Plurisubharmonic saddles

by SIEGFRIED MOMM (Düsseldorf)

Abstract. A certain linear growth of the pluricomplex Green function of a bounded convex domain of \mathbb{C}^N at a given boundary point is related to the existence of a certain plurisubharmonic function called a "plurisubharmonic saddle". In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.

Introduction. If $\varphi : [-\delta, \delta] \to [0, \infty[(\delta > 0) \text{ is a convex function} with <math>\varphi(0) = 0$, a subharmonic saddle for φ is a subharmonic function u on $\{z \in \mathbb{C} : |z| \leq \delta'\}$ $(0 < \delta' \leq \delta)$ with $u(z) \leq \varphi(\operatorname{Im} z)$ for all $|z| \leq \delta'$, u(0) = 0, and u(x) < 0 for all $x \in [-\delta', \delta'] \setminus \{0\}$. In complex analysis the existence of subharmonic saddles for $\varphi(y) = |y|, y \in \mathbb{R}$, like the harmonic function $u(z) = -\operatorname{Re} z^2$, is sometimes applied as a technical tool. There are harmonic saddles also for $\varphi(y) = |y|^d$ $(d \geq 1)$. Of course, there is no subharmonic saddle for $\varphi \equiv 0$. We prove

THEOREM.Let $\varphi : [-\delta, \delta] \to [0, \infty[$ be convex with $\varphi(0) = 0$ and with $\varphi(y) = \varphi(-y), |y| \leq \delta$. A subharmonic saddle for φ exists if and only if

$$\int_{0}^{\delta} \log \varphi(t) \, dt > -\infty.$$

This result will be deduced from a theorem of Warschawski and Tsuji on the existence of angular derivatives of conformal mappings. The key of this reduction is an observation which we prove for several complex variables: Let φ be a nonnegative convex function defined on a zero neighborhood in $\mathbb{C}^{N-1} \times \mathbb{R}$, with $\varphi(z) = 0$ if and only if z = 0, and with $\lim_{z\to 0} \varphi(z)/|z| = 0$. If $\varphi(z) = \varphi(-z)$ for all z, a plurisubharmonic saddle for φ exists if and only if the pluricomplex Green function of every bounded convex domain Ω of

¹⁹⁹¹ Mathematics Subject Classification: 31A05, 32F05.

 $Key\ words\ and\ phrases:$ extremal plurisubharmonic functions, uniqueness theorem, convex sets.

^[235]

S. Momm

 \mathbb{C}^N has a certain linear growth at each point of the boundary of Ω at which $\partial\Omega$ can be represented as the graph of the Legendre conjugate function φ^* over the supporting hyperplane of $\partial\Omega$ (Proposition 11). This is a type of *local* version of a result of [6], for which the results of Kiselman [1], Lempert [4], and Zakharyuta [10] have been applied. In the course of the proof, for every bounded convex domain $\Omega \subset \mathbb{C}$, we prove that two cones \mathbb{R}_+P_H and $\mathbb{R}_+P_H^*$ in \mathbb{C} coincide, where the first is related to the boundary behavior of the complex Green function of Ω and the second is related to the complex Green function of $\mathbb{C}\backslash\overline{\Omega}$ (Proposition 6). The several-variable analogue of this identity does not hold. For convex polyhedra, in general, $\mathbb{R}_+P_H \subset \mathbb{R}_+P_H^*$. We give an example of a convex polyhedron in \mathbb{C}^2 for which this inclusion is in fact strict (Example 8).

NOTATIONS. For $z, w \in \mathbb{C}^N$, we write $\langle z, w \rangle := \sum_{i=1}^N z_i \overline{w}_i$ and $|z| := \langle z, z \rangle^{1/2}$. We put $B_R(a) := \{ z \in \mathbb{C}^N : |z-a| \leq R \}$ for R > 0 and $a \in \mathbb{C}^N$, $S := \{ z \in \mathbb{C}^N : |z| = 1 \}$, $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$, $\mathbb{R}_+ := \{ x \in \mathbb{R} : x \geq 0 \}$. For each set $F \subset \mathbb{C}^N$ we write $\mathbb{R}_+ F := \{ ta : t \geq 0, a \in F \}$. Throughout this paper, we identify \mathbb{C}^N and \mathbb{C}^{N-1} with \mathbb{R}^{2N} and \mathbb{R}^{2N-2} , respectively. We refer to Schneider [8] for notions from convex analysis.

