .

DEFINITION. Let  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$ . Then by Lemma 4 the set  $\{\mathcal{C}_a S\}_{a<\omega}$  of functions defines an element  $f \in \widetilde{H}_{(\omega)}^{(M_p)}(\Gamma)$ . We call f the Cauchy transform of S and write  $f = \mathcal{C}S$ .

PROPOSITION 2. Let  $F_a \in \widetilde{L}_{a,k}^{(M_p)}(\Gamma_R \setminus \Gamma)$  with  $a \leq 0$ . Then there exist an ultradifferential operator  $P_a(D)$  of class  $(M_p)$  and functions  $H_a^{\pm} \in \mathcal{O}(\Gamma_R \cap \{\pm \operatorname{Im} z > 0 \text{ or } \operatorname{Re} z < v\})$  such that

1° 
$$P_a(D)H_a^{\pm} = F_a;$$

 $2^{\circ}$  For every 0 < R' < R and a' < a there exists  $C < \infty$  such that

$$|H_a^{\pm}(z)| \le C \exp\{-a' \operatorname{Re} z\} \quad \text{for } z \in \Gamma_{R'} \cap \{\pm \operatorname{Im} z > 0\};$$

 $3^{\circ} H_a^{\pm}(x+iy)$  converges uniformly as  $y\to 0+$  to a function  $h_a^{\pm}$  continuous on  $(v-R,\infty)$  and analytic on (v-R,v) satisfying

$$|h_a^{\pm}(x)| \le C \exp\{-a'x\}$$
 for  $x \in (v - R', \infty)$ .

Furthermore, if we put

$$S_a = F_a^+(x+i0) - F_a^-(x-i0), \quad \text{where } F_a^\pm(x\pm i0) = P_a(D)h_a^\pm,$$

then  $S_a$  extends to a Laplace ultradistribution  $\widetilde{S}_a \in L_{(a)}^{(M_p)'}(\Gamma)$  defined by

(20) 
$$\widetilde{S}_a[\varphi] = \int_{v-R}^{\infty} (h_a^+(x) - h_a^-(x)) P_a^*(D) \mathcal{E}\varphi(x) dx \quad \text{for } \varphi \in L_{(a)}^{(M_p)}(\Gamma).$$

In (20),  $\mathcal{E}$  is a linear continuous extension mapping  $\mathcal{E}: L_{(a)}^{(M_p)}(\Gamma) \to L_{(a)}^{(M_p)}([v-R,\infty))$ , which exists by the Seeley extension theorem.

Proof. Put

$$P(\zeta) = (1+\zeta)^2 \prod_{p=1}^{\infty} \left(1 + \frac{k\zeta}{m_p}\right)$$
 for  $\zeta \in \mathbb{C}$ .

Then P is a symbol of class  $(M_n)$ . Define the Green kernel for P by

$$G(z) = \frac{1}{2\pi i} \int_{0}^{\infty} \frac{e^{z\zeta}}{P(\zeta)} d\zeta$$
 for Re  $z < 0$ .

Then by Lemma 11.4 of [2], G can be holomorphically continued to the Riemann domain  $\{z: -\pi/2 < \arg z < 5\pi/2\}$ , on which we have

$$P(D)G(z) = -\frac{1}{2\pi i} \frac{1}{z}.$$

Furthermore, since for any  $0 < \psi < \pi/2$ ,

$$\frac{|z|}{|1-z|} \leq \frac{1}{\cos \psi} \quad \text{and} \quad \frac{1}{|1-z|} \leq \frac{1}{\cos \psi}$$

for  $z \in \mathbb{C}$  with  $|\arg z| \leq \psi + \pi/2$ , following the proof of the above-mentioned lemma we conclude that on the domain  $\{-\psi \leq \arg z \leq 2\pi + \psi\}$ , G is bounded by  $C/\cos \psi$  with  $C < \infty$  not depending on  $\psi$ . We also have

$$|g(x)| \le A\sqrt{x} \exp\{-M^*(k/x)\} \quad \text{for } x > 0,$$

where

$$g(z) = G_{+}(z) - G_{-}(e^{2\pi i}z)$$
 for Re  $z > 0$ ,

 $G_+$  being the branch of G on  $\{-\pi/2 < \arg z < \pi/2\}$  and  $G_-$  that on  $\{3\pi/2 < \arg z < 5\pi/2\}$ . Put

