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On the versal discriminant of Jk,0 singularities

by Piotr Jaworski (Warszawa)

Abstract. It is well known that the versal deformations of nonsimple singularities
depend on moduli. The first step in deeper understanding of this phenomenon is to deter-
mine the versal discriminant, which roughly speaking is an obstacle to analytic triviality
of an unfolding or deformation along the moduli. The versal discriminant of the Pham
singularity (J3,0 in Arnold’s classification) was thoroughly investigated by J. Damon and
A. Galligo [2], [3], [4]. The goal of this paper is to continue their work and to describe the
versal discriminant of a general Jk,0 singularity.

1. Introduction. Let f : (Cn, 0) → (C, 0) be a germ of an analytic
function with an isolated critical point at the origin. Let

F : U → C, (0, 0) ∈ U ⊂ Cn × Λ,
be an analytic deformation of f (f(x) = F (x, 0)0), which is miniversal for
right equivalence. Obviously Fλ(x) = F (x, λ) is versal for V-equivalence.
Furthermore, if λ1 is a free term, i.e. F (x, λ) = F ′(x, λ′) + λ1, where λ=
(λ1, λ

′) ∈ Λ = C × Λ′, and the domain U splits as U = C × U ′ with
U ′ ⊂ Cn × Λ′ then the unfolding

F : (U ′, (0, 0))→ (Λ, 0), F(x, λ′) = (−F ′, λ′),
is right-left stable.

Let T be the moduli set, i.e. the subset of Λ consisting of λ such that
Fλ(x) has a critical point p of multiplicity µ = µ(f) and Fλ(p) = 0.

Let π : (Λ, 0) → (T, 0) be an analytic projection (transversal to T ).
The versal discriminant V of the deformation Fλ (resp. of the unfolding
F) relative to the projection π is the subset of the fibre π−1(0) consisting
of parameters λ such that the deformation Fλ, λ ∈ π−1(0), is not infinites-
imally V-versal at λ (equivalently, the unfolding F restricted to the set
F−1(π−1(0)) is not right-left infinitesimally stable at λ).
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We remark that the versal discriminant has the following property. There
exists an integer k such that if a nonsingular analytic subvariety Λ1 ⊂ Λ,
transversal to the moduli space T , is tangent to the fibre π−1(0) at V up to
order k then the deformation Fλ, λ ∈ Λ1, is V-equivalent to Fλ, λ ∈ π−1(0),
in some neighbourhood of the origin. A similar fact is valid for unfoldings.

Now let the germ f be quasihomogeneous (weighted homogeneous). Then
there exists a distinguished class of projections induced by quasihomogene-
ity. Indeed, let v be an associated quasihomogeneous weight. We consider
the quasihomogeneous miniversal deformation:

Fλ = f +
µ∑
i=1

λiei,

where e1, . . . , eµ is a quasihomogeneous base of the local algebra On/If and
If is the ideal spanned by the partial derivatives ∂f/∂xi, i = 1, . . . , n (com-
pare [1], §8). We say that the parameter λi is underdiagonal, overdiagonal,
or diagonal if the weight of ei is less than, greater than or equal to the weight
of f respectively. In this case the moduli set T is a linear subspace of the
base Λ = Cµ spanned by overdiagonal and diagonal λ’s. Moreover, there is
a canonical projection π onto T—“forgetting” the underdiagonal λ’s. For
that projection the restriction Fλ, λ ∈ π−1(0), is a part of the deformation
consisting of underdiagonal terms, the so-called underdiagonal deformation
(also called the deformation of negative weight). Since quasihomogeneous
germs are germs of polynomials, Fλ is defined globally and we may put for
example U = Cn × Cµ. However, since the versal discriminant depends
on the choice of the domain where the deformation is defined, we restrict
ourselves to domains U such that:

• U splits: U = {(x, λ1, λ
′) : λ1 ∈ C, (x, λ′) ∈ U ′},

• U is a neighbourhood of Cn × π−1(0),
• the factor algebra of the analytic functions on U modulo the ideal

generated by the partial derivatives ∂Fλ/∂xi, i = 1, . . . , n, is a free module
over the ring of analytic functions on Π(U) (the projection of U on Λ)
generated by the polynomials e1, . . . , eµ introduced above, i.e.

