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Some quadratic integral inequalities of Opial type

by Ma lgorzata Kuchta (Wroc law)

Abstract. We derive and investigate integral inequalities of Opial type:
∫
I s|hḣ| dt ≤∫

I rḣ
2 dt, where h ∈ H, I = (α, β) is any interval on the real line, H is a class of absolutely

continuous functions h satisfying h(α) = 0 or h(β) = 0. Our method is a generalization
of the method of [3]–[5]. Given the function r we determine the class of functions s for
which quadratic integral inequalities of Opial type hold. Such classes have hitherto been
described as the classes of solutions of a certain differential equation. In this paper a wider
class of functions s is given which is the set of solutions of a certain differential inequality.
This class is determined directly and some new inequalities are found.

Introduction. We derive and examine quadratic integral inequalities
of Opial type, i.e. the inequalities of the form

(1)
∫
I

s|hḣ| dt ≤
∫
I

rḣ2 dt, h ∈ H,

where I = (α, β), −∞ ≤ α < β ≤ ∞, r and s are fixed functions of t, H
is a class of absolutely continuous functions and ḣ ≡ dh/dt. We extend the
method used to examine inequalities of Sturm–Liouville type by Florkiewicz
and Rybarski [5], Hardy type inequalities by Florkiewicz [3] and Opial type
inequalities by Florkiewicz [4]. The method makes it possible, given a func-
tion r and an auxilliary function ϕ, to define a function s and an additional
function v and next using r, s and v to define a class H of functions h for
which (1) holds.

In this paper s is given as the solution of a certain differential inequality.
In [5] and [3] s is calculated explicitly, in [4] it is described as the solution
of a differential equation. In this way one obtains a larger class of functions
s for which (1) holds. In the final section of the paper the class of functions
s is determined directly and some new integral inequalities connected with
the inequality (1) are found.
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The integral inequalities of Opial type (1) have also been obtained and
examined by different methods (see Beesack [1], Redheffer [9], Yang [11],
Boyd [2]; further bibliography can be found in [6]).

1. Let I = (α, β), −∞ ≤ α < β ≤ ∞. By AC(I) we denote the class of
absolutely continuous real functions on I. Let r ∈ AC(I) and ϕ ∈ AC(I)
be such that r, ϕ > 0 on I and ϕ̇ ∈ AC(I). Let s ∈ AC(I) satisfy the
differential inequality

(2) 1
2 ṡ− (rϕ̇)

.
ϕ−1 ≥ 0

almost everywhere on I. Put further

(3) v = − 1
2s+ rϕ̇ϕ−1.

Let H denote the class of functions h ∈ AC(I) such that h ≥ 0 on I and∫
I

rḣ2 dt <∞,(4) ∫
I

shḣ dt > −∞,(5)

lim inf
t→α

vh2 <∞, lim sup
t→β

vh2 > −∞.(6)

Theorem 1. For every h ∈ H both limits in (6) are proper and finite,
and

(7) lim
t→β

vh2 − lim
t→α

vh2 ≤
∫
I

(rḣ2 − shḣ) dt.

If h 6≡ 0 and ϕ 6∈ H, then inequality (7) is strict. If ϕ ∈ H, then inequality
(7) becomes equality if and only if s satisfies the differential equation

(8) 1
2 ṡ− (rϕ̇)

.
ϕ−1 = 0

a.e. on I and h = cϕ with c = const ≥ 0.

P r o o f. Let h ∈ AC(I) and h ≥ 0 on I. By (3) and our assumptions we
have vh2 ∈ AC(I) and hϕ−1 ∈ AC(I). After simple calculations we get

(vh2)
.
= −shḣ−

(
1
2 ṡ− (rϕ̇)

.
ϕ−1

)
h2 + 2rϕ̇ϕ−1hḣ− rϕ̇2ϕ−2h2

and
rϕ2[(hϕ−1)

.
]2 = rḣ2 − 2rϕ̇ϕ−1hḣ+ rϕ̇2ϕ−2h2

a.e. on I. Hence we obtain the identity

(9) rḣ2 − shḣ = (vh2)
.
+
(

1
2 ṡ− (rϕ̇)

.
ϕ−1

)
h2 + rϕ2[(hϕ−1)

.
]2

a.e. on I.
Let now h ∈ H; we shall examine the summability of the functions that

appear in (9). Condition (4) implies that rḣ2 is summable on I because
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rḣ2 ≥ 0 on I. Consider an arbitrary interval [a, b] ⊂ I. The function shḣ
is summable on [a, b] because sh ∈ AC(I) and therefore is bounded and ḣ
is summable on [a, b]. The function (vh2)