$$H_a^{\pm}(z) = \pm i \int_{\gamma_{\pm}} G(\pm i(z-w)) F_a(w) dw,$$

where  $\gamma_{\pm}$  is a closed curve encircling z once, in the anticlockwise direction, such that  $-\pi/2 < \arg(\pm i(z-w)) < 5\pi/2$  for  $w \in \gamma_{\pm}$ . We choose a starting point  $\mathring{z}_{\pm}$  of  $\gamma_{\pm}$  in such a way that  $|\arg\{\pm i(z-\mathring{z}_{\pm})\}| < \pi/2$ . Then  $H_a^{\pm}$  is a holomorphic function on  $\Gamma_R \cap \{\pm \operatorname{Im} z > 0 \text{ or } \operatorname{Re} z < v\}$  and does not depend on the choice of  $\gamma_{\pm}$  with a fixed starting point  $\mathring{z}_{\pm}$ . For a fixed  $\gamma$  and z changing in a compact set in the domain bounded by  $\gamma$  we have

$$P(D)H_a^{\pm}(z) = \pm i \int_{\gamma} P(D_z)G(\pm i(z-w))F_a(w) dw$$
$$= \frac{-1}{2\pi i} \int_{\gamma} \frac{F_a(w)}{z-w} dw = F_a(z).$$

Let 0 < R' < R and  $z \in \Gamma_{R'} \cap \{\operatorname{Im} z > 0\}$ . Fix  $\mathring{z} \in \Gamma_R \cap \{\operatorname{Im} z > r'\} \cap \{\operatorname{Re} z < v - R'\}$  and take  $\gamma_+ = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ , where  $\gamma_1 = [\mathring{x} + i\mathring{y}, x + i\mathring{y}],$   $\gamma_2 = [x + i\mathring{y}, x + iy], \ \gamma_3 = [x + iy, x + i\mathring{y}] \text{ and } \gamma_4 = [x + i\mathring{y}, \mathring{x} + i\mathring{y}].$  Since  $0 \le \arg(i(z - w)) \le \psi$  for  $w \in \gamma_1$  and  $2\pi \le \arg(i(z - w)) \le 2\pi + \psi$  for  $w \in \gamma_4$ , where  $0 \le \psi < \pi/2$  is such that  $\tan \psi = (x - \mathring{x})/(\mathring{y} - y)$ , by the

boundedness of G on  $\{0 \le \arg \psi \le 2\pi + \psi\}$  we have  $|G(i(z-w))| \le Cx$  for  $w \in \gamma_1 \cup \gamma_4$ , where C does not depend on x. So

$$\left| \int_{\gamma_1 \cup \gamma_4} G(i(z-w)) F_a(w) dw \right| \le C x^2 e^{-ax} \quad \text{for } z \in \Gamma_{R'} \cap \{\text{Im } z > 0\}.$$

On the other hand,

$$\left| \int_{\gamma_2 \cup \gamma_3} G(i(z - w)) F_a(w) dw \right| = \left| -i \int_0^{\hat{y} - y} g(t) F(x + i(y + t)) dt \right|$$

$$\leq AC \int_0^{\hat{y} - y} \sqrt{t} \exp\left\{ M^* \left( \frac{k}{y + t} \right) - M^* \left( \frac{k}{t} \right) - ax \right\} dt$$

$$\leq AC (\hat{y} - y)^{3/2} e^{-ax} \quad \text{for } z \in \Gamma_{R'} \cap \{ \text{Im } z > 0 \}.$$

Thus, for any a' < a one can find  $C < \infty$  such that

$$|H_a^+(z)| \le Ce^{-a'x}$$
 for  $z \in \Gamma_{R'} \cap {\text{Im } z > 0}$ .

The estimate of  $H_a^-$  is obtained in an analogous way.

The assertion  $3^{\circ}$  is clear from the above estimates.

