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On the estimate of the
fourth-order homogeneous coefficient
functional for univalent functions

by LARISA GROMOVA and ALEXANDER VASIL'EV (Saratov)

Abstract. The functional |c4 +pcacs +qc%\ is considered in the class S of all univalent
holomorphic functions f(z) = z4 Y pe g cnz" in the unit disk. For real values p and ¢ in
some regions of the (p, ¢)-plane the estimates of this functional are obtained by the area
method for univalent functions. Some new regions are found where the Koebe function is
extremal.

Introduction. Let S be the class of all holomorphic univalent functions
fz) =2+ Z cn 2"
n=2

in the unit disk. We consider the functional
Dy(f) = ca + peacs + qcs

for real values p and ¢ which is fourth-order homogeneous in the sense of
rotation:

e Dy(e™" f(e'*2)) = Da(f).

Many papers are devoted to the estimation of |Dy| for different values of p
and ¢ (see [1], [2], [4], [5]). Special interest in this functional is connected
with estimating the seventh coefficient 0(72) in the class S® of odd univalent

functions

oo
FE@) =24 2
n=2
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Namely, max;cge) |c§2)| = maxfes 27 [Dy(f)| for p = —1/2,¢ = 1/8.
P. Lehto [4] showed that |D4| < 4 + 6p + 8¢ when ¢ > p*/4 + p/4 + 7/12,
with the Koebe function being extremal. Moreover, he found that if p = —2

and ¢ = 13/12, then the Koebe function is not unique.

Here we find some other regions in the (p,q)-plane where the Koebe
function is extremal and find new regions where the estimates are different
from 4 + 6p + 8¢.

We use the area method in the form given by N. Lebedev [3] for the
estimate of the fourth coefficient for univalent functions.

Let F®)(¢) belong to the class X of all odd univalent functions F(¢) =
(+ai/¢+a3/¢3+...in the exterior of the unit disk |[¢| > 1. Then

F(Q)(C) — F(2) (t) — —ng—m
Ln C—t = Z wWpmC T, ‘t‘ > 1,

n,m=1
where w,, are the Grunsky coefficients. It is known [3] that
¢4 = 2wsz + 8wiiwiz + F (wi1)?,
(1) c3 = 2wz + 3(w11)?,
Cy = 2w11.

By the Grunsky inequality for any | € C we get
|wss + 2wisl + w11 l?| < 1] +1/3,
and from (1),
Dy = ¢4 + peacs + qc3 = 2wsz + 4(2 + p)wiiwis + 2(5/3 + 4q + 3p)w?,
and

(2) ‘D4 — 4(2 + p)w11w13 — 2(5/3 + 4q + 3]3)(,4}?1
+ 4wyl + 2w %] < 2|1 + 2/3.
For convenience we assume wiz = ws and wy; = wy. Since Dy(f) =

e 3 Dy(e " f(e™2)), we assume Dy > 0 without loss of generality. The
modulus on the left-hand side of (2) can be replaced by the real part, so

Re Dy <2/3 4 2|I> + Re{4((2 + p)w1 — w3
+2(5/3 + 4q + 3p)wi — 2w, 1%}

The area theorem for odd univalent functions [3] states that

o0

2(2” — D|wign-1|* < 1.

n=1
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Therefore |wi|? + 3|ws|? < 1 or |ws| < (1/v/3)/1 — |w1[2. Thus
1
— /1= |w|?
+ 2Re{(5/3 + 4q + 3p)wi — wil?}.
We write w; = 2,0 < z < 1, and put | = (2 + p)ze /% cos(3¢/2) and
y = [sin(3p/2)], 0 <y < 1. Then |(2 + p)w1 — | = |2 + p|zy and
V1—2?
V3
+2(a = b%)2” + 2y°(b* — 2a)2” = p(,y),
where a =5/3 +4q+ 3p and b =2+ p.

|Dg| <2/342|1]* + |4((2 + p)wy — 1

(3) |D4| < 2/3 4 20%22(1 — %) + 4[bl2y

1. The case ¢ < —3p/4—5/12. Evidently, if a = b = 0, then Dy < 2/3,
so we omit this case. If b = 0 and a < 0, then the coefficient z = ((b* —
2a)x — b%)z? of 32 in (3) is positive for all 0 < o < 1. Analogously, if b # 0
and @ = 0, then z < 0 for all 0 < 2 < 1. Let g = b?/(b* — 2a); then
xo € [0,1]. If a # 0 and b # 0, then 0 < 29 < 1. Let g < z < 1. Hence
z > 0 and maxo<y<1 ¢(z,y) = ¢(x,1). If 0 < z < xp, then z < 0 and
maxo<y<1 ¢(z,y) = p(x,y*), where

. _ [blV1 — a2
Y 2v/3[b2(1 — x) + 2az]
Elementary calculations show that the inequality |p 4 2| < 2v/2/+/3 implies

that y* > 1 is equivalent to |p + 2| < 2v/2/v/3. Thus, if |b] < 2v/2/+/3 and
a < 0, then

4lb
|Dy| < 2/3 — 2ax® + \|/§|x\/ 1 — 22 =29 (x)+2/3,

and @1(0) =0, (1) > 0. It is not difficult to show that ¢;(x) has a unique
maximum in (0,1) at the point z*, where z* is the unique root in (0,1) of
the equation

