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Approximation by nonlinear integral operators
in some modular function spaces

by Carlo Bardaro (Perugia), Julian Musielak (Poznań)
and Gianluca Vinti (Perugia)

Abstract. Let G be a locally compact Hausdorff group with Haar measure, and let
L0(G) be the space of extended real-valued measurable functions on G, finite a.e. Let
% and η be modulars on L0(G). The error of approximation %(a(Tf − f)) of a function
f ∈ (L0(G))%+η∩DomT is estimated, where (Tf)(s) =

∫
GK(t−s, f(t)) dt and K satisfies

a generalized Lipschitz condition with respect to the second variable.

1. Let G be a locally compact Hausdorff group with neutral element θ
and with the family U of open neighbourhoods of θ in G. For the sake of
simplicity from now on we will assume G to be abelian. Let Σ be the Borel
σ-field of G, let |A| be the Haar measure of a measurable set A ⊂ G and let∫
G
f(t) dt denote the Haar integral of f .
We shall denote by M0(G) the space of all extended real-valued measur-

able functions f : G→ R = R∪{∓∞}, and by L0(G) ⊂M0(G) its subspace
of functions f finite almost everywhere (a.e.), both provided with equality
a.e.

Let % : L0(G) → R+
0 and η : L0(G) → R+

0 be two modulars in L0(G),
and let (L0(G))% and (L0(G))η be the respective modular spaces (for termi-
nology, see e.g. [4]).

We make the following assumptions:

1o % and η are monotone, i.e. if f, g ∈ L0(G) and |f | ≤ |g|, then %(f) ≤
%(g) and η(f) ≤ η(g);

2o % is J -convex, i.e. for any two measurable functions p : G→ R+
0 and
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F : G×G→ R with
∫
G
p(t) dt = 1,

%
( ∫
G

p(t)|F (t, ·)| dt
)
≤
∫
G

p(t)%(F (t, ·)) dt;

3o η is τ -bounded, i.e. there are a number c ≥ 1 and a measurable,
bounded function h : G→ R+

0 such that h(t)→ 0 as t→ θ and

η(f(t+ ·)) ≤ η(cf) + h(t), t ∈ G,

for all f ∈ L0(G) such that η(f) <∞; we shall write h0 = supt∈G h(t).
We may extend both modulars % and η to M0(G), putting %(f)

= η(f) =∞ for f ∈M0(G) \ L0(G).
Let ψ : G × R+

0 → R+
0 be such that for all t ∈ G, the function ψ(t, ·)

is continuous and nondecreasing for u ≥ 0, ψ(t, 0) = 0, ψ(t, u) > 0 for
u > 0, ψ(t, u) → ∞ as u → ∞, and such that for every u ≥ 0, ψ(t, u) is a
measurable function of t.

The following connection between both modulars % and η and the func-
tion ψ will be assumed:

(I) there is a set G0 ⊂ G with |G \G0| = 0 such that for every λ ∈ ]0, 1[
there exists a Cλ ∈ ]0, 1[ satisfying the inequality

%[Cλψ(t, |F (·)|)] ≤ η(λF (·))

for all t ∈ G0 and F ∈ L0(G).

A condition of this type was introduced in special cases in [3].
Let us still remark that we may choose Cλ in such a manner that Cλ ↘ 0

as λ↘ 0. Condition (I) implies immediately the following inequality:

%[Cλψ(t, Ft(·))] ≤ η(λFt(·))

for every t ∈ G0 and for any family (Ft(·))t∈G of functions Ft ∈ L0(G).
A function K : G×R→ R will be called a kernel function if K(t, 0) = 0

for t ∈ G and K(·, u) ∈ L1(G) for all u ∈ R. Let L : G → R+
0 , L ∈ L1(G).

We say that a kernel function K satisfies the (L,ψ)-Lipschitz condition if

|K(t, u)−K(t, v)| ≤ L(t)ψ(t, |u− v|)

for t ∈ G, u, v ∈ R (see [1], p. 10).
In the following we shall write L =

∫
G
L(t) dt, p(t) = L(t)/L.

Let us remark that if K is an (L,ψ)-Lipschitz kernel function and
f ∈ L0(G), then the superposition K(t, f(t + s)) is a measurable function
of t ∈ G for all s ∈ G.

2. Following [1–4] we shall deal with nonlinear integral operators T of
the form
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(Tf)(s) =
∫
G

K(t− s, f(t)) dt =
∫
G

K(t, f(t+ s)) dt.