.
is summable on [a, b] because

vh2 ∈ AC(I). Similarly
(

1
2 ṡ − (rϕ̇)

.
ϕ−1

)
h2 is summable on [a, b] because

ṡ is summable on [a, b] and 1
2h

2 ∈ AC(I), (rϕ̇)
.

is summable on [a, b] and
ϕ−1h2 ∈ AC(I). It follows from (9) that rϕ2[(hϕ−1)

.
]2 is also summable on

[a, b] and

(10)
b∫
a

rḣ2 dt−
b∫
a

shḣ dt =
b∫
a

(
1
2 ṡ− (rϕ̇)

.
ϕ−1)h2dt+

b∫
a

g dt+ vh2|ba,

where g = rϕ2[(hϕ−1)
.
]2. It follows from conditions (6) that there exist two

sequences {an} and {bn} such that α < an < bn < β, an → α, bn → β and

lim
n→∞

vh2|an = A <∞, lim
n→∞

(−vh2)|bn = B <∞.

Thus there is a constant C such that

−vh2|bn
an
< C <∞.

From (10) and the fact that g ≥ 0 and
(

1
2 ṡ−(rϕ̇)

.
ϕ−1

)
h2 ≥ 0 it follows that

bn∫
an

shḣ dt ≤
bn∫
an

rḣ2 dt+ C ≤
β∫
α

rḣ2 dt+ C.

Letting n→∞ we obtain∫
I

shḣ dt ≤
∫
I

rḣ2 dt+ C.

Thus in view of (4) and (5) we conclude that shḣ is summable on I. In
the analogous way using (10) we show that

(
1
2 ṡ − (rϕ̇)

.
ϕ−1

)
h2 and g are

summable on I. It follows that in (6) we can simply put lim instead of lim inf
and lim sup and both limits are finite because all integrals in (10) have finite
limits as a→ α or b→ β.

By (10) letting a→ α and b→ β we obtain∫
I

rḣ2 dt−
∫
I

shḣ dt =
∫
I

(
1
2 ṡ− (rϕ̇)

.
ϕ−1

)
h2 dt+

∫
I

g dt(11)

+ lim
t→β

vh2 − lim
t→α

vh2,

whence (7) immediately follows because g ≥ 0 and
(

1
2 ṡ − (rϕ̇)

.
ϕ−1

)
h2 ≥ 0

on I.
By (11), (2) and the condition g ≥ 0 on I, inequality (7) becomes equality

for a non-vanishing function h ∈ H if and only if
∫
I

(
1
2 ṡ−(rϕ̇)

.
ϕ−1

)
h2 dt = 0

and
∫
I
g dt = 0. Now

∫
I
g dt = 0 if and only if g = rϕ2[(hϕ−1)

.
]2 = 0

a.e. on I. Hence (hϕ−1)
.

= 0 a.e. on I and h = cϕ, where c is a positive
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constant, since by assumption hϕ−1∈AC(I). Thus ϕ ∈ H. Further
∫
I

(
1
2 ṡ−

(rϕ̇)
.
ϕ−1

)
h2 dt = 0 if and only if s is a solution of the differential equation

(8) a.e. on I, since h = cϕ > 0 on I.

2. In further considerations we use the following lemmas.

Lemma 1. Let h ∈ AC(I) and
∫
I
rḣ2 dt < ∞. If

∫ t
α
r−1 dτ < ∞ (resp.∫ β

t
r−1dτ <∞) for some t ∈ I, then the limit

h(α) = lim
t→α

h (resp. h(β) = lim
t→β

h)

exists and is finite.

For the proof see [3].
Let us denote by H0 (resp. H0) the class of functions h ∈ AC(I) satis-

fying the integral condition ∫
I

rḣ2 dt <∞

and the limit condition

lim
t→α

h = 0 (resp. lim
t→β

h = 0).

Lemma 2. If h ∈ H0 (resp. h ∈ H0),
∫ t
α
r−1 dτ < ∞ (resp.

∫ β
t
r−1dτ

< ∞) for some t ∈ I and w
∫ t
α
r−1dτ = O(1) as t → α (resp. w

∫ β
t
r−1dτ

= O(1) as t→ β), where w is an arbitrary measurable function on I, then

lim
t→α

wh2 = 0 (resp. lim
t→β

wh2 = 0).

