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Laplace ultradistributions on a half line
and a strong quasi-analyticity principle

by GRZEGORZ Lysik (Warszawa)

Abstract. Several representations of the space of Laplace ultradistributions sup-
ported by a half line are given. A strong version of the quasi-analyticity principle of
Phragmén—Lindel6f type is derived.

The theory of ultradistributions was founded by Buerling and Roumieu
in the sixties as a generalization of the theory of Schwartz distributions.
Since then it was extensively studied by many authors: Bjork, Braun, Ko-
matsu, Meise, Pilipovié¢, Taylor , ..., to mention but a few. The most system-
atic treatment was presented by Komatsu [2], [3]. He derived, in particular,
the boundary value representation of the space D) (£2) of ultradistri-
butions on an open set 2 C R", structure theorems for D»)(§2) and
described the image of the space D%Mp)/ of ultradistributions with com-
pact support in K under the Fourier-Laplace transformation. Following
his approach Pilipovié¢ [9] recently introduced and investigated the space
S(Mp)/(R) of tempered ultradistributions. On the other hand, in the study
of the Laplace transformation it is convenient to consider the space L’( ) (I
of Laplace distributions of type w € R supported by a half line I". Since in
the logarithmic variables the Laplace transformation is the Mellin transfor-
mation we refer here to the book of Szmydt and Ziemian [11], where the
latter transformation was systematically studied following the approach of
Zemanian [12].

The aim of the present paper is to unify the theory of ultradistributions
with that of Laplace distributions. We present it in the case of the space
LE%’))/(F) of Laplace ultradistributions of Buerling type. Our theory is based
on the Seeley type extension theorems for ultradifferentiable functions re-
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14 G. Lysik

cently proved by Langenbruch [4] and Meise and Taylor [7]. We describe
the image of the space LE%” )'(F) under the Laplace, Taylor and (modified)
Cauchy transformations. In the latter case we follow the method of Mo-
rimoto [8]. As an application of our theory we give, in the final section,
a version of the quasi-analyticity principle of Phragmén—Lindelof type. It
says that a function holomorphic and of exponential type in the half plane
{Re z > 0} vanishes if it satisfies some growth conditions along vertical lines
and decreases superexponentially along a ray in {Rez > 0}.

0. Notation. Let ¢t > 0. We denote by B(t) the universal covering of
the punctured disc B(t) \ {0} and by C that of C\ {0}. We treat B(t) and
C as Riemann manifolds. Recall that any point = € B (t) can be written in
the form x = |z|expiargz with |z| < t.

We denote by p: C — C the biholomorphism

u(z)=e* for z € C,
ile. p(z) ==z € C with |z| = e" R argz = —Imz. Then the inverse
mapping u~ ! : C — C is given by
p'(z) = —Ilnz forz eC.
Let v € R. We set
I'y=[v,00) and I,=(0,e”"].

Observe that I, = u(I3,). In the following we omit the subscript v as long
as it is fixed. For z € C we define the function exp, : R — C by

exp,y =€, yelk
For A C C we set
A. ={z € C:dist(z,4) <e}, &>0.

We write D for the differential operator d/dx.

Let {P;};er be a family of multivalued vector spaces. Then lim,cr T
(resp. limrer Pr) denotes the inductive limit (resp. projective limit) of P,
Tel.

O(W) denotes the set of holomorphic functions on an open subset W of

some Riemann manifold. The value of a functional S on a test function ¢ is
denoted by S[¢].

1. Laplace ultradistributions on a half line. Let (M),),en, be a
sequence of positive numbers. Throughout the paper we assume that (M)
satisfies the following conditions:
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(M.1)  (Logarithmic convezity)
M}? <M, 1My forpeNN;

(M.2)  (Stability under ultradifferential operators) There are constants
A, H such that

M, < AH? Or<nir<1 MyM,_, for p € Np;
<q<
(M.3)  (Strong non-quasi-analyticity) There is a constant A such that

oo

M,y M
<A d for p € N.
Mq pMp—i-l P

q=p+1

Some results remain valid when (M.2), (M.3) are replaced by the follow-
ing weaker conditions:

(M.2")  (Stability under differential operators) There are constants A, H
such that

My < AHPM,  for p € Ny;
(M.3")  (Non-quasi-analyticity)

o0

M,
> < 0.
p=1 My

Define

my = M,/M,_1 forpeN.

Then (M.1) is equivalent to saying that the sequence m,, is non-decreasing,
and by (M.3’) it follows that m, — oo.

