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On the asymptotic behavior of solutions of
second order parabolic partial differential equations

by Wei-Cheng Lian and Cheh-Chih Yeh (Chung-Li)

Abstract. We consider the second order parabolic partial differential equation

n∑
i,j=1

aij(x, t)uxixj +
n∑
i=1

bi(x, t)uxi + c(x, t)u− ut = 0.

Sufficient conditions are given under which every solution of the above equation must
decay or tend to infinity as |x| → ∞. A sufficient condition is also given under which
every solution of a system of the form

Lα[uα] +
N∑
β=1

cαβ(x, t)uβ = fα(x, t),

where

Lα[u] ≡
n∑

i,j=1

aαij(x, t)uxixj +
n∑
i=1

bαi (x, t)uxi − ut,

must decay as t→∞.

1. Introduction. Let x = (x1, . . . , xn) be a point of the n-dimensional
Euclidean space Rn and let t be a nonnegative number. The distance of the
point x ∈ Rn from the origin of Rn is denoted by |x| =

√
x2

1 + . . .+ x2
n.

Let Ω be an unbounded domain in Rn. The (n+ 1)-dimensional Euclidean
domain D := Ω × (0, T ) is our domain of interest; here 0 < T ≤ ∞.

Consider the second order parabolic partial differential equation of the
form

(1) Lu :=
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u− ∂u

∂t
= 0
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in D. We consider only classical solutions of (1), thus we require u(x, t) ∈
C0(D) ∩ C2(D).

In 1962, Krzyżański [11] proved the existence of the fundamental solution
of the following parabolic differential equation:

L0u :=
n∑
i=1

∂2u

∂x2
i

+ (−k2|x|2 + l)u− ∂u

∂t
= 0, k > 0,

in Rn × (0,∞). Using this fundamental solution, we see that the solution
u(x, t) of the above equation with Cauchy data u(x, 0) = M exp(a|x|2) is
given by

u(x, t) = M

(
k

k cosh 2kt− 2a sinh 2kt

)n/2
× exp

[
k(2a cosh 2kt− k sinh 2kt)
2(k cosh 2kt− 2a sinh 2kt)

|x|2 + lt

]
,

where 2a < k. Hence, if l− kn < 0, then u(x, t) converges to zero uniformly
on every compact set in Rn as t → ∞. And, if t > 1

4k ln 2a+k
k−2a , then u(x, t)

converges to zero as |x| → ∞.
Results on the asymptotic behavior as t→∞ of solutions u(x, t) of more

general parabolic equations and systems with unbounded coefficients have
been obtained by various authors, for example, Chen [2]–[4], Kuroda [12],
Kuroda and Chen [13], Kusano [14], [15] and Kusano, Kuroda and Chen [16],
[17]. They considered the coefficients of (1) satisfying one of the following
two conditions:

(I) There exist constants K1 > 0, K2 ≥ 0, K3 > 0, µ > 0 and λ > 0 such
that

0 <
n∑

i,j=1

aij(x, t)ξiξj ≤ K1[log(|x|2 + 1) + 1]−λ(|x|2 + 1)1−µ|ξ|2

for all nonzero real vectors ξ = (ξ1, . . . , ξn), and

|bi(x, t)| ≤ K2(|x|2 + 1)1/2, i = 1, . . . , n,
c(x, t) ≤ K3[log(|x|2 + 1) + 1]λ(|x|2 + 1)µ;

(II) There exist constants K1 > 0,K2 ≥ 0,K3 > 0, and λ ≥ 1 such that

0 <
n∑

i,j=1

aij(x, t)ξiξj ≤ K1(|x|2 + 1)1−λ|ξ|2 for any nonzero ξ ∈ Rn,

|bi(x, t)| ≤ K2(|x|2 + 1)1/2, i = 1, . . . , n,
c(x, t) ≤ −K3(|x|2 + 1)λ.
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In 1980, Cosner [8] generalized the above results to the more general
parabolic equations (1) whose coefficients satisfy the following condition.

