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Pseudo orbit tracing property and fixed points

by MAsaTosHI OKA (Tokyo)

Abstract. If a continuous map f of a compact metric space has the pseudo orbit
tracing property and is h-expansive then the set of all fixed points of f is totally discon-
nected.

The pseudo orbit tracing property is one of the most important notions
in dynamical systems. The observation of periodic points is the first step
to know the orbit structure of a system. In this paper we investigate the
sets of all fixed points of continuous maps with the pseudo orbit tracing
property. Our result gives a partial positive answer to the following question
by Morimoto [8]:

Is the set of all fixed points of a C'! diffeomorphism of a compact mani-
fold totally disconnected if the diffeomorphism has the pseudo orbit tracing
property?

We show in this paper that the set of all fixed points of a continuous map
which has the pseudo orbit tracing property is totally disconnected under a
supplementary condition of expansiveness with respect to entropy.

Let X be a compact metric space with metric d and f : X — X be a
continuous map. For § > 0 a sequence {z;} of points in X is said to be a
0-pseudo orbit if d(f(x;),z;y1) <0 for i =0,1,2,... We say that f has the
pseudo orbit tracing property if for any € > 0 there is § > 0 such that for any
d-pseudo orbit {z;} there is y € X satisfying d(f*(y),z;) < € for any i > 0.
The y is said to be an e-tracing point of {x;}. Fore > 0 and x € X we denote
by @.(z) the set (),,~o f~"B=(f"(z)), where B.(z) = {y € X : d(y,x) < €}.
We say that a subset E of X (n,d)-spans a subset K if for each y € K there
is z € F such that d(f*(z), f'(y)) < d for all i € [0,n). Let v,(5, K) be the
minimum cardinality of sets which (n,d)-span K. Since @.(z) is compact,
Yn (0, Pe(x)) is finite. Define
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5 (8, (x)) = limsup — log 7, (6, - (),
n

n—oo

B(f, Bo(2) = lim 7,(6, 8 (2)).

Then 7;(d,®.(x)) increases as ¢ decreases. We denote by Fix(f) the set
{z € X : f(x) = z}. Our result is as follows.

THEOREM. Let f have the pseudo orbit tracing property. If for any
x € Fix(f) there is ¢ > 0 with h(f,®.(x)) = 0, then Fix(f) is totally
disconnected.

A continuous map f : X — X is called h-expansive if there exists € > 0
such that A(f,®.(x)) =0 for any z € X (cf. [2]).

COROLLARY. If an h-expansive map f has the pseudo orbit tracing prop-
erty, then Fix(f) is totally disconnected.

Misiurewicz constructed a C' diffeomorphism which is not h-expansive
(cf. [7]). Thus Morimoto’s question is still open for C'! diffeomorphisms.

To prove the Theorem we need two lemmas. For x,y € X, a -chain from
x to y is a finite d-pseudo orbit {xg,z1,..., T, } with 29 =z, x,,, = y. The
number m + 1 is called the length of the chain.

LEMMA 1. If a closed subset C' of X is connected, then for any a > 0
there is a positive integer m such that for any x,y € C there is an a-chain
from x to y with length at most m + 1.

Proof. Let Uy o(z) = {y € X : d(y,x) < «/2}. Since C is compact,
we can find z1,...,zr € C such that Ule Uaj2(zi) D C. Put m = k + 1.
Since C' is connected, for any p,q € {z1,...,xx} we take z;,,...,x; €
{x1,..., 2} with x4, = p, x5, = g such that Uy a(2i;) N Uqsy2(2i,,,) # 0 for
j=0,1,...,0—1. Thus {p,zi,...,2;_,,q} is an a-chain in C. We can
assume that x;, # z;, for s # t (otherwise we replace the a-chain by one
with smaller [). Hence the length of {p,x;,,...,z;_,,q} is at most k. For
any z,y € C, we can find p,q € C such that U, /5(p) 3 z, Uy 2(q) 2 y and
so the a-chain {z,p,x;,,...,%i,_,,q,y} has length at most k +2 =m + 1.