O(U)/IFλ
= O(Π(U))⊗C On/If .

Our goal is to describe the versal discriminant, relative to the canonical pro-
jection onto the moduli set, of quasihomogeneous miniversal deformations
of Jk,0 singularities, restricted to the domain U as above.

The author would like to mention here that he has been recently informed
that A. Du Plessis and C. T. C. Wall are dealing with similar problems in
their forthcoming book.
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2. The main results. In this paper we consider the quasihomogeneous
analytic functions

f(x, y) = (y + αxk)3 + β(y + αxk)x2k + γx3k, k = 2, 3, . . . ,

where 4β3 + 27γ2 6= 0. They have an isolated singular point at the origin.
In Arnold’s classification (see [1], §15) such singularities are called Jk,0. We
remark that they are classified by the j-invariant:

j =
4β3

4β3 + 27γ2
,

the same which classifies the elliptic curves

z2 = (y + αx)3 + β(y + αx)x2 + γx3

(compare [5], §IV.4), therefore they can be described by normal forms which
depend on one modulus only. The most commonly used are the following:

y3 + 3αy2xk + x3k, 4α3 + 1 6= 0, for all j,

y3 + βyx2k + x3k, 4β3 + 27 6= 0, for j 6= 1,

y3 + yx2k + γx3k, 4 + 27γ2 6= 0, for j 6= 0.

Our aim is to describe the versal discriminant of these singularities rel-
ative to the projection π onto overdiagonals and diagonals:

π(λunderdiagonal, λdiagonal, λoverdiagonal) = (λdiagonal, λoverdiagonal).

This shows that the versal discriminants do not depend on the choice of the
particular quasihomogeneous deformation.

Theorem 1. The versal discriminant consists of parameters λ such that ,
after a substitution y = y − a(x), Fλ is one of the following polynomials:

A: y3 + ed(x)2y + d(x)3,

B: y3 + b(x)y,

C: y3 + c(x),

where 27+4e3 6= 0, b(x), c(x), d(x) are polynomials of degree respectively 2k,
3k, k with no more than k − 1 different roots, and a(x) is any polynomial
of degree k or less.

R e m a r k. The cases A, B, C of the above theorem occur for Jk,0 quasiho-
mogeneous singularities with j-invariant equal respectively to 27/(27+4e3),
1, 0.
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In [6] we investigate the above polynomials in more detail and determine
the singular points of the associated curves.

3. Liftable vector fields. Let F (x, λ), (x, λ) ∈ U ⊂ Cn×Λ, be a right
miniversal deformation (of f(x) = F (x, 0)0). We assume that λ1 is the free
term, i.e.

F (x, λ) = F ′(x, λ′) + λ1, λ = (λ1, λ
′) ∈ C× Λ′.

Furthermore, we assume that U = C × U ′, where U ′ ⊂ Cn × Λ′. Then the
associated unfolding is given by the formula

F(x, λ′) = (−F ′(x, λ′), λ′), (x, λ′) ∈ U ′.
We choose the minus sign to simplify formulas.

Let Π be the canonical projection Cn×Λ→ Λ. We say that an analytic
vector field η defined on Π(U) ⊂ Λ is respectively V -liftable or A-liftable if
there exists respectively an analytic vector field ξv on U such that

ξv(g ◦Π) = η(g) ◦Π, ξv(F ) = HF,

or an analytic vector field ξa on U ′ such that

ξa(g ◦ F) = η(g) ◦ F ,
where g is any analytic function on Π(U) and H is an analytic function
on U .

In coordinates these conditions may be stated as follows: The vector field

η =
µ∑
i=1

ηi(λ)
∂

∂λi

is V-liftable if there exists a vector field

ξv =
n∑
i=1

ai(x, λ)
∂

∂xi
+

µ∑
i=1

ηi(λ)
∂

∂λi
,

such that
n∑
i=1

ai(x, λ)
∂F

∂xi
+

µ∑
i=1

ηi(λ)
∂F

∂λi
= H(x, λ)F (x, λ).

