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Approximation by nonlinear integral operators
in some modular function spaces
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Abstract. Let G be a locally compact Hausdorff group with Haar measure, and let
LY(G) be the space of extended real-valued measurable functions on G, finite a.e. Let
o and n be modulars on LO(G). The error of approximation g(a(T'f — f)) of a function
f € (L°(@))g+nNDom T is estimated, where (T'f)(s) = Jo K(t—s, f(t)) dt and K satisfies
a generalized Lipschitz condition with respect to the second variable.

1. Let G be a locally compact Hausdorff group with neutral element 6
and with the family I/ of open neighbourhoods of 8 in GG. For the sake of
simplicity from now on we will assume G to be abelian. Let X' be the Borel
o-field of G, let |A| be the Haar measure of a measurable set A C G and let
Jo f(t) dt denote the Haar integral of f.

We shall denote by M?(G) the space of all extended real-valued measur-
able functions f : G — R = RU{Foo}, and by L°(G) C M°(G) its subspace
of functions f finite almost everywhere (a.e.), both provided with equality
a.e.

Let 0 : L%(G) — R and n : L°(G) — R{ be two modulars in L(G),
and let (L°(@)), and (L°(Q)), be the respective modular spaces (for termi-
nology, see e.g. [4]).

We make the following assumptions:

1° ¢ and 1 are monotone, i.e. if f, g € L°(G) and |f| < |g|, then o(f) <

o(g) and n(f) < n(g);
2° g is J-convez, i.e. for any two measurable functions p : G — R and
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F:GxG— Rwith [, p(t)dt =1,
o [ pIF( )N dt) < [ p()a(F(t, ) dts
G G

3° n is T-bounded, i.e. there are a number ¢ > 1 and a measurable,
bounded function h : G — RJ such that h(t) — 0 as t — 6 and

n(f(t+-)) <nlcf)+hn(t), ted,

for all f € LY(G) such that n(f) < co; we shall write hy = sup,c¢ h(t).

We may extend both modulars ¢ and 7 to M°(G), putting o(f)
=n(f) = oo for f € M°(G)\ L°(G).

Let ¢ : G x Rf — R{ be such that for all ¢ € G, the function (¢, )
is continuous and nondecreasing for v > 0, ¢(¢,0) = 0, ¥(t,u) > 0 for
u > 0, ¥(t,u) — oo as u — 0o, and such that for every u > 0, (¢, u) is a
measurable function of ¢.

The following connection between both modulars ¢ and 7 and the func-
tion ¢ will be assumed:

(I)  there is a set Gog C G with |G\ Gp| = 0 such that for every A € ]0,1]
there exists a C) € |0, 1] satisfying the inequality

AlOxy(t, [F()D] < n(AF(-))
for all t € Gy and F € L°(G).

A condition of this type was introduced in special cases in [3].
Let us still remark that we may choose C) in such a manner that C' \, 0
as A\, 0. Condition (I) implies immediately the following inequality:

olCxy(t, Fi(1))] < n(AFi(+))

for every t € G and for any family (F;(-))ieq of functions F; € L(G).

A function K : G x R — R will be called a kernel function if K(t,0) =0
for t € G and K(-,u) € LY(G) for allu € R. Let L : G — Ry, L € LY(G).
We say that a kernel function K satisfies the (L,)-Lipschitz condition if

[K(t,u) — K(t,v)] < L)Y (t, [u—v|)

for t € G,u,v € R (see [1], p. 10).

In the following we shall write L = [, L(t) dt, p(t) = L(t)/L.

Let us remark that if K is an (L,)-Lipschitz kernel function and
f € L°(G), then the superposition K (t, f(t + s)) is a measurable function
of t € G for all s € G.

2. Following [1-4] we shall deal with nonlinear integral operators T' of
the form
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(Tf)(s) = [ K(t—s,f(t)dt= [ Kt f(t+s))dt.
G G

We denote by Dom T the set of all functions f € L°(G) such that (Tf)(s)
exists for a.e. s € G and T'f is a measurable function on G.

PROPOSITION 1. Let f € (LY(G)),NDomT and let X € ]0,1] be so small
that n(cAf) < oo, where ¢ > 1 is the constant from 3°. Suppose that K is
an (L,1)-Lipschitz kernel function and the condition (1) is satisfied. Then,
for every € > 0, there exists a U € U such that

Q(%Tf> < n(eAf) + ho f p(t)dt +e.
G\U
Consequently, o((Cx/L)Tf) < occ.

Proof. Applying monotonicity of o, the (L,1)-Lipschitz condition,
J-convexity of ¢ and the condition (I), we obtain

g((lfo) < @(CEGf lK(t,f<t+->l>d'f> = Q(fp<t>Cw<t7|f<t+'>’>dt)

< [ pt)elCre(t, [£(t+) dt<f n(Af(t +-)]) dt.