We denote by DomT the set of all functions f ∈ L0(G) such that (Tf)(s)
exists for a.e. s ∈ G and Tf is a measurable function on G.

Proposition 1. Let f ∈ (L0(G))η∩DomT and let λ ∈ ]0, 1[ be so small
that η(cλf) < ∞, where c ≥ 1 is the constant from 3o. Suppose that K is
an (L,ψ)-Lipschitz kernel function and the condition (I) is satisfied. Then,
for every ε > 0, there exists a U ∈ U such that

%

(
Cλ
L
Tf

)
≤ η(cλf) + h0

∫
G\U

p(t) dt+ ε.

Consequently , %((Cλ/L)Tf) <∞.

P r o o f. Applying monotonicity of %, the (L,ψ)-Lipschitz condition,
J -convexity of % and the condition (I), we obtain

%

(
Cλ
L
Tf

)
≤ %
(
Cλ
L

∫
G

|K(t, f(t+ ·)|) dt
)
≤ %
( ∫
G

p(t)Cλψ(t, |f(t+ ·)|) dt
)

≤
∫
G

p(t)%[Cλψ(t, |f(t+ ·)|)] dt ≤
∫
G

p(t)η(λ|f(t+ ·)|) dt.

Since η(λf) <∞, by τ -boundedness of η, we get η(λ|f(t+·)|) ≤ η(cλf)+h(t)
for t ∈ G. Consequently, since

∫
G
p(t) dt = 1, we obtain

(1) %

(
Cλ
L
Tf

)
≤ η(cλf) +

∫
G

p(t)h(t) dt.

However, since h(t)→ 0 as t→ θ, for any ε > 0 there is a U ∈ U such that
h(t) < ε for t ∈ U . Since h(t) ≤ h0 for t ∈ G \ U , the required inequality
follows from (1).

3. The map ωη : L0(G)× U → R+
0 = [0,∞] defined by

ωη(f, U) = sup
t∈U

η(f(t+ ·)− f(·))

for f ∈ L0(G), U ∈ U , is called the η-modulus of continuity (see [4], p. 85).
We shall apply the following notation:

rk = sup
1/k≤|u|≤k

∣∣∣∣ 1u ∫
G

K(t, u) dt− 1
∣∣∣∣, Ak = {t ∈ G : |f(t)| > k},

Bk = {t ∈ G : |f(t)| < 1/k}, Ck = G \ (Ak ∪Bk), f ∈ L0(G),
k = 1, 2, . . . , and r = sup

k
rk.
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We shall give an estimate of the modular error of approximation %(a(Tf−f))
for sufficiently small a > 0.

Theorem 1. Let f ∈ (L0(G))%+η ∩ DomT . Let λ ∈ ]0, 1[ and a ∈
]0, Cλ/(16L)[ be so small that η(2cλf) < ∞ and %(16af) < ∞. Then, for
every U ∈ U , k = 0, 1, 2, . . . and S ∈ Σ, we have

(2) %(a(Tf − f)) ≤ ωη(λf, U) + [2η(2cλf) + h0]
∫

G\U

p(t) dt+Rk,

where Rk is given by

R0 = %(2arf),
Rk = η(λfχG\S) + %(16afχG\S) + η(λfχS∩Ak

)

+ %(16afχS∩Ak
) + η(λfχS∩Bk

) + %(16afχS∩Bk
)

+ %(8arkf), k = 1, 2, . . .

P r o o f. We have %(a(Tf − f)) ≤ J1 + J2, where

J1 = %
{

2a
∫
G

|K(t, f(t+ ·))−K(t, f(·))| dt
}
,

J2 = %
{

2a
∣∣∣ ∫
G

K(t, f(·)) dt− f(·)
∣∣∣}

(see [4], p. 88). By the (L,ψ)-Lipschitz condition, by J -convexity of % and
taking into account the condition (I) we have

J1 ≤
∫
G

p(t)%[Cλψ(t, |f(t+ ·)− f(·)|] dt

≤
∫
U

p(t)η(λ|f(t+ ·)− f(·)|) dt

+
∫

G\U

p(t)η(λ|f(t+ ·)− f(·)|) dt = J1
1 + J2

1 .

But

J1
1 ≤
∫
G

p(t)ωη(λf, U) dt ≤ ωη(λf, U).

Now,

J2
1 ≤
∫

G\U

p(t)η(2λf(t+ ·)) dt+ η(2λf)
∫

G\U

p(t) dt.