Similarly, η is A-liftable if there exists a vector field

ξa =
n∑
i=1

bi(x, λ′)
∂

∂xi
+

µ∑
i=2

ηi(−F ′, λ′)
∂

∂λi
,

such that
n∑
i=1

bi(x, λ′)
∂F ′

∂xi
+

µ∑
i=2

ηi(−F ′, λ′)
∂F ′

∂λi
+ η1(−F ′, λ′) = 0.
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Lemma 1. The vector field η is V-liftable if and only if it is A-liftable.

P r o o f. ⇐. We substitute F ′ = F − λ1 and expand ηi’s:

ηi(λ1 − F, λ′) = ηi(λ1, λ
′) +HiF.

Note that ∂F/∂λ1 = 1. Then we put ai(x, λ1, λ
′) = bi(x, λ′).

⇒. We substitute λ1 = −F ′ (i.e. F = 0).

We shall denote the module of liftable vector fields by M and by M(λ)
the linear space of their values at the point λ.

We recall the following:
A point λ ∈ π−1(0) does not belong to the versal discriminant relative

to the projection π if and only if the module M of liftable vector fields is
transversal to the fibre π−1(0) at λ:

M(λ)⊕ Tλ(π−1(0)) = TλΛ.

The property mentioned in the introduction may be proved by inte-
gration of liftable vector fields near the origin (compare with [3], §2; see
also the local description of V-versality in [1], §8, and of right-left stability
in [1], §6).

4. Multiplications in the local algebra. In this section we shall
consider the local algebra of the germ

f(x, y) = y3 + βyx2k + γx3k, k = 2, 3, . . . ,

where 4β3 +27γ2 6= 0. The above germ is quasihomogeneous, the associated
weight is

v(x) = 1, v(y) = k.

Let e1, . . . , eµ, µ = 6k − 2, be the basis of the local algebra Ω = O2/If :

O2 = O2{∂f/∂x, ∂f/∂y} ⊕ C{e1, . . . , eµ},

consisting of quasihomogeneous polynomials ordered by their weights

v(ei) ≤ v(ei+1).

For example, if γ 6= 0 then we may choose

ei = xi−1 for i = 1, . . . , k,

ek+2i−1 = xk+i−1 for i = 1, . . . , 2k − 1,

ek+2i = yxi−1 for i = 1, . . . , 2k − 1,

e5k+i−2 = yx2k+i−2 for i = 1, . . . , k.



94 P. Jaworski

We remark that the number of base elements of a given weight does not
depend on the choice of the base (see [1], §12.2). Hence we have

v(ei) = i− 1 for i = 1, . . . , k,
v(ek+2i−1) = v(ek+2i) = k + i− 1 for i = 1, . . . , 2k − 1,
v(e5k+i−2) = 3k + i− 2 for i = 1, . . . , k.

Multiplication by x in the local algebra

O2/If ≈ C{e1, . . . , eµ}
is “shift-like”. The product x · ei, i < µ, is a linear combination of base
elements of weight one greater than the weight of ei. The kernel of this
multiplication is two-dimensional; it is spanned by eµ and a combination of
e5k−3 and e5k−2.

Now let F be a quasihomogeneous deformation of f :

F (x, y, λ) = f(x, y) +
µ∑
i=1

λiei.

Let π be the projection onto overdiagonals and diagonals:

π(λ1, . . . , λµ) = (λ5k, . . . , λµ).

The condition from the previous section may be restated in the following
way:

Proposition 1. A point λ ∈ π−1(0) does not belong to the versal
discriminant relative to the projection π if and only if the polynomials
Fλ, xFλ, . . . , x

mFλ, . . . , yFλ, xyFλ, . . . , x
myFλ, . . . and the underdiagonal

base elements generate the whole algebra Ωλ = C[x, y]/IFλ
.

P r o o f. The tangent space to the fibre of the projection is spanned by
the underdiagonal vectors ∂/∂λ1, . . . , ∂/∂λ5k−1; hence λ does not belong to
the versal discriminant if

M(λ)⊕ C(∂/∂λ1, . . . , ∂/∂λ5k−1) = C(∂/∂λ1, . . . , ∂/∂λµ).

Since the mapping η → η(Fλ) is a C-linear isomorphism of the tangent
space TλΛ onto the algebra Ωλ, the above condition is equivalent to

C
( µ∑
i=1

ηi(λ)ei : η ∈Mλ

)
⊕ C(e1, . . . , e5k−1) = Ωλ.