G

Since n(Af) < oo, by T-boundedness of 1, we get n(A| f(t+-)]) < n(cAf)+h(t)
for t € G. Consequently, since [, o P(t)dt =1, we obtain

1) g(;Tf) < neA) + [ p(O)h(t) dt.
G

However, since h(t) — 0 as t — 6, for any € > 0 there is a U € U such that
h(t) < e for t € U. Since h(t) < hg for t € G \ U, the required inequality
follows from (1).

3. The map w, : L°(G) x U — R = [0, 00] defined by
wn(£,U) = supn(f(t+-) = f())

for f € LY(G),U € U, is called the n-modulus of continuity (see [4], p. 85).
We shall apply the following notation:

fKtudt—l

T = sup
1/k<|u|<k

k:{tGGilf()l<1/k}, Cr =G\ (A, UBy), felL’Q),
k=1,2,..., and r =suprg.
k

A ={t e G:[f()] >k},
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We shall give an estimate of the modular error of approximation g(a(T f—f))
for sufficiently small a > 0.

THEOREM 1. Let f € (L°(G))p+n NDomT. Let X €]0,1] and a €
10,C\/(16L)[ be so small that n(2cAf) < oo and o(16af) < co. Then, for
everyU eU, k=0,1,2,... and S € X, we have

(2)  ola(Tf = f)) < wy(Mf,U) + [20(2eAf) + ho] [ p(t)dt + Ry,
G\U
where Ry, is given by
Ry = o(2arf),
R =n(Afxa\s) + e(16afxc\s) + n(Afxsna,)
+ o(16afxsna.) + n(Afxsns,) + o(16afxsnB,)
+ o8arrf), k=1,2,...
Proof. We have o(a(Tf — f)) < Jy + Jo, where

i =o{2a [ 1K £t +2) = Kt f())]dt},
G

Jo = o{2a| [ K(t. () dt - £0)|}
G

(see [4], p. 88). By the (L,)-Lipschitz condition, by J-convexity of ¢ and
taking into account the condition (I) we have

J1<f olOxu(t, [f(t+-) = f()l] dt
<f N (E+-) = FO)) di

+ [ oA f(t+) = FONdt =T + 7.

G\U
But
JE< [ p(Owy(AF,U) dt < wy(Af,U).
G
Now,
TP < [ pmEAF(t+ ) dt+n@Af) [ p(t)dt
G\U G\U

By 7-boundedness of 1 we obtain

[ p&n@AF(E+ ) dt < [n(2eAf) + hol [ p(t) dt

G\U G\U
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whence, by monotonicity of 7,
J? < [2n(2eAf) + ho] - [ p(t)dt.
G\U
Consequently,
Ji < wy(M,U) + [20(2eAf) + ho] - [ p(t) dt.
a\U

It remains to prove that Jo < R, k=0,1,2,... For kK = 0 this is obvious.
Suppose k > 0. Then, taking any set S € X, we have

Ja < Q{Sa‘ J Kt f(xans() dt = f(')XG\S(')‘}
G
+ ofsa| [ K(t f()xsnan () dt = f()xsna. ()|}
G

+ of8a| [ K(t, F()xsom () dt ~ [()xson, ()|}
G

+ ofa| [ K(t, FOxsne, () dt = F()xsnen ()]

G

By (L,1)-Lipschitz condition, monotonicity and J-convexity of ¢ and by
condition (I), for every P € X we get

o{3q J K(t, f(xe())dt = f(xe()| ]
< of16a [ K (. S()xr () dt] + o(16afxr)
G

< [ pelCxilt, F(xp ()] di + o(16af xp)
G

<n(Afxp)+ o(16afxp).

Thus, for P=G\ S,P = SN A, P = SN By and by the definition of r,
we obtain

Jo <n(Mxans) + o(16afxa\s) +n(Afxsna,) + o(16afxsna,)

+n(AfxsnB,) + o(16afxsnB,) + o(8ary f)
and so the assertion follows.