By τ -boundedness of η we obtain∫
G\U

p(t)η(2λf(t+ ·)) dt ≤ [η(2cλf) + h0]
∫

G\U

p(t) dt
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whence, by monotonicity of η,

J2
1 ≤ [2η(2cλf) + h0]

∫
G\U

p(t) dt.

Consequently,

J1 ≤ ωη(λf, U) + [2η(2cλf) + h0]
∫

G\U

p(t) dt.

It remains to prove that J2 ≤ Rk, k = 0, 1, 2, . . . For k = 0 this is obvious.
Suppose k > 0. Then, taking any set S ∈ Σ, we have

J2 ≤ %
{

8a
∣∣∣ ∫
G

K(t, f(·)χG\S(·)) dt− f(·)χG\S(·)
∣∣∣}

+ %
{

8a
∣∣∣ ∫
G

K(t, f(·)χS∩Ak
(·)) dt− f(·)χS∩Ak

(·)
∣∣∣}

+ %
{

8a
∣∣∣ ∫
G

K(t, f(·)χS∩Bk
(·)) dt− f(·)χS∩Bk

(·)
∣∣∣}

+ %
{

8a
∣∣∣ ∫
G

K(t, f(·)χS∩Ck
(·)) dt− f(·)χS∩Ck

(·)
∣∣∣}.

By (L,ψ)-Lipschitz condition, monotonicity and J -convexity of % and by
condition (I), for every P ∈ Σ we get

%
{

8a
∣∣∣ ∫
G

K(t, f(·)χP (·)) dt− f(·)χP (·)
∣∣∣}

≤ %
{

16a
∫
G

|K(t, f(·)χP (·))| dt
}

+ %(16afχP )

≤
∫
G

p(t)%[Cλψ(t, f(·)χP (·))] dt+ %(16afχP )

≤ η(λfχP ) + %(16afχP ).

Thus, for P = G \ S, P = S ∩ Ak, P = S ∩ Bk and by the definition of rk,
we obtain

J2 ≤ η(λfχG\S) + %(16afχG\S) + η(λfχS∩Ak
) + %(16afχS∩Ak

)

+ η(λfχS∩Bk
) + %(16afχS∩Bk

) + %(8arkf)

and so the assertion follows.

4. Let W be a nonempty, abstract set of indices and let W be a filter of
subsets of W.

A family K = (Kw)w∈W of kernel functions will be called a kernel.
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Let L = (Lw)w∈W be a family of nonnegative functions Lw ∈ L1(G). We
say that the kernel K satisfies the (L, ψ)-Lipschitz condition if the kernel
functions Kw satisfy the (Lw, ψ)-Lipschitz condition, and L = supW Lw =
supW

∫
G
Lw(t) dt < ∞. Set pw(t) = Lw(t)/Lw (see [1], pp. 12–13). The

kernel K will be called singular if for every U ∈ U ,∫
G\U

pw(t) dt W−→ 0

and

rk(w) = sup
1/k≤|u|≤k

∣∣∣∣ 1u ∫
G

Kw(t, u) dt− 1
∣∣∣∣ W−→ 0

for k = 1, 2, . . . If, moreover,

r(w) = sup
k=1,2,...

rk(w) W−→ 0,

the kernel K will be called strongly singular.
Let us define a family T = (Tw)w∈W of operators by

(Twf)(s) =
∫
G

Kw(t− s, f(t)) dt =
∫
G

Kw(t, f(t+ s)) dt.

Set Dom T =
⋂
w∈W DomTw. We shall deduce from Theorem 1 a theorem on

convergence %(a(Twf − f)) W−→ 0 for small a > 0. We need some additional
notions, namely of absolute finiteness and absolute continuity of modulars
(see [4], p. 84, [2], p. 4).

Definition 1. A modular η on L0(G) is called finite if for every mea-
surable set A ⊂ G such that |A| <∞ we have χA ∈ (L0(G))η.

Definition 2. A modular η on L0(G) is called absolutely finite if it is
finite and if for every ε > 0 and for every λ0 > 0, there is a δ > 0 such that
η(λ0χB) < ε for every measurable set B ⊂ G of measure |B| < δ .

Definition 3. A modular η on L0(G) is called absolutely continuous
(with respect to the measure in G) if there exists an α > 0 such that for
every f ∈ L0(G) with η(f) <∞ the following two conditions are satisfied:

(α) for every ε > 0 there exists a measurable set A ⊂ G such that
|A| <∞ and η(αfχG\A) < ε;

(β) for every ε > 0 there exists a δ > 0 such that η(αfχB) < ε for all
measurable sets B ⊂ G of measure |B| < δ.