P r o o f. We prove the lemma for the case h ∈ H0 (the case h ∈ H0 is
similar). Using the Schwarz inequality we obtain

0 ≤ |h(t)− h(a)|2 ≤
t∫
a

r−1 dτ
t∫
a

rḣ2 dτ,

where α < a < t < β. Letting a→ α shows that

0 ≤ |wh2| ≤
∣∣∣w t∫

α

r−1 dτ
∣∣∣ t∫
α

rḣ2 dτ.

Letting t→ α we obtain the assertion.

The derivative of the function v ∈ AC(I) defined by (3) is

v̇ = −rϕ̇2ϕ−2 −
(

1
2 ṡ− (rϕ̇)

.
ϕ−1

)
a.e. on I.

From (2) it follows that

(12) v̇ ≤ −rϕ̇2ϕ−2
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on I, so v̇ ≤ 0 on I. Hence v is decreasing on I, the limit values v(α) =
limt→α v and v(β) = limt→β v exist and v(α) ≥ v(β).

Lemma 3. Let s ∈ AC(I) satisfy the differential inequality (2) a.e. on I.

(i) Let s ≥ 0 on I. If v(α) > 0, then
∫ t
α
r−1dτ <∞ for some t∈I and

v
∫ t
α
r−1dτ = O(1) as t → α. If v(β) > 0, then

∫ β
t
r−1dτ < ∞ for some

t ∈ I.
(ii) Let s ≤ 0 on I. If v(β) < 0, then

∫ β
t
r−1dτ <∞ for some t∈I and

v
∫ β
t
r−1dτ = O(1) as t → β. If v(α) < 0, then

∫ t
α
r−1dτ < ∞ for some

t ∈ I.

P r o o f. We prove Lemma 3 only in one case: s ≥ 0 on I and v(α) > 0.
The remaining cases can be proved similarly.

There exists a neighbourhood U of α such that v > 0 on U . By (3) it
follows that 0 < v ≤ rϕ̇ϕ−1 on U . Hence, by (12), v̇ ≤ −r−1v2 a.e. on U.
Thus r−1 ≤ −v̇v−2 a.e. on U and we obtain

t∫
a

r−1dτ ≤ −
t∫
a

v̇v−2dτ = v−1 − v−1(a) < v−1

for any a, t ∈ U such that α < a < t < β. Letting a → α shows that∫ t
α
r−1dτ <∞ and 0 < v

∫ t
α
r−1dτ ≤ 1. Thus v

∫ t
α
r−1dτ = O(1) as t→ α.

Theorem 2. Let s ∈ AC(I) satisfy the differential inequality (2) a.e.
on I.

(i) If s ≥ 0 on I and v(β) ≥ 0, then

(13)
∫
I

s|hḣ| dt+ lim
t→β

vh2 ≤
∫
I

rḣ2 dt

for every h ∈ H0. If v(β) > 0, then the limit value h(β) exists and is finite,
and (13) takes the form

(14)
∫
I

s|hḣ| dt+ v(β)h2(β) ≤
∫
I

rḣ2 dt.

If h 6≡ 0, then (13) becomes equality if and only if s satisfies the differential
equation (8) a.e. on I, h = cϕ with c = const 6= 0, ϕ∈H0 and ϕ̇ ≥ 0 on I.

(ii) If s ≤ 0 on I and v(α) ≤ 0, then

(15)
∫
I

|shḣ| dt− lim
t→α

vh2 ≤
∫
I

rḣ2 dt

for every h ∈ H0. If v(α) < 0, then the limit value h(α) exists and is finite,
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and (15) takes the form

(16)
∫
I

|shḣ| dt− v(α)h2(α) ≤
∫
I

rḣ2 dt.

If h 6≡ 0, then (15) becomes equality if and only if s satisfies (8) a.e. on I,
h = cϕ with c = const 6= 0, ϕ ∈ H0 and ϕ̇ ≤ 0 on I.

P r o o f. (i) If v(β) ≥ 0, then v ≥ 0 on I. Then lim supt→β vh2 ≥ 0 for
every h ∈ AC(I) whence the second condition of (6) is valid. If v(α) = 0,
then v ≡ 0 on I. Then s ≡ 0 on I and (13) trivially holds. If v(α) > 0, then
by Lemma 3(i) we have

∫ t
α
r−1dτ < ∞ and v

∫ t
α
r−1dτ = O(1) as t → α.