We remark that we have chosen the domain U on which F (x, λ) is defined
in such a way that the analytic factor algebra O(U)/IFλ

is a free O(Π(U))-
module generated by ei = ∂F/∂λi; hence, if the vector field

η =
µ∑
i=1

ηi(λ)
∂

∂λi
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is liftable in λ, then in the factor algebra Ωλ,
µ∑
i=1

ηi(λ)ei = H(x, y)Fλ(x, y),

where H is a polynomial in x and y. Since fy = 3y2 +βx2k, we may assume
that H(x, y) = H0(x) +H1(x)y. Therefore the condition from the previous
section is equivalent to that from the proposition.

Proposition 1 reduces our problem to the investigation of the orbits of F
and yF in the algebra Ωλ = C[x, y]/IF under iterated multiplication by x.
We remark that the polynomials ei form a basis of the algebraΩλ. Moreover,
multiplication in this algebra is a deformation of multiplication in the local
algebra Ω and is also shift-like: x · ei, i < µ, is a linear combination of base
elements of weight not greater than v(ei) + 1.

5. The proof of Theorem 1. First we consider the following particular
case:

Fλ = y3 + b(x)y + c(x),
where b and c are polynomials of degree not greater than 2k and 3k respec-
tively:

b(x) =
2k∑
i=0

bi(λ)xi, c(x) =
3k∑
i=0

ci(λ)xi,

which satisfy the nondegeneracy condition

27c23k + 4b32k 6= 0.

We start with the following observation.

Proposition 2. If λ belongs to the versal discriminant then

2b(x)c′(x)− 3b′(x)c(x) ≡ 0.

P r o o f. For F = y3 + b(x)y + c(x) we have

Fy =
∂F

∂y
= 3y2 + b(x), Fx =

∂F

∂x
= b′(x)y + c′(x).

We put
F̃ = 3F − yFy = 2b(x)y + 3c(x).

We investigate the orbit of F̃ in Ωλ under multiplication by x. Since kF̃−xFx
is underdiagonal and multiplication by x is shift-like, it follows that if j is
the lowest power for which xjF̃ is not underdiagonal modFx, then it is
diagonal. Thus, successive xj+rF̃ give the overdiagonal terms. Therefore, if
λ is not in the versal discriminant, then all xjF̃ are underdiagonal modFx.
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The space of underdiagonal polynomials being finite-dimensional, there
exist two nonzero polynomials w1(x) and w2(x) such that

w1(x)F̃ + w2(x)Fx = 0.

Thus we have a system of two equations:

2bw1 + b′w2 = 0, 3cw1 + c′w2 = 0.

The polynomial R = 2bc′ − 3b′c is the determinant of this system. Hence
nontrivial solutions may exist only when R ≡ 0.

Now we investigate in more detail the condition R ≡ 0.

Lemma 2. The condition R = 2bc′ − 3b′c ≡ 0 is satisfied only in three
cases:

A: y3 + ed(x)2y + d(x)3,

B: y3 + b(x)y,

C: y3 + c(x),

where d(x), b(x) and c(x) are polynomials of degree k, 2k and 3k respectively ,
and e is a constant. Moreover , the j-invariant of the leading part equals
27/(27 + 4e3), 1 and 0 respectively.

P r o o f. Obviously R ≡ 0 if c ≡ 0 (case B) or b ≡ 0 (case C). Otherwise
we have

2
c′

c
= 3

b′

b
.

Therefore for some constant C,

Cc(x)2 = b(x)3.

Hence b is a square and c is a cube. We put

c(x) = d(x)3, b(x) = ed(x)2.

Next we investigate the orbit of yF̃ under multiplication by x and get
sufficient conditions.

Lemma 3. The point λ belongs to the versal discriminant if and only if
Fλ is of type A, B or C and respectively the polynomial d(x), b(x) or c(x)
has at most k − 1 different roots.