Note that the condition (M.3’) implies the following: for every h > 0
there exists § > 0 such that

(1) Myh? > 6 for p € Ny,
which is equivalent to the finiteness of the associated function M defined by
P M,

(2) M (o) = sup In 270 for o > 0.

pENp P
If M, /p! satisfies (1) the growth function M* is defined by

M,

(3) M*(0) = sup In g"ptMo for o > 0.

JISA p

EXAMPLE 1. The Gevrey sequence of order s > 1 is defined by M, =
(ph)*, p € Ny. It satisfies all conditions (M.1)~(M.3) and M (o) ~ o'/*,
M*(0) ~ 0571 as o — oo.
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Remark 1. It follows from Lemma 4.1 of [2] that if M, satisfies (M.1)
and (M.3’) then the associated function M is sublinear, i.e. M(g)/o — 0 as
0 — 00.

Remark 2. If M, satisfies (M.1) and (M.3") then
(4) lim (M,/p)"/? = .
p—00
Proof. Take any | < co. Then by (M.1) and (M.3’) there exists p; € N
such that M, > IpM,_, for p > p;. Hence

Mpl_l l—pl

M,>C-1P-pl f > here €} = —————
P = l p Orp—pl’ where l Mo(pl—l)' Y
and we easily get (4).

DEFINITION. Let I = [v,00) with v €R. The space DM»)(I") of ultra-
distributions on I' of class (M)) is defined as the dual space of

DM (r) = lig lim D' (I),
Kth%>0 ’

where for any compact set K C I" and h > 0,
M,
Dici (1)

DO{
= {@ € C*°(I') : suppp C K and ||g0H(Iéw,f) = sup sup De(y)l < oo}.
’ yEK OAGNO haMOé
By ¢ € C°°(I") we mean a restriction to I" of some function ¢ € C*(R).

DEFINITION. Let w € RU{oo}. We define the space Lgi\gp)/(F) of Laplace

ultradistributions as the dual space of

L (1) = lig LM(T),

a<lw
where for any a € R,
L (1) = lim L}7(),
h>0
M M e Y D%p(y
1) = fo e 0¥y el = sup sup 0P < o)
’ ’ yel’ aeNg h Ma

LEMMA 1. Assume that (M,) satisfies (M.1) and (M.3'). Then DM»)(I)

is a dense subspace of LE%”)(F). Thus, LE%”),(F) is a subspace of the space

of ultradistributions DM»)' ().

Proof. Making a translation if necessary we can assume that I" = R.

Let ¢ € LE%”)(F). Then there exist a < b < w such that ¢ € LgM”)(F) C

LéMp)(F). By the Denjoy—Carleman—Mandelbrojt theorem (cf. [2], [6]) there
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exists a function ¢ € DM»)(I") such that 0 < ¢(y) < 1 fory € T, ¥(y) =
for 0 <y < 1and ¢(y) = 0 for y > 2. Put p,(y) = ¥(y/v)e(y) for
y € I', v € N. Then ¢, € DM»)(I") and we shall show that ¢, — ¢ in
LgM”)(F) as v — oo. To this end take any A > 0. Noting that (M.1) implies
MoM,_, < MyM,, for 0 < g < p, by the Leibniz formula we get

low — @ll§) = sup sup e D (p(y) (Y(y/v) — 1))]
y€I a€Ng he M.,

—ay| Do
< sup sup S DI o0y ) 1]
yel’ aeNy he M,
. 0\ D ply)| DI (ilyw) — DMy
g 3] hPM ha—B M
yel aeN 0<B<a Jé] a—p

Since ¥ (y/v) =1 for 0 < y < v the first summand tends to zero as v — oo.
Put K = [1,2]. Then for § < « and any h; > 0 we have

D (W(y/v) — 1)] = [ @D (y )| < v ||| M RSP M,

We also have for any hy > 0 and 8 > 0, e=%|DPp(y)| < ”@Hg,hz)thﬁ- So
the second summand is bounded by

Moe(a byv (M,) (M,) hq a—
Tsup Z(ﬁ) ||ah2 ||¢||K,h1 h

B<a
My M M :
< 711¢||§,hz)uwu§<;3 if By + by < B
and thus tends to zero as v — oo, proving the lemma.
EXAMPLE 2. Let (M),) satisfy (1). Then the function
I'>y —exp,y=e’”

belongs to LE )” )( I') if and only if Rez < w. Furthermore, in this case for
any a < w and h > 0 we have

lexp, |17 = My exp{(Re 2 — a)v + M(|2|/h)}.

Let (M,) satisfy (M.1) and (1), and let z € C. Then the operation of
multiplication
exp, : LW (1) — L) ()
is continuous. Thus the formula
(MP)
(w+Re z)

(Mp)!