The following is an immediate fact from general topology.

LEMMA 2. Let F' be a closed subset of X. If for each x € F there ise > 0
such that B.(x) N F is totally disconnected, then so is F.

The proof is omitted. See [6] for the details.

Proof of Theorem. Put F = Fix(f). Since F' is a closed subset of
X, by Lemma 2 it is sufficient to show that for any x € F there is ¢ > 0
such that B, ,(x) N F is totally disconnected.
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Let x € F and assume that h(f,@.(x)) = 0 for some ¢ > 0. Let C
denote the connected component of B, , () N F containing = and assume
that C' is not a one-point set. Then C is not finite and so for any positive
integer a we can take pi,...,p, € C (p; # p; if i # j). Take gy with
0 < eg < min{d(p;,p;) : 1 < i # j < a}. Since f has the pseudo orbit
tracing property, for any p with 0 < p < min{ey/6,¢/2} there is o with
0 < a < min{ep/6,£/2} such that any a-pseudo orbit of f is u-traced by a
point y € X. By Lemma 1 we can find a positive integer m such that for
any T,y € C there is an a-chain {zg,...,2,} C C from T to § with length
at most m + 1.

Take an n-tuple (zo,...,2,-1) such that z; = p;; € {p1,...,pa} for
j=0,...,n—1. Then for each consecutive pair z;,z;41 (i =0,...,n — 2)
we can find an a-chain in C from z; to z;4+1 with length at most m + 1.
Since C is connected the a-chains may be assumed to have length m + 1 by

adding some points of C' if necessary (cf. [9]). Hence if {:z:(()i),xgi) --.,337(7?}
denotes the a-chain for the pair z;, z;41, where x((f) = z; and x% = Zit1,
then {x(()o), e 53)_1,56(()1),5651), ... 7:c£rlb)_1,x(()2), ... 7:65::12)733%1—2)’ ...} is an

a-pseudo orbit of f such that x,(ff) = xékH) for k=0,1,...,n — 3. Since f
has the pseudo orbit tracing property there is u € X such that

(1) d(fm i (w), 2y <

fori =0,...,n—2and j =0,...,m. Thus u € @.(x) because xé eCcC
B.js(z) and p < /2. Take 0 < 6 < £9/6 and an (mn, §)-spanning set E for
&, (x). Then we can find w € E such that

(2) d(f* (@), f*(u)) <6
for k=0,1,...,mn — 1. If we take another n-tuple (z(,...,2,,_;) from the
set {p1,...,pa}, then there are v € &.(z) and v € F such that
m-+j l
3) d(f'" 4 (), ") < u
fori=0,...,n—2and j=0,...,m, and
(4) d(f* (@), f*(v)) <6

fork=0,1,...,mn—1. We have u # v. Forif (z0,21,...,2n-1) # (20, 21, - -

!/

.., 2 _1), then z; # 2 for some [. Thus

g0 < d(z1,2]) < d(z, [ () + ([ (w), 1™ () + (7 (v), 2)
< pd(f (), f7(0) + p.

Hence d(f'™(u), f'(v)) > 9 — 21 > 2e0/3 > 0 and so u # v. We also have
u # 0. Indeed, if z; # 2], then d(f'™(u),z) < p and d(f'™(v),2]) < u by
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(1) and (3). Hence

g0 < d(z,2))
< d(zi, [ () + d( U (w), (@) 4 d(F (@), F))
+d(f" (@), () + d(f™ (v), 2)
<p+o+d(fm@), fm@) 46+ p
< 2(p+ 6) +d(f™(w), f™ ()
< 2e0/3 4 d(f'"™ (@), [ (V))

and so d(f!™(w), f!™(v)) > 0/3 > 0. Hence u # v. Therefore we have
Card(E) > a”, where Card(FE) denotes the cardinality of the set E. Thus
34(6,®-(x)) > Lloga and so h(f,P-(x)) > L loga > 0, which is a contra-
diction. Thus C is a one-point set and Fix(f) is totally disconnected.
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