(A) There exist positive constants µ,K1,K2 and K3 such that
n∑

i,j=1

aij(x, t)ξiξj ≤ K1φ(1 + r2)|ξ|2 for all ξ ∈ Rn,

|bi(x, t)| ≤ K2φ(1 + r2)θ(1 + r2)(1 + r2)−1/2, i = 1, . . . , n,
c(x, t) ≤ K3[θ(1 + r2)]µ,

for (x, t) ∈ D, where r = |x| and θ(η), φ(η) satisfy the following
condition (H):

(H) θ(η) is a C2 function on [1,∞) such that dθ(η)/dη = 1/φ(η), θ(η) ≥
1, φ(η) is a C1 positive function of η, and there exist nonnegative
constants m1 and m2 such that for η ≥ 1, ηφ′′(η) ≤ m1φ(η)φ′(η),
and ηφ′(η) ≤ m2[φ(η)]2−µ.

He gave some sufficient conditions under which every solution u(x, t) of (1)
converges to zero uniformly on every compact set in Rn as t→∞.

In 1974, Chen–Lin–Yeh [5] discussed the asympotic behavior of solu-
tions for large |x| of equation (1) whose coefficients satisfy (I) or (II). To
our knowledge, there is no other paper discussing the asymptotic behavior
for large |x| of solutions of equation (1) whose coefficients satisfy assump-
tion (A).

The purpose of this paper is to give sufficient conditions under which
every solution of (1) must decay as |x| → ∞ and to give sufficient conditions
under which every solution of (1) must tend to infinity as |x| → ∞. We also
generalize the results to a system of the form

(2) Lα[uα] +
N∑
β=1

cαβ(x, t)uβ = 0, α = 1, . . . , N,

where

Lα[u] ≡
n∑

i,j=1

aαij(x, t)uxixj
+

n∑
i=1

bαi (x, t)uxi
− ut.

A sufficient condition is also given under which every solution of

Lα[uα] +
N∑
β=1

cαβ(x, t)uβ = fα(x, t)

must decay as t→∞, where α = 1, . . . , N .
The techniques used in the present article are primarily adapted from

those used in Chen, Lin and Yeh [5] and Cosner [7], [8].
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2. Main results. In order to prove our main results, we need the fol-
lowing maximum principle which is due to Cosner [7], [8].

Lemma 1 (Phragmén–Lindelöf principle). Let u(x, t) ∈ C0(D) ∩ C2(D)
satisfy the inequalities

(3)
{
L[u] ≥ 0 in D,
u ≤ 0 on Σ := (Ω × {0}) ∪ (∂Ω × (0, T )).

Suppose that the coefficients of L satisfy assumption (A) in D. If there is a
constant k ≥ 1 such that

(4) lim inf
r→∞

[ max
(x,t)∈D
|x|=r

u(x, t)] exp{−k[θ(1 + r2)]µ} ≤ 0,

then u(x, t) ≤ 0 in D.

R e m a r k 1. If (3) and (4) in Lemma 1 are replaced by{
L[u] ≤ 0 in D,
u ≥ 0 on Σ,

and
lim sup
r→∞

[ max
(x,t)∈D
|x|=r

u(x, t)] exp{−k[θ(1 + r2)]µ} ≥ 0

respectively, then u ≥ 0 in D. Lemma 1 can be easily generalized to weakly
coupled systems (2) (see Cosner [7]).

Theorem 1. Suppose that

(C1) u ∈ C0(D) ∩ C2(D) satisfies Lu = 0 in D,
(C2) the coefficients of L satisfy the following condition: There exist con-

stants k1 ≥ 0, K1 > 0, K2 ≥ 0, K3 ≥ 0 and 0 < µ ≤ 1 such
that

k1φ(1 + r2)|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ K1φ(1 + r2)|ξ|2 for ξ ∈ Rn,

|bi(x, t)| ≤ K2φ(1 + r2)θ(1 + r2)(1 + r2)−1/2, i = 1, . . . , n,
c(x, t) ≤ K3[θ(1+r2)]µ, where θ(η) and φ(η) satisfy condition (H),

(C3) for every T > 0, there exists a constant k(T ) ≥ 1 such that

lim
r→∞

[ max
|x|=r

0≤t≤T

|u|] exp{−k(T )[θ(1 + r2)]µ} = 0.