Thus by Lemma 2 for every h ∈ H0 we have limt→α vh
2 = 0, whence the

first condition of (6) is valid. Let h+ ∈ H0 be such that h+ ≥ 0 and ḣ+ ≥ 0
on I. Then

∫
I
sh+ḣ+ dt ≥ 0 and so (5) is satisfied. To sum up, h+ ∈ H and

from Theorem 1 we obtain

(17)
∫
I

sh+ḣ+ dt+ lim
t→β

vh2
+ ≤
∫
I

r(ḣ+)2 dt.

Let now h ∈ H0 be arbitrary and let h+ =
∫ t
α
|ḣ| dτ . Then h+ ≥ 0 on I

and ḣ+ ≥ 0 on I and h+(α) = 0. Thus h+ ∈ H0 and h+ satisfies inequality
(17). Notice that

(18) |h| =
∣∣∣ t∫
α

ḣ dτ
∣∣∣ ≤ t∫

α

|ḣ| dτ = h+

and equality holds if and only if ḣ does not change sign on I. Hence∫
I

s|hḣ| dt ≤
∫
I

sh+ḣ+ dt

and since v ≥ 0 on I we obtain

(19)
∫
I

s|hḣ| dt+ lim
t→β

vh2 ≤
∫
I

sh+ḣ+ dt+ lim
t→β

vh2
+.

Since

(20)
∫
I

r(ḣ+)2 dt =
∫
I

rḣ2 dt,

inequality (13) follows from (17) and (19).
If v(β) > 0, then by Lemma 3(i) we have

∫ β
t
r−1dτ <∞ and Lemma 1

yields the existence of a finite limit value h(β). Hence inequality (13) takes
the form (14).

Let now h ∈ H0, h 6≡ 0 and suppose that equality holds in (13). Then by
(17), (19) and (20) there are equalities in (17) and (20) for h+ =

∫ t
α
|ḣ| dτ .

The assumptions s ≥ 0 and v ≥ 0 on I and equality in (19) yield equality
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in (18). Hence ḣ does not change sign on I. We know that h+ ∈ H and by
Theorem 1 inequality (17) becomes equality if and only if h+ = cϕ, where
c = const > 0, ϕ ∈ H and s satisfies (8) a.e. on I. Hence h = cϕ, where
c = const 6= 0 and ϕ ∈ H0 with ϕ̇ ≥ 0 on I.

Conversely, if h = cϕ, where c = const 6= 0 and ϕ ∈ H0 with ϕ̇ ≥ 0 on I,
then h+ = |h| ∈ H. Let s satisfy (8). Then by Theorem 1, inequality (13)
becomes equality for h.

(ii) This case can be proved analogously to (i) if we consider the function
h− =

∫ β
t
|ḣ| dτ ∈ H, where h ∈ H0.

Example 1. Let I = (0, β), 0 < β <∞. Put r = e−2t and ϕ = et on I.
Then s = e−2t satisfies (8) on I and it follows from Theorem 2(i) that every
h ∈ H0 satisfies the inequality

β∫
0

e−2t|hḣ| dt+
1
2
e−2βh2(β) ≤

β∫
0

e−2tḣ2 dt,

called Hlavka’s inequality. Note that ϕ 6∈ H0 whence the inequality is strict
for h 6≡ 0. This inequality was considered by Redheffer [10].

3. Now we prove the existence of functions s satisfying the hypothesis of
Theorem 2 and give their explicit form.

Every function s ∈ AC(I) satisfying the differential inequality (2) has
the form

s = 2
( t∫
t0

(rϕ̇)
.
ϕ−1dτ + ψ

)
,

where t0 ∈ I is an arbitrary point and ψ ∈ AC(I) with ψ̇ ≥ 0 on I. Since
v(β) ≥ 0 we have v ≥ 0 on I. Thus s satisfies the hypothesis of Theorem
2(i) if and only if there exists ψ satisfying

(21) −
t∫

t0

(rϕ̇)
.
ϕ−1 dτ ≤ ψ ≤ rϕ̇ϕ−1 −

t∫
t0

(rϕ̇)
.
ϕ−1dτ.

Then ϕ̇ ≥ 0 on I. Note that the function rϕ̇ϕ−1 −
∫ t
t0

(rϕ̇)
.
ϕ−1dτ is nonin-

creasing in I, thus the following condition is necessary for the existence of
ψ satisfying (21):

(22) sup
t∈I

(
−

t∫
t0

(rϕ̇)
.
ϕ−1dτ

)
≤ lim
t→β

(
rϕ̇ϕ−1 −

t∫
t0

(rϕ̇)
.
ϕ−1dτ

)
.