Let us remark that if η is monotone, τ -bounded, absolutely finite and
absolutely continuous, then for every f ∈ (L0(G))η there is a λ0 > 0 such
that for every ε > 0 there exists a Uε ∈ U such that ωη(λ0f, Uε) < ε (see
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[4], Theorem 1, p. 85; the condition (P) mentioned there is always satisfied,
as was kindly shown to us by Prof. D. Candeloro).

Theorem 2. Let K = (Kw)w∈W be a singular kernel and let the modular
% be monotone and J -convex , and the modular η-monotone, τ -bounded ,
absolutely finite and absolutely continuous. Let f ∈ (L0(G))%+η ∩ Dom T.
Finally , let one of the following conditions hold :

(a) K is strongly singular ;
(b) % is finite and absolutely continuous.

Then %(a(Twf − f)) W−→ 0 for sufficiently small a > 0 (depending on f ).

P r o o f. Choose an arbitrary ε > 0. Since η is monotone, τ -bounded,
absolutely finite and absolutely continuous, there is a U ∈ U such that
ωη(λ0f, U) < ε/4 for sufficiently small λ0 > 0. Taking λ1 ∈ ]0, λ0[ small
enough, we get η(2cλ1f) < ∞. Due to singularity of K, keeping the above
U ∈ U fixed, we have

∫
G\U pw(t) dt W−→ 0. Hence there exists a W1 ∈ W

such that

[2η(2cλf) + h0]
∫

G\U

pw(t) dt < ε/4

for λ ∈ ]0, λ1], w ∈ W1 and the above U ∈ U .
Thus, for a fixed λ ∈ ]0, λ1[ let Cλ be the corresponding constant in (I),

and for a ∈ ]0, Cλ/(16L)[ , we have

%(a(Twf − f)) < ε/2 +Rk

for w ∈ W1 and k = 0, 1, 2, . . . , where we have applied (2) with Tw and pw
in place of T and p.

Assuming that (a) holds, we apply (3) with k = 0, obtaining R0 =
%(2ar(w)f). However, since f ∈ (L0(G))%, there is a W2 ∈ W such that
%(2ar(w)f) < ε/2 for w ∈ W2. This gives %(a(Twf − f)) < ε for w ∈
W1 ∩W2 ∈W, which implies our assertion.

Now suppose (b). We apply Theorem 1 with a given S ∈ Σ with |S| <∞.
Since A1 ⊃ A2 ⊃ . . . , we have S ∩ A1 ⊃ S ∩ A2 ⊃ . . . , and |S ∩ A1| < ∞.
Hence limk→∞ |S∩Ak| = |S∩

⋂∞
k=1Ak|. But f ∈ L0(G) whence there exists

a set G0 ⊂ G,G0 ∈ Σ, |G0| = 0, such that |f(t)| <∞ for t ∈ G \G0. From
the inclusion

⋂∞
k=1Ak ⊂ G0, we deduce limk→∞ |S ∩Ak| = 0.

Now applying absolute continuity of η and %, we may choose λ and a so
small that

η(λfχG\S) + %(16afχG\S) < ε/12
for a suitable set S ∈ Σ, |S| <∞.

Keeping S fixed, we may find an index k such that

η(λfχS∩Ak
) + %(16afχS∩Ak

) < ε/12.
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Moreover, η(λfχS∩Bk
) + %(16afχS∩Bk

) ≤ η((λ/k)χS) + %((16a/k)χS) and
since χS ∈ (L0(G))%+η we may find k such that η(λfχS∩Bk

)+%(16afχS∩Bk
)

< ε/12, which gives Rk < ε/4 + %(8ark(w)f). Taking w ∈ W1 we obtain
by (3), %(a(Twf − f)) < 3ε/4 + %(8ark(w)f). But f ∈ (L0(G))%, whence
there is a W3 ∈ W such that %(8ark(w)f) < ε/4 for w ∈ W3. This gives
%(a(Twf − f)) < ε for w ∈ W1 ∩W3 ∈W, which implies our statement.

5. We give some examples of modulars % and η satisfying the assumptions
of Theorems 1 and 2.

Examples. 1. Let Φ : R+
0 → R+

0 be such that Φ(0) = 0, Φ(u) > 0 for
u > 0, Φ nondecreasing in R+

0 , and Φ(u)→∞ as u→∞. Then Φ generates
a modular

σ(f) = IΦ(f) =
∫
G

Φ(|f(t)|) dt

in L0(G), and the respective modular space (L0(G))σ is the Orlicz space
LΦ(G).