Then:

(a) If θ′′(η) ≥ 0 for η ≥ 1 and

(5) |u| ≤M exp{−k[θ(1 + r2)]µ %τt} on Σ
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for some constant M , where

(6) τ = −[4k2K1µ
2m2 − 4kµ(µ− 1)K1m2 + 2kµK2n+K3]/(k ln %),

then

(R1) |u| ≤M exp{−k[θ(1 + r2)]µ %τt} in D.

(b) If there exists a constant m3 ≥ 0 such that ηθ′′(η) ≥ −m3θ
′(η) for

η ≥ 1 and |u| ≤ M exp{−k[θ(1 + r2)]µ%τt} on Σ for some constant M ,
where

τ = −[4k2K1µ
2m2−4kµ(µ−1)K1m2 + 4kµm3K1 + 2kµK2n+K3]/(k ln %),

then (R1) also holds.

Moreover , if , in addition, Ω = Rn and θ(η) → ∞ as η → ∞, then the
solution u of (1) decays exponentially to zero as |x| → ∞.

P r o o f. (a) Let ω(x, t) = M exp{−k[θ(1 + r2)]µ%τt}, where % > 1 is a
parameter and τ = τ(%) is defined in (6). Thus

L[ω] ≡
n∑

i,j=1

aijωxixj
+

n∑
i=1

biωxi
+ cω − ωt

=
{

4k2µ2θ2µ−2(θ′)2%2τt
n∑

i,j=1

aijxixj

− 4kµ(µ− 1)θµ−2(θ′)2%τt
n∑

i,j=1

aijxixj

− 4kµθµ−1θ′′%τt
n∑

i,j=1

aijxixj − 2kµθµ−1θ′%τt
n∑
i=1

aii

− 2kµθµ−1θ′%τt
n∑
i=1

bixi + c+ kθµτ%τt ln %
}
ω.

By (C1), (C2), (C3) and θ′′(η) > 0 for η ≥ 1, we obtain

L[ω] ≤ {4k2K1µ
2m2%

2τtθµ − 4kµ(µ− 1)K1m2%
τt

+ 2kµK2θ
µ%τtn+K3θ

µ + kθµτ%τt ln %}ω
≤ {4k2K1µ

2m2 − 4kµ(µ− 1)K1m2

+ 2kµK2n+K3 + kτ ln %}θµ%2τtω.

By (6), we have L[ω] ≤ 0 in D, and hence L[u−ω] = L[u]−L[ω] = −L[ω] ≥ 0
in D. It follows from (5) that u − ω ≤ 0 on Σ. Thus, by the Phragmén–
Lindelöf principle, we see that u − ω ≤ 0 in Ω × (0, T ) for every fixed T .
Hence, u−ω ≤ 0 in D and thus, by continuity, in D. We can apply Remark 1
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to u+ ω in a similar way and conclude that u+ ω ≥ 0 in D. Thus |u| ≤ ω
in D, that is, (R1) holds.

(b) For the same ω and L[ω] computed as before, we now obtain the
estimate
L[ω] ≤ {4k2K1µ

2m2%
2τtθµ − 4kµ(µ− 1)K1m2%

τt + 4kµθµ−1m3K1%
τt

+ 2kµK2θ
µ%τtn+K3θ

µ + kθµτ%τt ln %}ω
≤ {4k2K1µ

2m2 − 4kµ(µ− 1)K1m2

+ 4kµm3K1 + 2kµK2n+K3 + kτ ln %}θµ%2τtω.

Thus L[ω] ≤ 0 in D, and we conclude as before that (R1) holds.

Theorem 2. Let (C1) and (C3) hold. Suppose that the coefficients of L
satisfy the following condition:

(C4) there exist constants K1 > 0,K2 ≥ 0, k3 > 0,K3 ≥ 0 and 0 < µ ≤ 1
such that for all (x, t) ∈ D,

0 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ K1φ(1 + r2)|ξ|2 for ξ ∈ Rn,

|bi(x, t)| ≤ K2φ(1 + r2)θ(1 + r2)(1 + r2)−1/2, i = 1, . . . , n,
−k3[θ(1 + r2)]µ ≤ c(x, t) ≤ K3[θ(1 + r2)]µ,

where θ(η) and φ(η) satisfy condition (H).