Therefore assume that r and ϕ satisfy the condition∣∣∣ β∫
t

(rϕ̇)
.
ϕ−1dτ

∣∣∣ <∞ for some t ∈ I.
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Then limt→β rϕ̇ϕ
−1 <∞ and condition (22) takes the form

(23) sup
t∈I

β∫
t

(rϕ̇)
.
ϕ−1dτ ≤ lim

t→β
rϕ̇ϕ−1.

If (23) holds then

ψ = lim
t→β

rϕ̇ϕ−1 −
β∫
t0

(rϕ̇)
.
ϕ−1dτ = const

is the maximal function satisfying (21). Then

s = 2
(

lim
t→β

rϕ̇ϕ−1 −
β∫
t

(rϕ̇)
.
ϕ−1dτ

)
≥ 0 and v(β) = 0.

If rϕ̇ is nonincreasing on I, then −
∫ t
t0

(rϕ̇)
.
ϕ−1dτ is nondecreasing on I

and condition (22) is trivially satisfied. Then ψ = −
∫ t
t0

(rϕ̇)
.
ϕ−1dτ is the

minimal function satisfying (21). Thus s ≡ 0 and v = rϕ̇ϕ−1 ≥ 0 on I.
If rϕ̇ is nondecreasing on I, then −

∫ t
t0

(rϕ̇)
.
ϕ−1dτ is nonincreasing on I.

Then condition (22) takes the form

(24)
∫
I

(rϕ̇)
.
ϕ−1 dt ≤ lim

t→β
rϕ̇ϕ−1.

If (24) holds then ψ =
∫ t0
α

(rϕ̇)
.
ϕ−1dτ = const is the minimal function

satisfying (21) and s = 2
∫ t
α

(rϕ̇)
.
ϕ−1dτ ≥ 0.

From the above considerations and from Theorem 2(i) one immediately
infers the following theorem.

Theorem 3. Let h ∈ H0 and r and ϕ satisfy |
∫ β
t

(rϕ̇)
.
ϕ−1dτ | <∞ for

some t ∈ I and ϕ̇ ≥ 0 on I.

(i) If supt∈I
∫ β
t

(rϕ̇)
.
ϕ−1dτ ≤ limt→β rϕ̇ϕ

−1 on I, then

(25)
∫
I

s|hḣ| dt ≤
∫
I

rḣ2 dt

where s = 2(limt→β rϕ̇ϕ
−1 −

∫ β
t

(rϕ̇)
.
ϕ−1dτ) ≥ 0.

(ii) If rϕ̇ is nonincreasing on I, then

(26) v(β)h2(β) ≤
∫
I

rḣ2 dt,

where v(β) = limt→β rϕ̇ϕ
−1 ≥ 0.
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(iii) If rϕ̇ is nondecreasing on I and
∫
I

(rϕ̇)
.
ϕ−1 dt ≤ limt→β rϕ̇ϕ

−1

then

(27)
∫
I

s|hḣ| dt+ v(β)h2(β) ≤
∫
I

rḣ2 dt,

where s = 2
∫ t
α

(rϕ̇)
.
ϕ−1dτ ≥ 0 and v(β) = limt→β rϕ̇ϕ

−1 −
∫
I

(rϕ̇)
.
ϕ−1 dt

≥ 0.

If h 6≡ 0 then inequalities (25)–(27) become equalities if and only if
h = cϕ, where c = const 6= 0 and ϕ ∈ H0 and in the case of (26) the
additional condition rϕ̇ = const holds.

Similar considerations apply to s ∈ AC(I) satisfying the hypothesis of
Theorem 2(ii). Thus we obtain the following theorem.

Theorem 4. Let h ∈ H0 and r and ϕ satisfy |
∫ t
α

(rϕ̇)
.
ϕ−1dτ | <∞ for

some t ∈ I and ϕ̇ ≤ 0 on I.

(i) If supt∈I
∫ t
α

(rϕ̇)
.
ϕ−1dτ ≤ − limt→α rϕ̇ϕ

−1 on I, then

(28)
∫
I

s|hḣ| dt ≤
∫
I

rḣ2 dt,

where s = −2(limt→α rϕ̇ϕ
−1 +

∫ t
α

(rϕ̇)
.
ϕ−1dτ) ≥ 0.