Let  $\psi \in D^{(M_p)}((v-R,\infty))$ . By 1° and 2° we derive

$$F_{a}(x \pm i0)[\psi] = P_{a}(D)h_{a}^{\pm}[\psi] = \int_{v-R}^{\infty} h_{a}^{\pm}(x)P_{a}^{*}(D)\psi(x) dx$$
$$= \lim_{y \to 0+} \int_{v-R}^{\infty} H_{a}(x \pm iy)P_{a}^{*}(D)\psi(x) dx$$
$$= \lim_{y \to 0+} \int_{v-R}^{\infty} F_{a}(x \pm iy)\psi(x) dx.$$

Since for  $\psi \in D^{(M_p)}((v-R,v))$ ,

$$S_a[\psi] = \lim_{y \to 0+} \int_{v-R}^{v} P_a(D) (H_a^+(x+iy) - H_a^-(x-iy)) \psi(x) \, dx = 0,$$

 $S_a$  has support in  $\Gamma$  and we can define the extension of  $S_a$  by (20).

Let  $f \in H_a^{(M_p)}(\Gamma)$ . Then there exist R > 0,  $k < \infty$  and a function  $F_a \in \widetilde{L}_{a,k}^{(M_p)}(\widetilde{\Gamma}_R \setminus \Gamma)$  such that  $f = [F_a]$ . If  $a \le 0$  we can apply Proposition 2 to  $F_a$ . If a > 0 then we apply Proposition 2 to  $F_a^* = e^{az}F_a$  instead of  $F_a$ . In this case denote by  $\widetilde{S}_a^*$  the element of  $L_{(0)}^{(M_p)'}(\Gamma)$  given by (20) and define  $\widetilde{S}_a = e^{-ax}\widetilde{S}_a^*$ . In both cases  $\widetilde{S}_a \in L_{(a)}^{(M_p)'}(\Gamma)$  does not depend on the choice of a defining function  $F_a$  for f. Thus, the assignment  $f \to \widetilde{S}_a$  defines a

mapping

(21) 
$$b: H_a^{(M_p)}(\Gamma) \to L_{(a)}^{(M_p)'}(\Gamma).$$

Since (21) holds for every  $a < \omega$  we have

$$b: \underset{\sim}{H^{(M_p)}} \to \varprojlim_{a < \omega} L_{(a)}^{(M_p)\prime}(\Gamma) \simeq (\lim_{a < \omega} L_{(a)}^{(M_p)}(\Gamma))' = L_{(\omega)}^{(M_p)\prime}(\Gamma),$$

where the isomorphism  $\simeq$  follows by the formula (1.2) of [2].

Theorem 5. The mapping

$$\mathcal{C}: L_{(\omega)}^{(M_p)'}(\Gamma) \to \widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C}, \Gamma)$$

is a topological isomorphism with inverse  $b \circ i$ .

Proof. Let  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  and  $CS = f \in \widetilde{H}_{(\omega)}^{(M_p)}(\Gamma)$ . Then

$$f = [\{F_a\}_{a < \omega}]$$
 with  $F_a(z) = \frac{1}{2\pi i} S \left[ \frac{e^{a(\cdot - z)}}{z - \cdot} \right]$  for  $z \in \mathbb{C} \setminus \Gamma$ .

Treat f as an element of  $H_{(\omega)}^{(M_p)}(\Gamma)$  and put  $\widetilde{S} = b(f) \in L_{(\omega)}^{(M_p)'}(\Gamma)$ . Fix  $a < \omega$ . Then for  $\varphi \in Y_{(a)}$  we have

$$\widetilde{S}[\varphi] = -\int_{\partial \Gamma_{\varepsilon}} F_{a}(z)\varphi(z) dz = S\left[-\frac{1}{2\pi i}\int_{\partial \Gamma_{\varepsilon}} \frac{e^{a(\cdot - z)}}{z - \cdot}\varphi(z) dz\right] = S[\varphi],$$

by the Cauchy integral formula. Since  $Y_{(a)}$  is dense in  $L_{(a)}^{(M_p)}(\Gamma)$  and  $a < \omega$  is arbitrary, we have  $\widetilde{S}[\varphi] = S[\varphi]$  for  $\varphi \in L_{(\omega)}^{(M_p)}(\Gamma)$ . Thus  $b \circ i \circ \mathcal{C} = \mathrm{id}$ .