(), Se L

exp, S[p| = Slexp, ¢] forp€ L (I

defines a continuous operation

M, M,
exp, : ng)p)/(F) — ng_”%:cz)(lj).
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Let (M,) satistfy (M.2). An ultradifferential operator P(D) of class (M)

is defined by
P(D) =Y anD?
a=0
where a, € C satisfy the following condition: there are constants K < oo
and C < oo such that
KO[

(5) ‘CLa| < CE for a € Np.
The entire function C 5 z — P(z) is called a symbol of class (M,). As in the
proof of Theorem 2.12 of [2] one can show that an ultradifferential operator
of class (M,,) defines linear continuous mappings

M, M, M, M,
P(D) : Ly () — L), P(D) : LT (1) — LW (D),

where for S € Lg]\/g”)/( ) and ¢ € LENg”)( )s

P(D)S[¢] = S[P*(D)¢] with P*(D)=> (-1)%asD".
a=0
For a € R and w € RU {oo} we define
(6) Y, = span{exp }e<a; Y(w) = U Y,.
a<w

PROPOSITION 1. Let b < a. Then L,EMP)(F) is contained in the closure

of Yy in LSLM”)(F). Thus Y{,,) is dense in LE%’*)(F),

Proof. Since the multiplication by exp_, is a continuous isomorphism
of LgMp)(F) onto Lg{f)(F) and Y, onto Y._,, where ¢ € R, it is sufficient to
assume that a = 0. Let ¢ € L(M”)(F ). It is enough to show that for every
e > 0 and h > 0 there exists ¢ € Y such that ||p — 1/J||(M ») < ¢. To this end
fix £ > 0 and h > 0. By the proof of Lemma 1 there exists 1) € D) (I)

such that ||¢ — wH(M) < ¢/2. Put n(z) = ¢ ou~Y(z) for z € I. Then
1 has compact support in I = u(I') and by the Roumieu theorem ([10],
Théoreme 13), n€ DM»)(I). By the Weierstrass type theorem ([2], Theorem

7.3) for any 6 > 0 and hy > 0 there exists a polynomial p = Z,J/V:o ¢,z such
that

MP
(7) In—pl" <o

Put ¥(y) =pou(y) = ZZJ,V gcve VY for y € I'. Then ¢ € Yy and we shall
show that for a suitable choice of & and hy, ||¢) — wH(M v < /2. To this end
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put f = n—p. Following the proof of Théoreéme 13 of [10] one can show that
the derivatives D*f o u are estimated by
«
(M) —wgMp 5 (a—1)la!
8 fllz,7 - e "P—=h .
( ) H H[,hl /le /8' l(a—ﬁ)'(ﬁ—l)'

For v € Ny put
9) H., = sup(B!/Mps)/".
B>y

Then by Remark 2, H, — 0 as v — o0o. Hence we can find v € Ny and
hi1 > 0 such that

(10) (Ve vhy ++/H,)* H < h,
where H is the constant in (M.2). Since by (M.2), My, < AHPTIM,M,
for p,q € Ny and by (M.1), MgM,_5 < MM, for 0 < 8 < a, we get for
o€ NO) 0< ﬁ < «,
(11)  MgMy_pyy < MgAH* PYTM,_sM, < C,H*M,,
where Cy = AM M, max(H",1).

Observe also that

a<fla—=pF+7v) forl1<p<a, a€N,
and

[ 2
—1
g (g 1) 2Py P < (Vo + V)2 fora€N, 2>0, y>0.
=1

Hence using (8), (9) and (11) we derive for « € N, y € I',
D f o p(y)]

«
M. — -
<y D e iy

A=1

(a — 1)lal Ve
(a—B)l(a— B+ BB — 1) PHe-fty

—v . —v - a— a_ll i @
<|FIEW - CyHY e hy > (e he) ~ HE B((a—(ﬁ)'(ﬁ)— 1>'> HE Mo
=1 ' '

M v — 3 — .
< A5 Oy e (Ve "hn 4 /L) A (Ve " ha + HL)2H) M
< Oy M LO I, where L = (v/e~vhy + /H,)?H.

Finally, choosing ¢ < 5/(25’7) in (7) we get by (10),
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M.
< sup DLy

D%fo
I = I8 = sup sup 2L 2] o,

yel aeN,  h*M, a€Ny

To end this section we quote the following version of

SEELEY EXTENSION THEOREM ([4], [7]). Let I = [v,00), I'1 = [v1,00)
with v1 < v and a € R. Then there exists a linear continuous extension
operator

(12) € LM() — LM (1)
such that for every ¢ € L((IM”)(F), supp Ep C (v1,00).

COROLLARY 1. Let S be a linear functional on LE )”)(F). Then S €
LE% )/( I') if and only if for every a < w there exist h > 0 and C' < oo such
that

(13) STl < Cliell ) for o € LM(T).