(ii) If rϕ̇ is nonincreasing on I, then

(29) −v(α)h2(α) ≤
∫
I

rḣ2 dt,

where v(α) = limt→α rϕ̇ϕ
−1 ≤ 0.

(iii) If rϕ̇ is nondecreasing on I and
∫
I

(rϕ̇)
.
ϕ−1 dt ≤ − limt→α rϕ̇ϕ

−1

on I then

(30)
∫
I

s|hḣ| dt− v(α)h2(α) ≤
∫
I

rḣ2 dt,

where s = 2
∫ β
t

(rϕ̇)
.
ϕ−1dτ ≥ 0 and v(α) = limt→α rϕ̇ϕ

−1 +
∫
I

(rϕ̇)
.
ϕ−1 dt

≤ 0.

If h 6≡ 0 then inequalities (28)–(30) become equalities if and only if
h = cϕ, where c = const 6= 0 and ϕ ∈ H0 and in the case of (29) the
additional condition rϕ̇ = const holds.

Inequalities of the form (25) and (28), which do not contain explicitly
the limit conditions, are said to be of Opial type (cf. [6]).

Example 2. Let I = (0, β), 0 < β ≤ ∞. Let r be an arbitrary function
absolutely continuous on I such that r > 0 and

∫ β
0
r−1 dt <∞.
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Put ϕ =
∫ t
0
r−1dτ on I. Then s = 2(

∫ β
0
r−1 dt)−1 satisfies (8) and by

Theorem 3(i), (25) holds for every h ∈ H0.
Put ϕ =

∫ β
t
r−1dτ on I. Then s = 2(

∫ β
0
r−1 dt)−1 satisfies (8) and by

Theorem 4(i), (28) holds for every h ∈ H0. Hence we get the following:

If h ∈ AC((0, β)), 0 < β ≤ ∞, satisfies the integral condition
∫ β
0
rḣ2 dt

<∞ and the limit condition h(0) = 0 or h(β) = 0, then

(31)
β∫

0

|hḣ| dt ≤ 1
2

β∫
0

r−1 dt
β∫

0

rḣ2 dt,

with equality if and only if h = c
∫ t
0
r−1dτ or h = c

∫ β
t
r−1dτ according as

h(0) = 0 or h(β) = 0, where c = const.

The inequality (31) was considered by Beesack [1].
In the particular case where β < ∞ and r = 1 on (0, β) we obtain the

well-known Opial inequality

(32)
β∫

0

|hḣ| dt ≤ β

2

β∫
0

ḣ2 dt,

which holds for every absolutely continuous function h such that
∫ β
0
ḣ2 dt <

∞ and h(0) = 0 or h(β) = 0. Equality occurs in (32) only for the function
h = ct or h = c(β − t), where c = const (see Opial [8], Olech [7]).

Example 3. Take I = (0, β), 0 < β < ∞, r = atp+1 + btq+1, ϕ = tk,
where a, b, k, p, q are constants satisfying a > 0, k > 0, p < q and b ≥
−aβp−q. Then r > 0, ϕ > 0 and ϕ̇ > 0 on I.

If

(i) p + k < 0 and b(q + k) < 0 or q + k < 0, b < 0 or q + k > 0,
0 < b ≤ −a(p+ q)/(q + k), or

(ii) p+ k > 0 and b ≤ −(aq/p)βp−q, or
(iii) p+ k = 0, q > 0 and 0 < b ≤ −(aq/p)βp−q,

then by Theorem 3(i) we get the following:

If h ∈ H0 then

(33) 2k
β∫

0

(Atp +Btq + C)|hḣ| dt ≤
β∫

0

(atp+1 + btq+1)ḣ2 dt,

where A = a
p (p+ k), B = b

q (q + k), C = −k
(
a
pβ

p + b
qβ

q
)
.

Inequality (33) becomes equality if and only if h = ctk, where c = const.
If β = 1 and b = −aq/p we get the inequality considered by Redheffer [9].
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If p+ k < 0 and either q + k < 0, or q + k > 0 and b < −a(p+ k)/(q +
k)βp−q, then by Theorem 3(ii) we get the following:

If h ∈ H0 then

(34) k(aβp + bβq)h2(β) ≤
β∫

0

(atp+1 + btq+1)ḣ2 dt.

If h 6≡ 0, then inequality (34) is strict.
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