Let  $f \in \widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C}, \Gamma)$ ,  $f = [\{F_a\}_{a < \omega}]$  with  $F_a \in \widetilde{L}_a^{(M_p)}(\mathbb{C} \setminus \Gamma)$  and  $F_a - F_b \in \widetilde{L}_a(\mathbb{C})$  for  $a < b < \omega$ . Put f = i(f) and fix  $a < \omega$ . Then  $f = [F_a]$  in  $H_a^{(M_p)}(\Gamma)$  and by (21),  $\widetilde{S}_a = b(\widetilde{f}) \in L_{(a)}^{(M_p)'}(\Gamma)$ . Observe that for  $\varepsilon > 0$  we have

$$\widetilde{S}_a[\varphi] = -\int_{\partial \Gamma_{\varepsilon}} F_a(z)\varphi(z) dz \quad \text{ for } \varphi \in Y_{(a)}.$$

On the other hand, by the part of the theorem just proved,

$$\widetilde{S}_a[\varphi] = -\int_{\partial \Gamma_{\varepsilon}} \frac{1}{2\pi i} \widetilde{S}_a \left[ \frac{e^{a(\cdot - z)}}{z - \cdot} \right] \varphi(z) dz \quad \text{for } \varphi \in Y_{(a)}.$$

So for  $\varphi \in Y_{(a)}$ ,

(22) 
$$\int_{\partial \Gamma_{\varepsilon}} \psi_{a}(z)\varphi(z) dz = 0, \text{ where } \psi_{a}(z) = \frac{1}{2\pi i}\widetilde{S}_{a} \left[ \frac{e^{a(\cdot - z)}}{z - \cdot} \right] - F_{a}(z).$$

Then  $\psi_a \in \widetilde{L}_{a,k}^{(M_p)}(\mathbb{C} \setminus \Gamma)$  and we shall show that  $\psi_a$  extends holomorphically to a function  $\widetilde{\psi}_a \in \widetilde{L}_a(\mathbb{C})$ , which proves that  $\mathcal{C} \circ b \circ i = \text{id}$ . To this end observe that (22) holds also for  $\varphi \in L_{(a)}^{(M_p)}(\Gamma) \cap \mathcal{O}(\Gamma_{\varepsilon})$  and put for any  $b < a, R > \varepsilon$ ,

$$G_b(z) = \int_{\partial \Gamma_R} \psi_a(\zeta) \frac{e^{b(\zeta - z)}}{z - \zeta} d\zeta \quad \text{for } z \in \Gamma_R.$$

Then  $|G_b(z)| \leq C \exp\{-b \operatorname{Re} z\}$  for  $z \in \overline{\Gamma}_{R'}$  with R' < R. Using (22) with  $\varphi(\zeta) = \exp\{b(\zeta - z)\}/(z - \zeta), \ z \in \Gamma_R \setminus \overline{\Gamma}_{\varepsilon}$ , we get  $G_b(z) = \psi_a(z)$  for  $z \in \Gamma_R \setminus \overline{\Gamma}_{\varepsilon}$ . Put

$$\widetilde{\psi}_a(z) = \begin{cases} \psi_a(z) & \text{for } z \in \Gamma_R \setminus \Gamma, \\ G_b(z) & \text{for } z \in \Gamma_R. \end{cases}$$

Then  $\widetilde{\psi}_a \in \mathcal{O}(\Gamma_R)$  and by the 3-line theorem  $\widetilde{\psi}_a \in \widetilde{L}_a(\Gamma_R)$ . Since  $R > \varepsilon$  was arbitrary we have  $\widetilde{\psi} \in \widetilde{L}_a(\mathbb{C})$ .