P r o o f. C a s e A. In this case we have

F = y3 + ed(x)2y + d(x)3,
Fy = 3y2 + ed(x)2, Fx = (2ey + 3d(x))d(x)d′(x),

F̃ = (2ey + 3d(x))d(x)2.
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Let d1(x) be the greatest common divisor of d and d′. We put d′=d0d1 and
d = d2d1. Then

d0F̃ = (2ey + 3d(x))d(x)2d0(x) = (2ey + 3d(x))d(x)d′(x)d2(x) = d2Fx.

Hence if the degree of d0(x) is smaller than k− 1 (i.e. d has multiple roots)
then the polynomials F̃ , xF̃ , . . . are underdiagonal modFx and the polyno-
mials yF̃ , xyF̃ , . . . and the underdiagonal base elements do not generate the
whole algebra Ωλ. Indeed, the dimension of the subspace of Ωλ spanned by
yF̃ , xyF̃ , . . . is smaller than the number of diagonal and overdiagonal base
elements.

Otherwise we put

F̂ = r1(x)F̃ + r2Fx = (2ey + 3d(x))d(x)d1(x),

G = 3yF̂ − 2ed(x)d1(x)Fy = (9y − 2e2d(x))d(x)2d1(x),

where r1 and r2 are polynomials such that

d1(x) = r1(x)d(x) + r2(x)d′(x).

By the nondegeneracy condition the polynomials 2ey+3d(x) and 9y−2e2d(x)
are linearly independent. Furthermore, the maximal weight of a monomial
in G is 3k. Hence the polynomials G, xG, . . . and the underdiagonal base
elements generate the whole algebra Ωλ.

Therefore, in this case, λ belongs to the versal discriminant if and only if
the polynomial d(x) has at least one multiple root, or equivalently at most
k − 1 different roots.

C a s e B. In this case we have

F = y3 + b(x)y, Fy = 3y2 + b(x), Fx = b′(x)y, F̃ = 2b(x)y.

Let b1(x) be the greatest common divisor of b and b′. We put b′ = b0b1 and
b = b2b1. Then

b0F̃ = 2b(x)b0(x)y = 2b2(x)b′(x) = 2b2Fx.

Hence if the degree of b0(x) is smaller than k − 1 (i.e. b has less than k

different roots) then the polynomials yF̃ , xyF̃ , . . . and the underdiagonal
base elements do not generate the whole algebra Ωλ.

Otherwise we put

F̂ = r1(x)F̃ + 2r2Fx = 2b1(x)y,

G = 3yF̂ − 2b1(x)Fy = −2b(x)b1(x),

where

b1(x) = r1(x)b(x) + r2(x)b′(x).
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The maximal weight of a monomial in G is 2k + deg b1. Hence if deg b1 is
equal to k or less then the polynomials G, xG, . . . and the underdiagonal
base elements generate the whole algebra Ωλ.

Therefore, in this case, λ belongs to the versal discriminant if and only
if the polynomial b(x) has at most k − 1 different roots.

C a s e C. In this case we have

F = y3 + c(x), Fy = 3y2, Fx = c′(x), F̃ = 3c(x).

Let c1(x) be the greatest common divisor of c and c′. We put c′ = c0c1 and
c = c2c1. Then

c0F̃ = 3c(x)2c0(x)y = 3c2(x)c′(x) = 3c2Fx.

Hence if the degree of c0(x) is smaller than k − 1 (i.e. c has less than k

different roots) then the polynomials yF̃ , xyF̃ , . . . and the underdiagonal
base elements do not generate the whole algebra Ωλ.

Otherwise we put

F̂ = r1(x)F̃ + 3r2(x)Fx = 3c1(x), G = yF̂ = 3c1(x)y,

where
c1(x) = r1(x)c(x) + r2(x)c′(x).

The maximal weight of a monomial in G is k + deg c1. Hence if deg c1 is
equal to 2k or less then the polynomials G, xG, . . . and the underdiagonal
base elements generate the whole algebra Ωλ.

Therefore, in this case, λ belongs to the versal discriminant if and only
if the polynomial c(x) has at most k − 1 different roots.

To prove the theorem it is enough to notice that Proposition 2 and
Lemmas 2 and 3 remain valid if we replace y by y − a(x), where a(x) is
any polynomial of degree k or less. As a matter of fact such transformation
induces an isomorphism of unfoldings and deformations which preserves the
versal discriminant.
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