4. Let W be a nonempty, abstract set of indices and let W be a filter of

subsets of W.
A family K = (K, )wew of kernel functions will be called a kernel.
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Let L = (Ly )wew be a family of nonnegative functions L,, € L(G). We
say that the kernel K satisfies the (L, )-Lipschitz condition if the kernel
functions K,, satisfy the (L,,,1)-Lipschitz condition, and L = sup,, L,, =
supyy [ Luw(t) dt < co. Set py(t) = Ly (t)/Ly (see [1], pp. 12-13). The
kernel K will be called singular if for every U € U,

[ pu®)dt 250

G\U
and
1
re(w) = sup |— wa(t,u)dt—l‘ W0
1/k<|lu|<k ¥ &4
for k =1,2,... If, moreover,
r(w) = sup 7i(w) W, 0,
k=1,2,...

the kernel K will be called strongly singular.
Let us define a family T = (T},)wew of operators by

(Twf)(s) = [ Ku(t—s,f(t)dt = [ Ku(t, f(t +5))dt.
G

€]
Set Dom T = (), ¢y, Dom T,,. We shall deduce from Theorem 1 a theorem on

convergence o(a(Tyf — f)) W, 0 for small a > 0. We need some additional
notions, namely of absolute finiteness and absolute continuity of modulars
(see [4], p. 84, 2], p. 4).

DEFINITION 1. A modular  on L°(G) is called finite if for every mea-
surable set A C G such that |A| < oo we have x4 € (L°(G)),).

DEFINITION 2. A modular 7 on L°(G) is called absolutely finite if it is
finite and if for every € > 0 and for every Ag > 0, there is a § > 0 such that
n(Aoxs) < € for every measurable set B C G of measure |B| <4 .

DEFINITION 3. A modular n on L°(G) is called absolutely continuous
(with respect to the measure in G) if there exists an a > 0 such that for
every f € L°(G) with n(f) < oo the following two conditions are satisfied:

(o) for every € > 0 there exists a measurable set A C G such that
|A| < oo and n(afxa\a) <&

(B) for every € > 0 there exists a 6 > 0 such that n(afxp) < € for all
measurable sets B C G of measure |B| < 4.

Let us remark that if n is monotone, 7-bounded, absolutely finite and
absolutely continuous, then for every f € (L°(G)), there is a A9 > 0 such
that for every € > 0 there exists a U. € U such that w, (Ao f,U:) < € (see
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[4], Theorem 1, p. 85; the condition (P) mentioned there is always satisfied,
as was kindly shown to us by Prof. D. Candeloro).

THEOREM 2. Let K = (Ky)wew be a singular kernel and let the modular
o be monotone and J-convex, and the modular n-monotone, T-bounded,
absolutely finite and absolutely continuous. Let f € (L°(G))g+n N DomT.
Finally, let one of the following conditions hold:

(a) K is strongly singular;
(b) o is finite and absolutely continuous.

Then o(a(Twf — f)) W0 for sufficiently small a > 0 (depending on f).

Proof. Choose an arbitrary € > 0. Since 7 is monotone, T-bounded,
absolutely finite and absolutely continuous, there is a U € U such that
wp(Xof,U) < €/4 for sufficiently small Ay > 0. Taking A; € 0, o[ small
enough, we get 1(2cA1f) < oco. Due to singularity of K, keeping the above

U € U fixed, we have fG\Upw(t) dt Y. 0. Hence there exists a W, e W
such that

[20(2eAf) + hol [ pu(t)dt < /4
G\U
for A € ]0, \1],w € W, and the above U € U.
Thus, for a fixed A € ]0, A1[ let C be the corresponding constant in (I),
and for a € |0,Cy/(16L)[, we have

o(a(Twf = f)) <e/2+ Ry

for w e Wy and k =0,1,2,..., where we have applied (2) with T, and p,,
in place of T" and p.

Assuming that (a) holds, we apply (3) with k& = 0, obtaining Ry =
o(2ar(w)f). However, since f € (L°(G)),, there is a W» € W such that
0(2ar(w)f) < e/2 for w € Ws,. This gives o(a(Twf — f)) < € for w €
Wi N Wy € W, which implies our assertion.

Now suppose (b). We apply Theorem 1 with a given S € X' with |S| < co.
Since A; D A2 D ..., we have SN A; DSNAy; D...,and [SN A < oco.
Hence limy_,oo [SNAg| = [SNNi—, Ax|- But f € L%(G) whence there exists
aset Go C G,Go € X,|Go| =0, such that |f(t)| < oo for t € G\ Gy. From
the inclusion ;- ; Ax C Go, we deduce limy_. |S N Ag| = 0.

Now applying absolute continuity of 7 and g, we may choose A and a so
small that

n(Afxae\s) + o(16afxe\s) < /12
for a suitable set S € X, |S] < 0.
Keeping S fixed, we may find an index k such that

N(Afxsna,) + o(16afxsna,) < e/12.
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Moreover, (A fxsns,) + o(16afxsns,) < 1((\k)xs) + e((16a/k)xs) and
since xs € (LY(G)) o+ we may find k such that n(Afxsng,)+o(16afxsnB,)
< /12, which gives Ry < /4 + o(8ark(w)f). Taking w € W, we obtain
by (3), o(a(Twf — f)) < 3¢/4 + o(8arg(w)f). But f € (L°(G)),, whence
there is a W5 € W such that o(8ary(w)f) < /4 for w € Ws. This gives
o(a(Twf — f)) < e for we W) N W5 € W, which implies our statement.