## 4. Mellin ultradistributions

DEFINITION. Let  $\omega \in \mathbb{R} \cup \{\infty\}$ ,  $v \in \mathbb{R}$  and  $I = (0, e^{-v}]$ . We define the space  $M_{(\omega)}^{(M_p)'}(I)$  of *Mellin ultradistributions* as the dual space of

$$M_{(\omega)}^{(M_p)}(I) = \lim_{a < \omega} \varprojlim_{h > 0} M_{a,h}^{(M_p)}(I),$$

where for any  $a \in \mathbb{R}$  and h > 0,

$$M_{a,h}^{(M_p)}(I) = \bigg\{\psi \in C^\infty(I): \varrho_{a,h}^{(M_p)}(\psi) = \sup_{x \in I} \sup_{\alpha \in \mathbb{N}_0} \frac{|x^{a+1}(Dx)^\alpha \psi(x)|}{h^\alpha M_\alpha} < \infty \bigg\}.$$

Lemma 5. Let  $a \in \mathbb{R}$ , h > 0,  $\psi \in M_{a,h}^{(M_p)}(I)$  and  $\varphi = \mu \cdot \psi \circ \mu$ . Then  $\varphi \in L_{a,h}^{(M_p)}(\Gamma)$  and  $\|\varphi\|_{a,h}^{(M_p)} = \varrho_{a,h}^{(M_p)}(\psi)$ . Thus, the mapping

$$M_{(\omega)}^{(M_p)}(I) \ni \psi \to \mu \cdot \psi \circ \mu \in L_{(\omega)}^{(M_p)}(\Gamma)$$

is a continuous isomorphism with inverse

$$L_{(\omega)}^{(M_p)}(\Gamma) \ni \varphi \to \exp_1 \circ \mu^{-1} \cdot \varphi \circ \mu^{-1} \in M_{(\omega)}^{(M_p)}(I).$$

Proof. The proof follows easily from the formula

 $D_y^{\alpha}(\mu(y)\psi \circ \mu(y)) = (-1)^{\alpha} x (D_x x)^{\alpha} \psi(x), \quad \text{ for } \alpha \in \mathbb{N}_0, \ x = \mu(y),$  which can be proved by induction.

Let 
$$S \in L_{(\omega)}^{(M_p)\prime}(\Gamma)$$
. Put

$$S \circ \mu^{-1}[\psi] = S[\mu \cdot \psi \circ \mu] \quad \text{for } \psi \in M_{(\omega)}^{(M_p)}(I).$$

Then by Lemma 5,  $S \circ \mu^{-1}$  is a well defined element of  $M_{(\omega)}^{(M_p)'}(I)$  and the mapping

$$L_{(\omega)}^{(M_p)\prime}(\Gamma)\ni S\to S\circ\mu^{-1}\in M_{(\omega)}^{(M_p)\prime}(I)$$

is continuous.

Observe that the function

$$I \ni x \to x^{-z-1} = \exp_{z+1} \circ \mu^{-1}(x)$$

belongs to  $M_{(\omega)}^{(M_p)}(I)$  if and only if  $\operatorname{Re} z < \omega$ . Thus, we can define the *Mellin transform* of  $T \in M_{(\omega)}^{(M_p)'}(I)$  by

$$\mathcal{M}T(z) = T[\exp_{z+1} \circ \mu^{-1}]$$
 for  $\operatorname{Re} z < \omega$ .

Let  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$  and  $T = S \circ \mu^{-1}$ . Then for Re  $z < \omega$  we have

$$\mathcal{M}T(z) = S \circ \mu^{-1}[\exp_{z+1} \circ \mu^{-1}] = S[\exp_z] = \mathcal{L}S(z).$$

## 5. Strong quasi-analyticity principle

DEFINITION. Let  $S \in L^{(M_p)'}_{(\omega)}(\Gamma)$ . We define the Taylor transform of S by

$$TS(x) = \mathcal{L}S(\ln x)$$
 for  $x \in \widetilde{B}(e^{\omega})$ .

We also define

$$\mathcal{O}_v^{(M_p)}(\widetilde{B}(e^{\omega}))$$

$$= \{ u \in \mathcal{O}(\widetilde{B}(e^{\omega})) :$$

for every  $t < e^{\omega}$  there exist  $k < \infty$  and  $C < \infty$  such that

$$|u(x)| \le C \exp\{M(k(\omega - \ln|x| + |\arg x|))\} \cdot |x|^v \text{ for } |x| \le t\}.$$

By Theorems 1 and 3 we get

THEOREM 6. The Taylor transformation is an isomorphism of  $L_{(\omega)}^{(M_p)'}(\Gamma)$  onto  $\mathcal{O}_v^{(M_p)}(\widetilde{B}(e^{\omega}))$ .