2. The Paley—Wiener type theorem for Laplace ultradistribu-
tions. We assume the conditions (M.1), (M.2) and (M.3). Let I = [v, 00)

with v € R. By Example 2 the function exp, belongs to Lgi\f)p )( I') if and only
if Re z < w. Hence we can define the Laplace transform of S € LgM)”),(F) by
LS(z) = Slexp,] for Rez < w.
Since the mapping
{Rez <w} >z —exp, € LE% )(F)

is holomorphic, £S5 is a holomorphic function on {Rez < w}.
Define

(14)  OMr)(Rez < w)
={FecORez<w):
for every a < w there exist h > 0 and C' < oo such that
|F'(2)] < Cexp{vRez+ M(|z|/h)} for Rez < a}.
Applying Corollary 1 with ¢ = exp, and Re z < a, by Example 2 we get
THEOREM 1. Let S € Lgi\f)”)/(F) and F(z) = LS(z) for Rez < w. Then
F e OQ(,M”)(Rez <w).
THEOREM 2. Let wy < wp, Sy € LI (I') and Sy € L (I). If
(15) LS1(z) = LS3(z) for Rez < wy

then S1 = Sy in LE?}/I))/(F).
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Proof. We have to prove that for arbitrary ¢ € ngl’g)( ), S1[e] = Sa[p].

To this end fix ¢ € Lgx’i)(lﬂ), choose b < wy such that ¢ € LéM”)(F) and

take b < a < wy. Since by (15), Si[exp.] = Sq2[exp,| for ¢ < a the proof
follows from Proposition 1.

To prove the converse of Theorem 1 we need two lemmas. The first one
is a restatement of Lemma 9.1 of [11] (cf. also [12]).

LEMMA 2. Let a € R. Suppose that G is holomorphic on the set
{Re z < b} and satisfies there the estimate

Lev Rez
GG < 3

with some C' < 0o, v € R. Put

9(y) = i f G(z)e ¥ dz foryeR.

Then g does not depend on the choice of ¢ < b; it is a continuous function
on R with support in I' = [v,00); the function I' >y — e g(y) is bounded;

g e LE?;IP)/(F) and G(z) = Lg(z) for Rez < b.

LEMMA 3. Let w € R and k > 0. Then there exists a symbol P of class
(M) not vanishing on {Rez < W + 1} such that

exp M (k|z|) 1
PG ()

Proof. Since m, — oo as p — oo (by (M.3’)) we can find py € N such
that m, > 2k|0| + k and |m, — kz| > k|z| for p > py and Rez < w. Put

P(z) = (z =& — 1)Pot! H (1—) for z € C.

p=Po

(16) for Rez < w.

Then P does not vanish on {Re z < @} and by the Hadamard factorization
theorem (cf. [2], Propositions 4.5 and 4.6) it is a symbol of class (M,). On
the other hand, if Re z < & we estimate from below:

I (= 5)l= L0500 1T

P=po P=po 9ZP0 p—p,
> H <1—k|w’> HM
P=po Ppop —po P

= Clz| 77" exp M (K|2]),
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where
My, 1 19 k|@|
C =P 1— — 0.
My H ( my, ~
pb=Po

Hence, possibly multiplying P by a suitable constant, we get (16).

THEOREM 3. Let w € RU{oo} and let F € OgM")(Rez < w). Then there

exists a Laplace ultradistribution S € LE%I’)/(F) such that

(17) F(z) =LS(z) forRez<w.

Proof. Fix a < w. Choose @ € R such that ¢ < w < w and assume
(14). By Lemma 3 we can find a symbol P of class (M), not vanishing on
{Re z < @+ 1} and satisfying (16). Next we apply Lemma 2 to the function
F(z)
P(z)’

G(z) = Rez < w.

We get a continuous function g which belongs to LEgP)I(F) and satisfies

Lg(z) = G(z) for Rez < a. Put S = P(—D)g. Then S € Lgi\/)[”)/(F) and
LS(z) = P(2)Lg(z) = F(z) for Rez < a.

Thus for every a < w we can find S, € Lgi\/)[”)/(F) such that £S,(z) =

F(z) for Rez < a. By Theorem 2 the definition S = S, on LE%")(F), a<w,

defines correctly a functional S € LE%’J)/(F ) which satisfies (17).

It follows from the proof of Theorem 3 that Laplace ultradistributions
can be characterized as follows.

THEOREM 4 (Structure theorem). An ultradistribution S € DMe)(R) is
mn Lg%p)/(F) if and only if for every a < w there exist an ultradifferential

operator P, of class (M,) and a function g, continuous on R with support
i I such that
9a(y)] < Ce™ foryel,

|Lga(z)] < <ZC>'26”RGZ forRez <a

and

(18) S =Pu(D)ga in Lin"(I').

