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Extremal plurisubharmonic functions

by URBAN CEGRELL (Umea) and JOHAN THORBIORNSON (Sundsvall)

Abstract. We study different notions of extremal plurisubharmonic functions.

1. Introduction. There are several different notions of extremal pluri-
subharmonic functions and the purpose of this note is to study some of
them.

DEFINITIONS. Let {2 be an open and connected subset of C*, n > 1, and
denote by PSH({2) and PH({2) the plurisubharmonic and pluriharmonic
functions, respectively.

Extremal (A). Let K be a subset of 2. The relative extremal plurisub-
harmonic function hj, is defined to be the upper regularization of

hi(z) =sup{p(z) e PSH(2) : =1 <9 <0, p=—1on K}
(cf. Siciak [8]).

Extremal (B1). The class of functions P({2) = {¢ € PSH(2) : -1 < ¢
< 0} is a convex and compact space with locally convex topology inherited
from L1(£2). An element ¢ € P(£2) is said to be extremal (By) if

p=apr+(1—a)ps, ¢1,02€ P(2), 0<a <1, impliespr = s
(cf. Choquet [3, Vol. II, p. 95]).

Eztremal (Bz). Define PSH™ (£2) = {¢ € PSH({2) : ¢ < 0}. An element
© € PSH™ (£2) is said to be extremal (Bg) if

p=p1+p2, 1,92 € PSH (02),
implies that there exist non-negative constants A; and Ao such that v; = A\1p

and g = Aap.
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Eztremal (C). The quotient space PSH(£2)/ PH((?2) is Hausdorff and a
convex cone. An element ¢ € PSH((2)/PH({?) is called extremal (C) if

© =1+ 2, 1,92 € PSH(2)/PH({2),

implies that there exist non-negative constants A\; and Ay such that o1 = A1
and g2 = Ay (in PSH(£2)/ PH(S2)) (cf. Lelong [5] and Demailly [4]).

2. The case n = 1. Let here {2 = D be the open unit disc in the
complex plane and ¢ € SH(D) with a harmonic majorant. Then, by the
Riesz representation formula,

z—¢

o(2) = toe| FE40(©) + [ P 6 aute),

where P is the Poisson kernel. So that if ¢ < 0 and ¢ is extremal (Bg) then
either Ap =0 or pu = 0. Therefore Ap = kd,, for some zy € {2 so

=kl
p(z) = klog | -— =

or p(z) = kP(z,&) for some & € 012, with k a constant.

Also, if ¢ € SH(D) is extremal (C) then ¢(z) = klog|z — zp| modulo
a harmonic function. Therefore, there are no functions bounded below and
extremal (C).

Z— 20

3. Relations

LEMMA 1. If 0,—1 # ¢ € P(2) is extremal (By), then inf.co = —1 and
sup.eq () = 0.

Proof. If 8 = inf,eop(z) > —1, then ¢(2)/y € P(£2), where v =
max(1/2,—3) < 1. Choose k so that 1/y +k = 2. Since 1 < 1/y < 2 it
follows that 0 < k < 1 so ky(z) € P(£2) and

1(e(2)
= (P& g
o) = 5 (2 kot
so ¢ is not extremal (By). If sup,c ¢(2) = < 0 then

o) =) a0 = (P ) g0 (o)

S0 ¢ is not extremal.

PROPOSITION 1. If K is a relatively compact subset of (2 then hj. is
extremal (By).

Proof. If K is pluripolar, then h} = 0; we can assume that K is not
pluripolar. If h}, = au; + (1 — a)ug, where uy,us € P(£2), then uy = uy =
—lon {z € 2 : hj; = —1} so it follows from the definition of hx (since
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hx = hj} outside a pluripolar set) that u; < hj, and uy < hj;. Therefore
U1 = U2 = h;(

COROLLARY. There ezist discontinuous functions extremal (B1).

PROPOSITION 2. If ¢ € PSH™ (£2), lim,_.¢ p(2) = 0 for all £ € 012 and
if ¢ is extremal (C), then ¢ is extremal (Bs). If p € P(£2) with (&) = —1
for some & € £2 and if ¢ is extremal (Bg) then ¢ is extremal (By).