Let  $u \in \mathcal{O}_v^{(M_p)}(\widetilde{B}(e^{\omega}))$ . Then for any  $t < e^{\omega}$ ,  $u_{|(0,t]} \in M_{(v)}^{(M_p)'}((0,t])$  and

$$\mathcal{M}_t u(z) = \int_0^t u(x) x^{-z-1} dx$$
 for  $\operatorname{Re} z < v$ .

By Theorem 6, u(x) = S[x] for  $x \in \widetilde{B}(e^{\omega})$  with  $S = \mathcal{T}^{-1}u \in L_{(\omega)}^{(M_p)'}(\Gamma)$ ,  $\Gamma = [v, \infty)$ . For Re z < v we derive

$$\mathcal{M}_t u(z) = S \left[ \int_0^t x^{-z-1} dx \right] = S \left[ \frac{t^{-z}}{z} \right] = -2\pi i \mathcal{C}_{\ln t} S(z).$$

Thus, by Lemma 4,  $\mathcal{M}_t u$  extends holomorphically to a function  $\mathcal{M}_t u \in \widetilde{L}_{\ln t}^{(M_p)}(\mathbb{C} \setminus \Gamma)$  and the set of functions  $\{\mathcal{M}_t u\}_{t < e^{\omega}}$  defines an element of  $\widetilde{H}_{(\omega)}^{(M_p)}(\mathbb{C}, \Gamma)$ , which will be denoted by  $\mathcal{M}u$  and called the *Mellin transform* of u

We can summarize Theorems 1, 3, 5 and 6 as follows:

COROLLARY 2. We have the following diagram of linear topological isomorphisms:



Following [13] we call the elements of  $\mathcal{O}_v^{(M_p)}(\operatorname{Re} z < \omega)$  generalized analytic functions determined by  $L_{(\omega)}^{(M_p)'}(\Gamma)$ . Generalized analytic functions have the following quasi-analyticity property:

THEOREM 7. Let  $u \in \mathcal{O}_v^{(M_p)}(\widetilde{B}(e^{\omega}))$ . Suppose that for some  $t < e^{\omega}$  and every  $m \in \mathbb{N}$  there exist  $C_m$  such that

$$|u(x)| \le C_m x^m$$
 for  $0 < x \le t$ .

Then  $u \equiv 0$ .

Proof. By Theorem 6,  $u(x) = \mathcal{T}S(x)$  for  $x \in \widetilde{B}(e^{\omega})$  with some  $S \in L_{(\omega)}^{(M_p)'}(\Gamma)$ . The assumption that u is flat of arbitrary order  $m \in \mathbb{N}$  on (0,t) implies that  $\mathcal{M}_t u \in \mathcal{O}(\mathbb{C})$ . Since for every R > 0,  $L_{a,k}^{(M_p)}(\Gamma_R) \cap \mathcal{O}(\Gamma_R) = L_a(\Gamma_R)$ ,  $\mathcal{M}u$  defines the zero element in  $\widetilde{H}_{(\omega)}^{(M_p)}(\Gamma)$ . Thus S = 0 and  $u \equiv 0$ .

Theorem 8 (Strong quasi-analyticity principle). Let  $-\pi/2 < \theta < \pi/2$ ,  $l_{\theta} = \{z = re^{i\theta} : r > 0\}$  and  $F \in \mathcal{O}(\operatorname{Re} z > 0)$ . Suppose that for some  $v \in \mathbb{R}$  and every  $\kappa > 0$  there exist  $k < \infty$  and  $C < \infty$  such that

(23) 
$$|F(z)| \le C \exp\{v \operatorname{Re} z + M(k|z|)\} \quad \text{for } \operatorname{Re} z \ge \kappa.$$

If for some  $\tau > 0$  and every  $m \in \mathbb{N}$  there exists  $C_m < \infty$  such that

(24) 
$$|F(z)| \le C_m e^{-m \operatorname{Re} z} \quad \text{for } z \in l_\theta, \operatorname{Re} z \ge \tau,$$

then  $F \equiv 0$ .