5. We give some examples of modulars p and 7 satisfying the assumptions
of Theorems 1 and 2.

EXAMPLES. 1. Let @ : RS — RJ be such that ¢(0) = 0,®(u) > 0 for
u > 0, @ nondecreasing in R}, and ®(u) — oo as u — oo. Then @ generates
a modular

o(f) =Ia(f) = [ ®(f®)]) dt
G

in L°(G), and the respective modular space (L°(G)), is the Orlicz space
L?(@G).

The modular ¢ is monotone, absolutely finite, absolutely continuous and
7-bounded (with ¢ = 1, h(t) = 0). If @ is convex on Ry, then ¢ is J-convex.
Thus, Ig satisfies the assumption of Theorem 2, (b).

Finally, if we take two functions ¢; and ®, and we put 9 = Ip,,n = Is,,
then (I) is certainly satisfied with A = C) if we assume the concavity of the
function v with respect to the second variable and that (®1 o) (u) < Po(u)
for u > 0.

2. Let V be a nonempty set of indices filtered by a set W of its subsets.
Let a, : [a,b] — R{,v € V, be such that

1° f; ay(x)dx <1 for all v € V;
2° if g : [a,b] — R is such that 0 < g(z) /s < 00 as & — b—, then

b
[ ay(@)g(z) dm <5 s;

3° for every Lebesgue measurable set C' C [a, b[ of measure m(C) > 0
there exists a Lebesgue measurable subset C; of measure m(C) > 0 and an
index ¥ € V such that az(z) > 0 m-almost everywhere in C.

Let @ : [a,b] x Rj — R satisfy

1) @(z,u) is a nondecreasing continuous function of u > 0, for every
x € [a,b;

2) &(x,0) = 0,P(x,u) > 0 for u > 0, and P(x,u) — oo as u — oo, for
every = € [a,b[;
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3

4
U >

the limit lim,_,_ ®(z,u) = B(u) < oo exists for every u > 0;

~— —

&(x,u) is a Lebesgue measurable function of x in [a,b[, for every

@)

=

oreover, suppose @(z, u) to be of monotone type in a subinterval [c, b] C
[a,b] and equicontinuous in [a,b] at u = 0 (for these notions see [2], Sec-
tion 4).

Let m be a measure on [a, b] defined on all Lebesgue measurable subsets
of [a,b[. Then

—

b
As(f) = sup [ ay(2)Ta(z. f) dm(z),

veY a

where

Jo(z, f) = [ &, £(#)])dt,
G
is a modular in the subspace LY (G) C L°(G) of functions f for which
Jao(x, f) is a Lebesgue measurable function on [a, b.

In [2] sufficient conditions are obtained in order that .4¢ be absolutely
finite and absolutely continuous. Evidently Ag is monotone. If &(z,u) is a
convex function of u > 0 for all = € [a, b[, then for all measurable functions
F:GxG — Randp: G — R with [,p(t)dt = 1 we have Jensen’s
inequality

@(w, Gf p(t)F(t,s)dt) < Gf p(£)B(z, |F(t, s)]) dt

for x € [a,b[,s € G. Hence it follows that, in this case, Ag is J-convex. It is
easily observed that Jg(x, f(t + ) = Ja(z, f) for every ¢t € G, whence Agp
is 7-bounded with ¢ = 1, h(t) = 0.

The theory developed in [2] for the modular Ag contains as a particular
case the discrete modulars of the type

Ag(f) =sup > anils,(f)
i=1

(for details see [2], Section 5).
Moreover, it is possible to prove that the more general modulars of type

b
As(f) =sup [ To(z, f)dm,(z), fe LG,

veY a

where {m,} is a family of measures, satisfy the conditions of Theorem 1
and Theorem 2, under the assumptions of Section 6 of [2].
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We remark that among these modulars there are those studied in [6],
namely
Is(f) = sup Jo(z,f)
z€ [a,b]
(see also Section 6 of [2]).

Hence we may state the following

COROLLARY 1. Let K = (Ky)wew be a singular kernel and let o, n
be any of the modulars defined in Examples 1 or 2, satisfying (I). Suppose
the function @ generating o is convexr. In case any of the modulars is as in
Ezxample 2, suppose that the respective function @ satisfies the assumptions

of Theorem 1 of [2]. Then, for any function f € (L°(G))ptny N Dom T,

o(a(Tuf = f)) 50
for sufficiently small a > 0.
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