Proof. Suppose ¢ € PSH™ ({2) and that ¢ is extremal (C). If ¢
©1 + @2, where 1, p2 € PSH™ (£2), then

o1+ h1=M\p, A >0, hy €PH,
02 +ha = Xap, A2 >0, hy € PH.

Since ¢ = @1 + 2 and 1, s <0, also p1(2), pa(2) — 0 as z — §, £ € 012
Hence hi(z),ha(z) — 0 as z — &, & € 082, since hy = A¢ — 1 and
ha = Ao — wy. Therefore, being harmonic, h; and hy vanish identically
on (2.

Let now ¢ € P(f2) be extremal (B2) and assume ¢(&y) = —1 for some
&oe . If

p=ap1+ (1 —a)ps, 0<a<l, p1,p2 € P(12),
then
apr = Ai1p, A1 >0,
(1—a)p2 =X, A2 >0.
At &, we have —1 = (&) = ¢1(§o) = ¥2(§o) so @ = A and 1 —a = As,
which proves that ¢ is extremal (By).

PROPOSITION 3. Suppose 0 > ¢ € PSH({2 x £2) and that ¢ is separately
extremal (Ba). Then ¢ is extremal (Bs2) on £2 x (2.

Proof. Suppose ¢ = 1 + @2, where 0 > @1, p2 € PSH({2 x §2). Then

v1(z,y) = M(y)e(z,y) = Bi(x)e(z,y),
pa(z,y) = Xa(y)p(z,y) = Bo(2)p(,y),

where A1, Ao, 01,082 > 0 and Ay + Ao = 1 = (1 + [ since y is separately
extremal (Bg). Therefore \y = 51 = const and Ay = 2 = const, which
proves that ¢ is extremal (Bs).

LEMMA 2. Suppose 0 > u € PSH(G), where G is a ball in C™ with center
at 0. Then

. §v) _
lim sup = const
N0 ceC — lOgT

|€l=r

for all v € G outside a pluripolar set.
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Proof. We may assume that G = B, the unit ball. Suppose 0 > u €
PSH(B). For 0 <r < 1 and v € B we define

5 () = sup ) <
cec —logr
|€]=r

Then ¥, (v) € PSH(B) and is decreasing in . For let 0 < r < ry < 1. If
z € C with |z| = 71, then u(zv) < ¥, (v) - (—log|z|), which also holds for
|z| = 1. Therefore u(zv) < ¥, (v)-(—log|z|) for r; < |z|] < 1. In particular,

u(zv)
Tg‘d S er (l/) for ‘Z| = T2

and so ¥, (v) < ¥, (v).
Hence ¥*(v) = (lim,~ o ¥, (v))* € PSH(C") and since ¥* is negative it is
constant. Since ¥ = ¥* outside a pluripolar set (cf. [1]), the lemma follows.

Remark 1. The constant —¥* can be shown to be equal to the Lelong
number of u at zero. We do not need to use that in this paper.

4. Examples

ExaMPLE 1. Denote by D the unit disc in C. Then

*

(1] <e—1}x{|2|<e-1} (2) = max(log |z1],10g |z2[, —1)

so max(log|z1|,log |z2], —1), 2 = (21, 22) € D x D, is extremal (A) and thus
by Proposition 1 also extremal (By).

EXAMPLE 2. Denote by B the unit ball in C™. Then
h?ze@":|z|<e*1}(z) = max(log |Z|7 _1)
is extremal (A) and therefore extremal (By).

EXAMPLE 3. If a > 0 then (2) = |2|* — 1 is not extremal (By) on D.
For let

4 z[?* 3 2 23
o) =3 (1t - B2 3) e = (a4 EE D),
>

Then ¢ = (¢1 + ¢2)/2, and since Ap; = a?(|z]*72 — \z|26¥ 2)
0 < |z] < 1, ¢ is subharmonic on D and therefore 1, p2 € P(D).