Then:

(a) If θ′′(η) ≥ 0 for η ≥ 1 and

(7) |u| ≥M exp{k[θ(1 + r2)]µ%τt} on Σ

for some constant M , where

(8) τ = [4kK1m2µ(µ− 1)− 2kK2µn− k3]/(k ln %),

then

(R2) |u| ≥M exp{k[θ(1 + r2)]µ%τt} in D.

(b) If there exists a constant m3 ≥ 0 such that ηθ′′(η) ≥ −m3θ
′(η)

for η ≥ 1 and |u| ≥ M exp{k[θ(1 + r2)]µ%τt} on Σ for some constant M ,
where τ = (4kK1m2µ(µ−1)−4kK1µm3−2kK2µn−k3)/(k ln %), then (R2)
holds.

Moreover , if , in addition, Ω = Rn and θ(η) → ∞ as η → ∞, then the
solution u(x, t) of (1) tends to infinity as |x| → ∞.

P r o o f. (a) Let ω = M exp{k[θ(1+r2)]µ%τt}, where % > 1 is a parameter
and τ = τ(%) is defined in (8). Then
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L[ω] =
{

4k2µ2θ2µ−2(θ′)2%2τt
n∑

i,j=1

aijxixj

+ 4kµ(µ− 1)θµ−2(θ′)2%τt
n∑

i,j=1

aijxixj

+ 4kµθµ−1θ′′%τt
n∑

i,j=1

aijxixj + 2kµθµ−1θ′%τt
n∑
i=1

aii

+ 2kµθµ−1θ′%τt
n∑
i=1

bixi + c− kθµτ%τt ln %
}
ω

≥ {4kK1m2µ(µ− 1)%τt − 2kK2µθ
µ%τtn− k3θ

µ − kθµτ%τt ln %}ω
≥ {4kK1m2µ(µ− 1)− 2kK2µn− k3 − kτ ln %}θµ%τtω.

It follows from (8) that L[ω] ≥ 0 in D. By (7), we have

|u| ≥M exp{k[θ(1 + r2)]µ%τt} = ω on Σ.

C a s e 1. If u ≥ 0, then u − ω ≥ 0 on Σ and L[u − ω] = L[u] −
L[ω] = −L[ω] ≤ 0 in D. Thus, by the Phragmén–Lindelöf principle, we have
u−ω ≥ 0 in Ω× (0, T ) for each fixed T > 0. Hence, u−ω ≥ 0 in D and, by
continuity, u ≥ ω in D.

C a s e 2. If u ≤ 0, then u+ω ≤ 0 on Σ and L[u+ω] ≥ 0 in D. Thus, by
the Phragmén–Lindelöf principle, we have u+ ω ≤ 0 in Ω × (0, T ) for each
fixed T > 0. Hence, u+ω ≤ 0 in D and, by continuity, in D. Thus, |u| ≥ ω
in D, that is, (R2) holds.

(b) For the same ω and L[ω] computed as before, we now obtain the
estimate
L[ω] ≥ {4kK1m2µ(µ− 1)%τt − 4kK1µθ

µ−1%τtm3

− 2kK2µθ
µ%τtn− k3θ

µ − kθµτ%τt ln %}ω
≥ {4kK1m2µ(µ− 1)− 4kK1µm3 − 2kK2µn− k3 − kτ ln %}%τtθµω.

Thus L[ω] ≥ 0 in D. As in the proof of case (a), we easily see that (R2)
holds.

Similarly, we can obtain the following results:

Theorem 3. Let (C1), (C2) and (C3) hold with µ ≥ 1. Then:

(a) If θ′′(η) ≥ 0 for η ≥ 1 and |u| ≤M exp{−k[θ(1 + r2)]µ%τt} on Σ for
some constant M , where τ = −[4k2K1µ

2m2 + 2kµK2n+K3]/(k ln %), then

(R3) |u| ≤M exp{−k[θ(1 + r2)]µ%τt} in D.

(b) If there exists a constant m3 ≥ 0 such that ηθ′′(η) ≥ −m3θ
′(η) for

η ≥ 1 and |u| ≤ M exp{−k[θ(1 + r2)]µ%τt} on Σ for some constant M ,
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where τ = −[4k2K1µ
2m2 + 4kµm3K1 + 2kµK2n + K3]/(k ln %), then (R3)

also holds.