3. Boundary value representation. In this section we use the follow-
ing version of the Phragmén—Lindelof theorem.

3-LINE THEOREM ([1]). Let R > 0 and F € O(I'r) N C°(I'r). Suppose
that for some k > 0 the function

I'r 3z — exp{—kl|z[}F(2)
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is bounded. If F is bounded on the boundary of I'r then it is also bounded
on I'g.

DEFINITION. Let R > 0, k£ > 0 and a € R. We define the spaces
Lao(Tr) = {p € O(Ir) N C™TR) : [[@llars = sup |p(2)e™| < oo},

zel'r
LR\ I) = {p € O(Ir \ T) : ¢ - exp{—M*(k/|Im z|)} € C°(T'),
el = sup |o(2) exp{az — M*(k/[Im 2|)}| < oo}.

z€l'r
By the 3-line theorem EG(F r) is a closed subspace of the Banach space
Lg{\g”)(FR \ I') and we can define
Hy? (T, T) = Loy (Te \ 1)/ La(Tr).
Further, we define
L(C) = lim Ly(Iw), Ly (C\I)= lim L5 (TR \ D),

R—oo R—oo
L€\ D) = lim L€\ D),
HMD(C, 1) = M) (C\ 1)/La(C),  HM(I) = lim H (s, T).
R—0 ’
k—oo

Let a < b. Then the natural mappings
H"(C.r) — BM(C.1),  B(1) — HM(T)

are well defined and by the 3-line theorem they are injections. Thus, for
w € RU{oo}, we can define

(M, - M, :

HG€.1) = lim AXM(CD), - Hg?(D) = lim BEW).

An element f € H ((gp )((C,F) is given by a set {F}}q<. of functions such

that for a < w, F, € E((IMP)(C\F) and for a < b < w, F, — F, € Ly(C).
On the other hand, an element g € I;[((i/)f”)(F) is given by a set {G,}a<w Of
functions such that for a < w there exist R, > 0 and k, < oo such that
Go € LN (Tp, \ T) and for a < b < w, G, — Gy € Lo(T, N Tg,, T).

The natural mapping
(19) i B (C,r) - B (D)

is defined by retaining the same set of defining functions. Obviously it is an
injection.
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LEMMA 4. Let S € LE]Vg )/( I') and a < w. Put

a(-—z)
15[6 } forze C\ I

Z _
Zhen C.S € EgM”)(C \ I'). Furthermore, if a < b < w then C,S — Cp,S €
L,(C).

Proof. Take a < ¢ < w. By Theorem 4 we can find an ultradifferential
operator P, of class (M),) and a continuous function g, with support in I’

satisfying |g.(y)| < Ce™ Y for y € I' and S = P.(D)g. in LE )”) (I'). Since
for fixed z € C\ I" the function

. caly—=2)
>y —

Y

belongs to LE?;IP)(F) we have

Y

u(0) = e [ 0 PP (2 )

Let P¥(D) = >0 ,(—1)%aq D™ with a, satisfying (5) and let R > 0. Then
for z € I'p \ I' we estimate

laq|a!
* Y
()| Sl ()< S ¥
al’RP SX |ag|o!
< e™ Z 3! Z‘Imz|a+1
5=0
AC 2HK
< paytlalR T M*
= g P\ Im 2|

since by (5) and (M.2") we have

laalal (2K)*a!
<20 —
Z |Imz]0‘+1 - Z \Imz|a+1M o [Im z|*+1 M,

a€eNp

< <
QHK oot Imz[o+ 1 Myy, — HK O

Put £k =2HK. Then for every R > 0 there exists C' < co such that
ICoS(2)| < Cexp{—aRez+ M"(k/|Imz|)} forzelg\I.

2AC’ (2HK)>*a! AC <2HK>

Thus, C,S € EgM”)((C\F). If a < b < w we take ¢ < w such that b < ¢ and
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note that for z € C the function

ea‘(y_z) — eb(y_z)

I'>y—
=Y

belongs to LE?;IP)(F). Thus, the holomorphic extension of C,S — CpS' is

given by

ea(y—2) _ gb(y—2)
€5~ )e) = 5 [ aut Pz (o) Jas

e zZ—
r )

and we easily find that Cq — Cy € Lo(C).

DEFINITION. Let S € L(M")’(F). Then by Lemma 4 the set {C,S}a<y of

(w)
functions defines an element f € H ((xp)(F ). We call f the Cauchy transform

of S and write f =CS.