0 for

EXAMPLE 4. (21, 22) = max(log |21],log |22]) is not extremal (C). Since

27

1 0| g0 _
27T6flog|w—e | df = max(log|w|,0), w €C,
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it follows that
2T

1 ,
(21, z2) = max(log |z1],log |22]) = o f log |21 + 20€%| df.
0

Thus
27

1 ¢ . 1 ,
Y(21,22) = o Of log |21 + z0€™| d6 + o f log |21 + 20€"| df
so 1 is not extremal (C).
However, 1 is extremal (Bs) in D x D. For suppose 1) = 1 + @2, where
1,2 € PSH™ (D x D). If 2z = (21, 22), then ¥(A\z), A € C, is extremal as a
function of A, so

p1(A2) = (A2) = az(log [N +1(2)), a2 >0,
P2(A2) = Batp(Az) = Ba(log [A| +9(2)), B2 > 0.

By Lemma 2, ap = const = « a.e., f2 = const = 3 a.e. Therefore p;1(z) =
ap(z) and p2(z) = By(z), which means that 1) is extremal (Bs).

Remark 2. Example 4 answers a question by El Mir [6].

EXAMPLE 5 (Poletsky [7]). The function log|z| is extremal (Bs) in the
unit ball of C™. This can be shown exactly as in Example 4, using Lemma 2.

5. The pluricomplex Green function. The functions max(log |z |,
log |22|) and log |z| are pluricomplex Green functions with pole at zero for
the domains D x D and B respectively. Example 4 shows that the pluri-
complex Green function is not extremal (C) in the bidisc. Using a suitable
holomorphic transformation, Examples 4 and 5 show that the pluricomplex
Green function for the bidisc and the ball is extremal (Bs). This is a special
example of the following theorem.

THEOREM. Let 2 be a domain in C" and let G (x,y) be the pluricomplex
Green function for 2x2. Then Go(z,yo) is extremal (Bg) for every yg € (2.

Proof. We can assume that yg = 0. Suppose G = 1 + @2, where
1,2 € PSH™ (£2). Using Lemma 2, we find three constants

- ( : Gn(il/))*
a=|( lim sup ———= ] ,
T\Ol ¢ —log [¢]
£l=r

. ©1(&v) ) ( . P2 (&v) >
—( PLisY) d as= (1 RTINS I
1 (1{% P Tloglel) M 2T LN TP Tlog e

|¢l=r €=
Since G (x,0)—log |z| is bounded near z = 0, we have « = —1,0 > a3, ap >
—1 and o1 + ag > —1.
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Let V be a ball in (2 centered at zero. We consider only the points
v € V where the regularization * is not necessary. This is enough, since the
complement of this set is pluripolar. Without loss of generality, we can also
assume that V' = B, the unit ball.

Note that
prly) _ p2(Ev)

—= < , ———= < ag, §§1
“logle] = Tloglg =% 1

Hence p1(év) < —aqlog|é] and po(év) < —aslog |€] so e1(€) = p1(Ev) +
aqlog €| and e2(€) = p2(Ev) + aglog €| both extend to subharmonic func-
tions on the unit disc. Furthermore, since

wp SO el

o0 —log|r| - o0 —log|r| -
&ecC £eC
[E|=r [€|=r

we have Ae1{0} = Ae2{0} = 0. Also, since

Ga(&r,0) = 01(&v) + pa(v) = 1(§) + £2(§) — ar log [§] — az log [¢]
= log || +e1(§) +e2(§) — (1 4+ a1 + az) log [¢]

)

and since & — G (v, 0) —log |£] is subharmonic on the unit disc, it follows
that —(1 + a1 + ag) > 0. Thus a7 + as < —1 and as we already know that

a1 + ag > —1, we conclude that aq + as = —1.
Now
w1 (§v w2 (v
&) oglel, 22 cuoglel, e <1,
—Qg —Qg
SO
215 ¢ Goz0), P29 < gy(e0), zeB.
— Q7 0%}

by the definition of Gy;. Since @1 + @3 = G, it follows that ¢1/(—a;) =
p2/(—az) = Gg.

Remark 3. From the proof of Proposition 3, it follows that if {2 is such
that Gy is symmetric (for example, if {2 is convex), then G, is “extremal
(B2)” among the negative separately plurisubharmonic functions.

Remark 4. In the unit disc, every bounded subharmonic function is an
(infinite) sum of subharmonic and continuous functions. We do not know if
this is true in the bidisc (cf. [2]), but this problem is one of the motivations
for us to study extremal plurisubharmonic functions.
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