Proof. Put  $u(x) = F \circ \mu^{-1}(x)$  for  $x \in \widetilde{B}(1)$ . Then  $u \in \mathcal{O}_v^{(M_p)}(\widetilde{B}(1))$ . Set  $t = e^{-\tau}$ , let  $\gamma_{t,\theta}$  be the set of  $x \in \widetilde{B}(1)$  that satisfy

$$x = \begin{cases} t \exp\{-ir\sin\theta\} & \text{for } 0 \le r \le \tau/\cos\theta, \\ \exp\{-r(\cos\theta + i\sin\theta)\} & \text{for } r \ge \tau/\cos\theta, \end{cases}$$

and observe that

(25) 
$$\mathcal{M}_t u(z) = \int_{\gamma_{t,\theta}} u(x) x^{-z-1} \quad \text{for } z \in \Omega_{v,\theta},$$

where  $\Omega_{v,\theta} = \{z \in \mathbb{C} : \operatorname{Re} z < v \text{ and } \sin \theta \operatorname{Im} z > \cos \theta (\operatorname{Re} z - v)\}$ . Using (24) we infer that the right hand side of (25) is defined for  $z \in \mathbb{C}$ . Thus,  $\mathcal{M}_t u \in \mathcal{O}(\mathbb{C})$ . As in the proof of Theorem 7 this implies that  $u \equiv 0$  and hence  $F \equiv 0$ .

Remark 3. The conclusion of Theorem 8 does not hold if instead of (23) we assume that for every  $\varepsilon > 0$  and  $\kappa > 0$  there exists  $C_{\varepsilon,\kappa}$  such that

$$|F(z)| \le C_{\varepsilon,\kappa} \exp\{v \operatorname{Re} z + \varepsilon |z|\}$$
 for  $\operatorname{Re} z \ge \kappa$ .

In this case the function  $u = F \circ \mu^{-1}$  is the Taylor transform of an analytic functional with carrier at  $\{\infty\}$  and need not be equal to zero.

Remark 4. The results of the paper can be easily extended to the n-dimensional case if  $\Gamma$  is a cone of product type. The case of an arbitrary convex, proper cone in  $\mathbb{R}^n$  is more difficult and will be studied in a subsequent paper.

## References

- [1] E. Hille, Analytic Function Theory, Vol. 2, Chelsea, New York, 1962.
- [2] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25–105.
- [3] —, Ultradistributions, II. The kernel theorem and ultradistributions with support in a submanifold, ibid. 24 (1977), 607–628.
- [4] M. Langenbruch, Bases in spaces of ultradifferentiable functions with compact support, Math. Ann. 281 (1988), 31-42.
- [5] G. Łysik, Generalized analytic functions and a strong quasi-analyticity principle, Dissertationes Math. 340 (1995), 195–200.
- [6] S. Mandelbrojt, Séries adhérentes, régularisation de suites, applications, Gauthier-Villars, Paris, 1952.
- [7] R. Meise and A. Taylor, Linear extension operators for ultradifferentiable functions of Beurling type on compact sets, Amer. J. Math. 111 (1989), 309–337.
- [8] M. Morimoto, Analytic functionals with non-compact carrier, Tokyo J. Math. 1 (1978), 77–103.
- [9] S. Pilipović, Tempered ultradistributions, Boll. Un. Mat. Ital. B (7) 2 (1988), 235–251.

- [10] C. Roumieu, Ultra-distributions définies sur  $\mathbb{R}^n$  et sur certaines classes de variétés différentiables, J. Anal. Math. 10 (1962-63), 153–192.
- [11] Z. Szmydt and B. Ziemian, The Mellin Transformation and Fuchsian Type Partial Differential Equations, Kluwer, Dordrecht, 1992.
- [12] A. H. Zemanian, Generalized Integral Transformations, Interscience, 1969.
- [13] B. Ziemian, Generalized analytic functions, Dissertationes Math., to appear.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
P.O. BOX 137
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND
E-mail: LYSIK@IMPAN.GOV.PL

Reçu par la Rédaction le 7.5.1994 Révisé le 31.5.1995