PROPOSITION 2. Let F, € EEZ%”)(FR\F) with a < 0. Then there ezist an

ultradifferential operator P,(D) of class (M,) and functions Hf € O(I'g N
{£Imz >0 or Rez < v}) such that

1° P,(D)HZE = F,;
2° For every 0 < R' < R and a' < a there exists C < oo such that

|HE(2)| < Cexp{—d’'Rez} for z¢€ 'y N{£Imz>0};

3° HF(x +iy) converges uniformly as y — 0+ to a function h X contin-
uous on (v — R,00) and analytic on (v — R,v) satisfying
\hE(z)| < Cexp{—d'z} for zc (v— R o).
Furthermore, if we put
So = Ff(x +1i0) — F, (x —i0), where F(x +1i0) = P,(D)hZ,

(Mp)r

then S, extends to a Laplace ultradistribution §a S L(a)

(I") defined by

(20) Salel= [ (hif(2)—hg (@) P;(D)Ep(x)dz  for € L™ (D).
v—R

In (20), £ is a linear continuous extension mapping & : L)

(a)
Lgi\/)[”)([v — R, 0)), which exists by the Seeley extension theorem.

() —

Proof. Put

P(C):(1+C)2H(1+k<> for ¢ € C.

Mp
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Then P is a symbol of class (M,). Define the Green kernel for P by

1 7 e
=— | =—= f .
G(z) 57 Of PO d¢ for Rez<0

Then by Lemma 11.4 of [2], G can be holomorphically continued to the
Riemann domain {z : —7/2 < argz < 57/2}, on which we have

11
P(D)G(z) = ——~—.
(D)G(2) 2 2
Furthermore, since for any 0 < ¢ < 7/2,
H 1 1 1
< <

d
|1 —z] = cose o |1 — 2| = cose

for z € C with |arg z| < ¢+ m/2, following the proof of the above-mentioned
lemma we conclude that on the domain {—¢ < argz < 27 4+ ¢}, G is
bounded by C/cos® with C' < oo not depending on ¢. We also have

lg(z)| < AVxexp{—M*(k/x)} for x>0,
where
g(2) = Gy (2) — G_(e*™z) for Rez >0,

G4 being the branch of G on {—7/2 < argz < 7/2} and G_ that on
{37/2 < argz < 5w /2}. Put

HE(z) =+i [ G(i(z — w))Fa(w) du,

where v+ is a closed curve encircling z once, in the anticlockwise direction,
such that —7/2 < arg(+i(z —w)) < 57/2 for w € y+. We choose a starting
point 24 of v+ in such a way that |arg{+i(z — £24)}| < 7/2. Then HF is
a holomorphic function on I'r N {#Imz > 0 or Rez < v} and does not
depend on the choice of v4 with a fixed starting point z24. For a fixed v and
z changing in a compact set in the domain bounded by v we have

P(D)HE(2) = +i [ P(D.)G(+i(z — w))Fo(w) dw

=

= _71@ i zf“g dw = F,(2).

[\)

Let 0 < R < Rand z € I'pN{Imz > 0}. Fix 2 € I'rN{Imz > "}N{Rez <
v — R'} and take v4 = 71 Uy U3 Uy, where v = [T + iy, z + 19],
Yo =[x 4+ i,z +iy], 3 = [x + iy,x + iy] and v4 = [z + iy, 2 + iy]. Since
0 < arg(i(z —w)) < 9 for w € 1 and 27 < arg(i(z — w)) < 27 + ) for

o

w € 74, where 0 < ¢ < /2 is such that tany = (z — 2)/(y — y), by the
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boundedness of G on {0 < arg®y < 27 + 9} we have |G(i(z —w))| < Cxz for
w € 1 U7y, where C does not depend on x. So

’ f G(i(z — w))F,(w) dw‘ < Cx?e™  for z € 'y N {Imz > 0}.
Y1U7a
On the other hand,

o

‘ [ Gli(z = w))F,(w) dw( - ‘ i fyg(t)F(x+i(y—|—t))dt‘

Y2Uv3 0

?(/)_y k k
< A M*| —— | = M*| = | —
< AC Of ﬁexp{ <y+t) <t> ax}dt

< AC(§ —y)*/2e7®  for z € I're N {Imz > 0}.
Thus, for any @’ < a one can find C' < co such that
|H(2)| < Ce™®* forzelpnN {Imz > 0}.

The estimate of H; is obtained in an analogous way.
The assertion 3° is clear from the above estimates.
Let ¢ € DMp)((v — R, 00)). By 1° and 2° we derive

Fu(z +i0)[y)] = Po(D)hE[W] = [ hE(z)P;(D)¢(x)dx
v—R

oo

= lim H,(z +1iy)P;(D)y(z) dz
y—0+ .

oo

= lim Fo(z £ iy)Y(x) dx.
y—0+ .