Moreover , if , in addition, Ω = Rn and θ(η) → ∞ as η → ∞, then the
solution u(x, t) decays exponentially to zero as |x| → ∞.

Theorem 4. Let (C1), (C3) and (C4) hold with µ ≥ 1. Then:

(a) If θ′′(η) ≥ 0 for η ≥ 1 and |u| ≥ M exp{k[θ(1 + r2)]µ%τt} on Σ for
some constant M , where τ = (−2kK2µn− k3)/(k ln %), then

(R4) |u| ≥M exp{k[θ(1 + r2)]µ%τt} in D.

(b) If there exists a constant m3 ≥ 0 such that ηθ′′(η) ≥ −m3θ
′(η) for

η ≥ 1 and |u| ≥M exp{k[θ(1 + r2)]µ%τt} on Σ for some constant M , where
τ = τ(%) = (−4kK1µm3 − 2kK2µn− k3)/(k ln %), then (R4) holds.

Moreover , if , in addition, Ω = Rn and θ(η) → ∞ as η → ∞, then the
solution u(x, t) of (1) tends to infinity as |x| → ∞.

3.Further results. In this section, we generalize the results of Section 2
to weakly coupled systems of the form

Lα[uα] +
N∑
β=1

cαβuβ = 0, α = 1, . . . , N,

where

Lα[u] ≡
n∑

i,j=1

aαijuxixj +
n∑
i=1

bαi uxi − ut.

Theorem 5. Suppose that

(C5) the functions uα, α = 1, . . . , N, satisfy

Lα[uα] +
N∑
β=1

cαβuβ = 0 in D

and uα ∈ C0(D) ∩ C2(D) for each α = 1, . . . , N ,
(C6) for α, β = 1, . . . , N, the operators Lα and the functions cαβ satisfy

the following conditions: There exist constants k1 ≥ 0, K1 > 0,
K2 > 0, K3 > 0 and 0 < µ ≤ 1 such that for α = 1, . . . , N and
(x, t) ∈ D,

k1φ(1 + r2)|ξ|2 ≤
n∑

i,j=1

aαij(x, t)ξiξj ≤ K1φ(1 + r2)|ξ|2,

|bαi (x, t)| ≤ K2φ(1 + r2)θ(1 + r2)(1 + r2)−1/2, i = 1, . . . , n,
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N∑
β=1

cαβ(x, t) ≤ K3[θ(1 + r2)]µ,

where θ(η) and φ(η) satisfy condition (H),
(C7) for each α = 1, . . . , N and for every T > 0, there exists a constant

k(T ) ≥ 1 such that

lim
r→∞

[ max
|x|=r
|t|<T

|uα|] exp{−k(T )[θ(1 + r2)]µ} = 0.

Then:
(a) If θ′′(η) ≥ 0 for η > 1, and |uα| ≤ M exp{−k[θ(1 + r2)]µ%τt} on

Σ for some constant M and α = 1, . . . , N, where τ = −[4k2K1µ
2m2 −

4kµ(µ− 1)K1m2 + 2kµK2n+K3]/(k ln %), then

(R5) |uα| ≤M exp{−k[θ(1 + r2)]µ%τt} in D for α = 1, . . . , N.

(b) If there exists a constant m3 ≥ 0 such that ηθ′′(η) ≥ −m3θ
′(η) for

η ≥ 1 and |uα| ≤M exp{−k[θ(1 + r2)]µ%τt} on Σ for some constant M and
for α = 1, . . . , N , where τ = −[4k2K1µ

2m2−4kµ(µ−1)K1m2 +4kµm3K1 +
2kµK2n+K3]/(k ln %), then (R5) also holds.

Moreover , if , in addition, Ω = Rn and θ(η) → ∞ as η → ∞, then
the solution uα(x, t) of (2) decays exponentially to zero as |x| → ∞, for
α = 1, . . . , N .

R e m a r k 6. Similarly, if the functions uα, cαβ and the coefficients of
the operator Lα (α, β = 1, . . . , N) satisfy the hypotheses of Theorems 2–4,
then results of the above-mentioned theorems are true with respect to uα,
α = 1, . . . , N .