4[b| 2|b|

3ar*\/1— 22+ —=2* — == =0.
V3 V3

Note that if 2=z, then p(x,y) is a linear function of y and maxo<,<1 ¢(z,y)
= ¢(z,1). If z =0, then evidently y* > 1.
Now, if a =0 and b # 0, then z < 0,z € [0, 1] and

y*? = (14 2)/(32%0*(1 — z)).
Clearing up the inequality y* > 1 we come to
(4) max gO(.’L',y) = cp(x, 1)7 ma'Xl (pl (x) = 451(1/\/5)

0<y<1 0<z<
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If a # 0 and b = 0, then the maximum (4) holds again and |D4| <
8/3 + 8q + 6p.
THEOREM 1. If ¢ < —3p/4 —5/12 and |p + 2| < 2+/2/3, then
4lp + 2|
V3
where x* is the unique root in (0,1) of the equation
V3(5 + 12¢ + 9p)z® /1 — 22 + |4 + 2p|(22%2 — 1) = 0.
The inequality (5) is sharp only for p = —2 and q = 13/12.
COROLLARY. If f(z) =2+ o ,c,2" €S, then
8(g—1) for ¢ > 13/12,
(4/3)(7 —6q) for g < 13/12,
2)  ea 4 peacs — (3p/4+5/12)c3| < 2/3 +2|p +2|/V3
if lp+2] <2/2/3.

Now we consider the case |p + 2| > 24/2/3. We want y* to be bigger
than 1 again. This condition implies the inequality

¥ (z) = 32%b* + 62°b?(2a — b%) + 32*(2a — b?)? — b*(1 — 2?) < 0.
To prove this, the sign of ¥/(z) can be determined or
_ V(x)
2
From ¥(zo) = (4b%a — 4a?b?)(b* — 2a)~2 < 0 it will follow that ¥(z) < 0.
The equation u(x) = 0 has two real roots
9% £b4/3(3b> —8)
T2 TR0 — 2a0)

We put b > 0,21 < 3. So x5 < xg. We want ¥(z1) to be negative. To
simplify the form of the corresponding curve in the (p, ¢)-plane we find that
the inequality

(5) |D4| < 2/3 —2(5/3 + 4q + 3p)a™> + */1 — x*2,

0 e — 265¢5 + qcd] < {

u(x) = 62%(b* — 2a)* — 9b%x(b? — 2a) + b*(1 + 3b%) > 0.

9 , 9 4 209, 89 127
2o L e % 22y
1< "g? T T mt mP o6 AW
implies ¥(z1) < 0. Hence if ¢ < A(p), then y* > 1, and the considerations
of Theorem 1 remain true, so maxo<y<1 @(z,y) = ¢(x,1). Obviously, if

q < A(p), then ¢ < —3p/4 — 5/12.
THEOREM 2. If |p + 2| > 2,/2/3 and
9 , 9 4 209, 8 127
Q<—ﬁp 167 T 128 T3P 9
then the estimate (5) holds.
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2. The case ¢ > —3p/4—5/12. The coefficient z = 2%(—2az—b*(1—=z))
of y? in ¢(z,y) is negative, and ¢(z,y) < o(x,y*), where

. |blv1 — x2

V3x(b? — (b2 — 2a)x)

and
20%(1 — 2?)

Dy| <2/3+20%2% +2(a — b*)a® —
Dal < 2/8 4 2077 4 200 =007 = 502 50y, — 1)

Now we look for the region of the (p,q)-plane where the Koebe function
is extremal. In this case we should have the inequality @5(z) < P5(1). We
assume

(6) a < b? < 2a,

(7) b2 < a(9 —V17)/4,
(8) b’ < 6a?,

(9) a>1/3.

We reduce the inequality @5(z) < @2(1) to a common denominator tak-
ing into account (6) and get it in the equivalent form:

¥(x) = 3(b* 4+ (2a — b)) {b*(1 + 2) + (a — b*)(1 + 2 + 2?)} = b*(1 +2) > 0.
The inequality (6) implies that ¥”(z) is decreasing and since by (7),
" (1)/6 = 8a% — 9ab? + 2b* > 0 it follows that ¥”(x) > 0 for € [0,1].
¥’ increases and by (8), ¥/(0) = 6a? — b* > 0. Hence, ¥(x) increases and
by (9), ¥(0) = b*(3a — 1) > 0 and therefore ¥(z) > 0 for all z € [0,1].
Now we consider the region containing the point (0, 0) of the (p, ¢)-plane.

In the case a > 0, a < b?/2 we make P»(z) bigger, so

Dy(z) < b*2% + (a — b*)z® + b*(1 — 22)/(6a) = g(x).
If

2

0> r/2 - 7p12 - 14+ PE2 0y,

then b? < 9a%/(1 + 3a), ¢'(z) > 0 for z € [0,1] and

|Dy| <2/3+42P5(x) <2/3+2g(x) <2/3+2¢(1) =2/3+4 20,(1).
Hence, here the Koebe function is also extremal.

THEOREM 3. If
1

1292 + 5(3V17T — 11)p+ 5V17T+3) < g < p*/4 + p/4 + 7/12
12(9_ﬁ)( P~ + 5( )P )< q<p /A+p/i+T/



12 L. Gromova and A. Vasil’ev

and q > —3p/4 —1/3, or if

2
p?/21 - 1p/12 11+ IR (g 2)? 4 )2 < g <P - pja 112
and 1+ 4q+ 3p > 0, then |D4| < 4+ 6p + 8¢ with the Koebe function being

extremal (the point (0,0) belongs to the last domain).
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