Since for ¢y € DM») (v — R, v)),

Sa[y] = lim Po(D)(H, (z +iy) — H, (x — iy))i(z) dz = 0,

v—

S, has support in I" and we can define the extension of S, by (20).

Let f € I;LSM”)(F). Then there exist R > 0, £ < oo and a function
F, e E%P)(FR\F) such that f = [F,]. If @ <0 we can apply Proposition 2
to F,. If a > 0 then we apply Proposition 2 to F = e®*F, instead of Fj,.

In this case denote by S* the element of L(M”)/(F ) given by (20) and define

(0)
Se = e % S*. In both cases S, € ng/')[p),(F) does not depend on the choice

of a defining function F, for f. Thus, the assignment f — S, defines a
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mapping

MP
(21) b: HM)(I') — L™ (I),

Since (21) holds for every a < w we have

b: HLy — lim LG(I) = (lim Ligy” (1) = LEY(T),

a<w

where the isomorphism ~ follows by the formula (1.2) of [2].
THEOREM 5. The mapping

(Mp)! 7 (M)
C: L(w) () — H(w) (C,I)
s a topological isomorphism with inverse b o i.

(Mp)!

(W(I) and €S = f € H{)”)(I'). Then

()
1 [ea('_z)

Proof. Let S€ L

f=HFatacw] with F,(z)= %S

] for z € C\ I.

Z—.

Treat f as an element of fl((%p)(F) and put S = b(f) € LE%’”)/(F). Fix
a < w. Then for ¢ € Y(,) we have

1 a(-—z)
:—fF dz-S[—. ‘
211 z—-
or,

5

o(2)dz] = 51l

by the Cauchy integral formula. Since Y(,) is dense in Lgi\/)[”)(F) and a <w

is arbitrary, we have S[p] = S[¢] for ¢ € LEng)(F) Thus boioC =id.

umfem%MCF) = [{Fa}tacs] with F, € ZM(C\ I') and F,—
FbELa((C)fora<b<w Put f =i(f) and fix @ <w. Then f = [F,] in
fjc(LM")(F) and by (21), S, = =b(f) € LEN)[ (I'). Observe that for ¢ > 0 we

have

Salp] = = [ Fa(2)p(2)dz  for ¢ € Va).

On the other hand, by the part of the theorem just proved,

a(—z)
T f 2mi a[

]gp(z) dz for ¢ € Y(,).
So for ¢ € Y(q),

_ [eat2)
(22) [ u(2)p(x)dz =0, where %@:154.}—ﬂ@.

27
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Then ¢, € E(a{\i") (C\ I') and we shall show that 1, extends holomorphically
to a function ¥, € L,(C), which proves that Coboi = id. To this end observe
that (22) holds also for ¢ € LE%”)(F) NO(I;) and put for any b < a, R > ¢,

Go(2) = [ ¥alC)
OI'r
Then |Gy(2)] < Cexp{—bRez} for z € ' with R’ < R. Using (22) with

p(¢) = exp{b(C — 2)}/(z = (), z € I'n \ T, we get Gy(2) = ta(2) for
z€I'g\ I Put

eb(c_z)

d¢ for z € I'y.

~ [ tu(z) forzeIr\T,
Va(2) = {G’b(z) for z € Fg.

Then {bva € O(I'g) and by the 3-line theorem {Ea S Ea(FR). Since R > ¢ was
arbitrary we have ¢ € L,(C).

4. Mellin ultradistributions

DEFINITION. Let w € RU {oo}, v € R and I = (0,e™"]. We define the

space M ((3/)1’7),(] ) of Mellin ultradistributions as the dual space of

M, o M,
M((w) )(I) = lim @Mé,h )(I)v
a<w h>0

where for any a € R and h > 0,

anrl D)% (x
MU (1) = {w € 0 (1) oM () = sup sup DIV oo}.
€l aENg a

LEMMA 5. Let a € R, h > 0, ¢ € Méf\g”)(I) and ¢ = - opu. Then

Y E Lg%p)(F) and ||<,0Ha],\zp) = Qg%p)(w). Thus, the mapping

M (1) 20 — p-bope L (D)
s a continuous isomorphism with inverse

LE%”)(F) Sp—expop tpoute M((i\;[”)(f).

Proof. The proof follows easily from the formula
Dy (u(y)v o ply)) = (=1)*x(Dyz)*(2),  for ar € No, = = p(y),

which can be proved by induction.