4. Exponential decay of solutions as t → ∞. In [1], Chabrowski
discussed the decay as t→∞ of solutions of a single parabolic equation

Lu = f(x, t)

with bounded coefficients in Rn× [0,∞). In this section, we extend Chabro-
wski’s result to the system

(9) Lα[uα] = fα(x, t), α = 1, . . . , N,

with unbounded coefficients. Here L and Lα are defined as in (1) and (2)
respectively. To do this, we need the following maximum principle which
is an easy extension of the maximum principle stated in Kusano–Kuroda–
Chen [16].
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Lemma 7. Suppose that the coefficients of (9) in Rn × [0,∞) satisfy

(C8)



0 ≤
n∑

i,j=1

aαij(x, t)ξiξj ≤ K1φ(1 + |x|2)|ξ|2 for all ξ ∈ Rn,

|bαi (x, t)| ≤ K2φ(1 + |x|2)θ(1 + |x|2)(1 + |x|2)−1/2, i = 1, . . . , n,

cαβ(x, t) ≥ 0, α 6= β,

n∑
β=1

cαβ(x, t) ≤ K3[θ(1 + |x|2)]µ,

for α = 1, . . . , N, where K1 > 0,K2 ≥ 0,K3 > 0 and µ > 0 are constants,
and θ(η) and φ(η) satisfy condition (H). Let uα(x, t), α = 1, . . . , N, satisfy

Lα[uα] +
N∑
β=1

cαβ(x, t)uβ ≥ 0, α = 1, . . . , N,

in Rn × [0,∞) with the properties uα(x, 0) ≤ 0 for x ∈ Rn, and uα(x, t) ≤
M exp{kθ(1 + |x|2)µ} for (x, t) ∈ Rn × (0,∞), where α = 1, . . . , N , and M
and k are some positive constants. Then uα(x, t) ≤ 0 in Rn × (0,∞) for
α = 1, . . . , N .

Theorem 8. Let the coefficients of (9) satisfy condition (C8) and∑N
β=1 c

αβ(x, t) ≤ −K3 for α = 1, . . . , N . Suppose uα(x, t), α = 1, . . . , N ,
are bounded solutions of (9). If limt→∞ fα(x, t) = 0, α = 1, . . . , N , uni-
formly with respect to x ∈ Rn, then limt→∞ uα(x, t) = 0, α = 1, . . . , N ,
uniformly with respect to x ∈ Rn.

P r o o f. Let ε > 0. Then there exists a δ > 0 such that

|fα(x, t)| ≤ ε, α = 1, . . . , N,

for x ∈ Rn and t ≥ δ. Put

Mα = sup
(x,t)∈Rn×[0,∞)

|uα(x, t)|, α = 1, . . . , N.

Define

ωα±(x, t) = −2
ε

K3
−Mαe−h(t−δ) ± uα(x, t), α = 1, . . . , N,

where h is a positive constant such that 0 < h < K3. Hence

Lα[ωα±] +
N∑
β=1

cαβ(x, t)uβ = − 2ε
K3

N∑
β=1

cαβ(x, t)−Mαe−h(t−δ)
N∑
β=1

cαβ(x, t)

− hMαe−h(t−δ) ± fα(x, t)

≥ ε+Mαe−h(t−δ)(K3 − h) > 0, α = 1, . . . , N.
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for x ∈ Rn and t > δ. Moreover,

ωα±(x, δ) = −2
ε

K3
−Mα + uα(x, δ) < 0, α = 1, . . . , N,

for x ∈ Rn. From Lemma 7, we see that ωα±(x, t) ≤ 0, α = 1, . . . , N , for
x ∈ Rn and t > δ. Hence

−2
ε

K3
−Mαe−h(t−δ) ≤ uα(x, t) ≤ 2

ε

K3
+Mαe−h(t−δ)

for x ∈ Rn, t > δ and α = 1, . . . , N . Therefore

−2
2ε
K3
≤ lim
t→∞

inf uα(x, t) ≤ lim
t→∞

supuα(x, t) ≤ 2ε
K3

,

which proves our theorem.
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