The modular σ is monotone, absolutely finite, absolutely continuous and
τ -bounded (with c = 1, h(t) ≡ 0). If Φ is convex on R+

0 , then σ is J -convex.
Thus, IΦ satisfies the assumption of Theorem 2, (b).

Finally, if we take two functions Φ1 and Φ2 and we put % = IΦ1 , η = IΦ2 ,
then (I) is certainly satisfied with λ = Cλ if we assume the concavity of the
function ψ with respect to the second variable and that (Φ1 ◦ψ)(u) ≤ Φ2(u)
for u ≥ 0.

2. Let V be a nonempty set of indices filtered by a set W of its subsets.
Let av : [a, b[→ R+

0 , v ∈ V, be such that

1o
∫ b
a
av(x) dx ≤ 1 for all v ∈ V;

2o if g : [a, b[→ R+
0 is such that 0 ≤ g(x)↗ s <∞ as x→ b−, then

b∫
a

av(x)g(x) dm W−→ s;

3o for every Lebesgue measurable set C ⊂ [a, b[ of measure m(C) > 0
there exists a Lebesgue measurable subset C1 of measure m(C1) > 0 and an
index v ∈ V such that av̄(x) > 0 m-almost everywhere in C1.

Let Φ : [a, b[× R+
0 → R+

0 satisfy

1) Φ(x, u) is a nondecreasing continuous function of u ≥ 0, for every
x ∈ [a, b[;

2) Φ(x, 0) = 0, Φ(x, u) > 0 for u > 0, and Φ(x, u) → ∞ as u → ∞, for
every x ∈ [a, b[;
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3) the limit limx→b− Φ(x, u) = Φ̃(u) <∞ exists for every u ≥ 0;
4) Φ(x, u) is a Lebesgue measurable function of x in [a, b[, for every

u ≥ 0.

Moreover, suppose Φ(x, u) to be of monotone type in a subinterval [c, b[ ⊂
[a, b[ and equicontinuous in [a, b[ at u = 0 (for these notions see [2], Sec-
tion 4).

Let m be a measure on [a, b[ defined on all Lebesgue measurable subsets
of [a, b[. Then

AΦ(f) = sup
v∈V

b∫
a

av(x)JΦ(x, f) dm(x),

where

JΦ(x, f) =
∫
G

Φ(x, |f(t)|) dt,

is a modular in the subspace L0
m(G) ⊂ L0(G) of functions f for which

JΦ(x, f) is a Lebesgue measurable function on [a, b[.
In [2] sufficient conditions are obtained in order that AΦ be absolutely

finite and absolutely continuous. Evidently AΦ is monotone. If Φ(x, u) is a
convex function of u ≥ 0 for all x ∈ [a, b[, then for all measurable functions
F : G × G → R and p : G → R+

0 with
∫
G
p(t) dt = 1 we have Jensen’s

inequality

Φ
(
x,
∫
G

p(t)F (t, s) dt
)
≤
∫
G

p(t)Φ(x, |F (t, s)|) dt

for x ∈ [a, b[, s ∈ G. Hence it follows that, in this case, AΦ is J -convex. It is
easily observed that JΦ(x, f(t+ ·)) = JΦ(x, f) for every t ∈ G, whence AΦ
is τ -bounded with c = 1, h(t) ≡ 0.

The theory developed in [2] for the modular AΦ contains as a particular
case the discrete modulars of the type

AΦ(f) = sup
n∈N

∞∑
i=1

an,iIΦi
(f)

(for details see [2], Section 5).
Moreover, it is possible to prove that the more general modulars of type

ÃΦ(f) = sup
v∈V

b∫
a

JΦ(x, f) dmw(x), f ∈ L0
m(G),

where {mw} is a family of measures, satisfy the conditions of Theorem 1
and Theorem 2, under the assumptions of Section 6 of [2].
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We remark that among these modulars there are those studied in [6],
namely

IΦ(f) = sup
x∈ [a,b[

JΦ(x, f)

(see also Section 6 of [2]).

Hence we may state the following

Corollary 1. Let K = (Kw)w∈W be a singular kernel and let %, η
be any of the modulars defined in Examples 1 or 2, satisfying (I). Suppose
the function Φ generating % is convex. In case any of the modulars is as in
Example 2, suppose that the respective function Φ satisfies the assumptions
of Theorem 1 of [2]. Then, for any function f ∈ (L0(G))%+η ∩Dom T,

%(a(Twf − f)) W−→ 0

for sufficiently small a > 0.
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