Let § € L' (I'). Put

Sop [yl =Su-yopul forype MO (D).
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M)

lis a well defined element of M (( ) (I) and the

Then by Lemma 5, S o pu~
mapping
Loy 38— Sopt e MU' (1)

i1s continuous.
Observe that the function

Isz—a "' =exp,  on " (2)

belongs to M p)( I) if and only if Re z < w. Thus, we can define the Mellin

(w)
transform of T' € M((LV)[”)/(I) by

MT(z) =Tlexp,,,opn~ '] for Rez < w.

Let S e LEM) '(I') and T = S o =t Then for Rez < w we have

MT(z) = Sop texp, 4y op~ '] = Slexp,] = L5(2).

5. Strong quasi-analyticity principle
DEFINITION. Let S € LE%Z’)/(F). We define the Taylor transform of S
by
TS(z) = L£S(Inz) for x € B(e¥).
We also define
O (B(e))
= {u € O(B(e?)) :
for every t < e“ there exist k < oo and C' < oo such that
lu(z)] < Cexp{M(k(w — In|z|+ |argz|))} - |z|" for |z| < t}.
By Theorems 1 and 3 we get
THEOREM 6. The Taylor transformation is an isomorphism of LE%’”)/(F)
onto O (B(e)).

Let u € O™ )( B(e*)). Then for any ¢t < e*, w4 € M(v)”)/((O,tD and

t
Myu(z f w(x)x™*> " Ydxr for Rez < v.
0

By Theorem 6, u(z) = S[z’] for z € B(e*) with § = 7 tu € LEN?’)/(F),

I' = [v,00). For Rez < v we derive

Mu(z [ f w T 1dx] - S[ ] = —2miCin S (2).

—Z
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Thus, by Lemma 4, M;u extends holomorphically to a function M;u €

Efﬁp)(c \ I') and the set of functions {M,u}i<.o defines an element of

H ((xp ) (C,I'), which will be denoted by Mu and called the Mellin transform

of u.
We can summarize Theorems 1, 3, 5 and 6 as follows:

COROLLARY 2. We have the following diagram of linear topological iso-
morphisms:

M((j/)[p)/(l) M Oq(,Mp)(Rez < w)

- To“/ o—p~t

(Mp)r T My) D w
Ly (1) oM (B(e))

. \ M
() <——H"(C.T).

Following [13] we call the elements of (’)q(,M”)(Rez < w) generalized ana-
lytic functions determined by LE%F)/(F ). Generalized analytic functions have

the following quasi-analyticity property:

THEOREM 7. Let u € (’)I(,M”)(E(e“’)). Suppose that for some t < e* and
every m € N there exist Cy, such that

lu(z)| < Cpz™  for 0 <z <t.

Then u = 0.
Proof. By Theorem 6, u(z) = TS(z) for 2 € B(e*) with some
S e L(MP)I(F ). The assumption that u is flat of arbitrary order m € N on

(w)
(0, t) implies that Myu € O(C). Since for every R > 0, Lg{\;[p)(FR)ﬂO(FR) =

L.(I'r), Mu defines the zero element in I:T((fg”)(l“). Thus S =0 and u = 0.

THEOREM 8 (Strong quasi-analyticity principle). Let —7/2 < 6 < 7/2,
lo={z=re":r >0} and F € O(Rez > 0). Suppose that for some v € R
and every k > 0 there exist k < oo and C < co such that

(23) |F(2)] < Cexp{vRez+ M(k|z|)} for Rez > k.
If for some 7 > 0 and every m € N there exists C,, < co such that
(24) |F(2)] < Cpe” ™8 for z €ly, Rez >,

then F' = 0.
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Proof. Put u(z) = Fop !(z) for z € B(1). Then u € (’)Q()Mp)(é(l)).
Set t = e~ 7, let 749 be the set of x € B(1) that satisfy

[ texp{—irsin6} for 0 <r < 7/cos¥b,
T exp{—r(cosf +isinf)} for r > 7/cosé,

and observe that

(25) Mqu(z) = f u(z)r™*"1 for z € 2,4,
Tt,60

where 2,9 = {z € C: Rez < v and sinfImz > cosf(Rez — v)}. Using
(24) we infer that the right hand side of (25) is defined for z € C. Thus,
Mu € O(C). As in the proof of Theorem 7 this implies that u = 0 and
hence F' = 0.

Remark 3. The conclusion of Theorem 8 does not hold if instead of
(23) we assume that for every € > 0 and x > 0 there exists C; , such that

|F(z)| < C; rexp{vRez+¢|z|} for Rez> k.

In this case the function v = F o u~! is the Taylor transform of an analytic

functional with carrier at {co} and need not be equal to zero.

Remark 4. The results of the paper can be easily extended to the
n-dimensional case if I" is a cone of product type. The case of an arbi-
trary convex, proper cone in R™ is more difficult and will be studied in a
subsequent paper.
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