1. DEFINITION. For $\delta > 0$ let $\varphi : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \to \mathbb{R}_+$ be a convex function with $\varphi(0) = 0$. A plurisubharmonic function u on $B_{\delta'}(0)$ $(0 < \delta' \le \delta)$ is called a *plurisubharmonic saddle* for φ if

(i) u(0) = 0,

(ii) $u(0, x_N) < 0$ for all $x_N \in [-\delta', \delta'] \setminus \{0\}$,

(iii) $u(z', z_N) \leq \varphi(z', \operatorname{Im} z_N)$ for all $(z', z_N) \in (\mathbb{C}^{N-1} \times \mathbb{C}) \cap B_{\delta'}(0)$.

2. Remark. (a) Let $C_1, C_2 > 0$. There is a plurisubharmonic saddle for φ if and only if there is a plurisubharmonic saddle for $C_1\varphi(\cdot/C_2)$.

(b) If $\varphi > 0$ outside the origin and if φ admits a plurisubharmonic saddle u then we may assume that $u < \varphi$ outside the origin (otherwise consider u/2).

3. EXAMPLE. Let N = 1. For each $d \ge 1$ there is a (sub)harmonic saddle $u : B_1(0) \to \mathbb{R}$ for $\varphi(y) = |y|^d$. Just choose an even integer $l \ge d$, a sufficiently small $\varepsilon > 0$ and put $u(z) := -\varepsilon \operatorname{Re} z^l = -\varepsilon r^l \cos(l\theta)$ for all $z = re^{i\theta} \in B_1(0)$.

4. DEFINITION. Let Ω be a bounded convex domain of \mathbb{C}^N with $0 \in \Omega$. By $H : \mathbb{C}^N \to \mathbb{R}_+$ we denote its *support function*, i.e.

$$H(z) := \sup_{w \in \Omega} \operatorname{Re}\langle z, w \rangle, \quad z \in \mathbb{C}^N.$$

(a) Let $v_H : \mathbb{C}^N \to \mathbb{R}_+$ be the largest plurisubharmonic function on \mathbb{C}^N with $v_H \leq H$ and for which $v_H(z) - \log |z|$ remains bounded if $z \in \mathbb{C}^N$ tends to infinity (for the existence see [6]). Since H is positively homogeneous, there is a lower semicontinuous function $C_H: S \to [0, \infty]$ such that

$$P_H := \{ z \in \mathbb{C}^N : v_H(z) = H(z) \} = \{ \lambda a : a \in S, \ 0 \le \lambda \le 1/C_H(a) \}$$

(b) Let $v_H^* : \mathbb{C}^N \to \mathbb{R}_+$ be the largest plurisubharmonic function on \mathbb{C}^N with $v_H^* \leq H$ and for which $v_H^*(z) - \log |z|$ remains bounded if $z \in \mathbb{C}^N$ tends to zero (for the existence see [7]). Since H is positively homogeneous, there is an upper semicontinuous function $C_H^* : S \to [0, \infty]$ such that

$$P_{H}^{*} := \{ z \in \mathbb{C}^{N} : v_{H}^{*}(z) = H(z) \} = \{ \lambda a : a \in S, \ 1/C_{H}^{*}(a) \le \lambda \}$$

If N = 1, and $\psi : \mathbb{D} \to \Omega$ and $\varphi : \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus \overline{\Omega}$ are biholomorphic mappings, then the numbers $C_H(a)$ and $C_H^*(a)$ are closely related to the angular derivatives of ψ and φ , respectively (see [5]–[7]).

NOTATION. If Ω is a bounded convex domain with $0 \in \Omega$, we consider its polar set

$$\Omega^{\circ} := \{ w \in \mathbb{C}^N : \operatorname{Re}\langle z, w \rangle \le 1 \text{ for all } z \in \Omega \}.$$

 Ω° is a compact convex set with 0 in its interior. Since we deal with polar sets, we use the following normalization of Ω :

5. PROPOSITION. Let Ω be a bounded convex domain in $\{z \in \mathbb{C}^N : \text{Re } z_N \leq 1\}$, such that $0 \in \Omega$ and $(0,1) := (0,\ldots,0,1) \in \partial\Omega$. There are $\varepsilon > 0$ and a continuous convex function $h : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0) \to \mathbb{R}_+$ with h(0) = 0 and such that

(1)
$$\partial \Omega \cap B_{\varepsilon}(0,1) = \{(z',1-h(z',t)+it) \mid (z',t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cup B_{\varepsilon}(0)\}.$$

The polar set Ω° is contained in $\{w \in \mathbb{C}^N : \operatorname{Re} w_N \leq 1\}$ and $(0,1) \in \partial \Omega^{\circ}$. There are $\delta > 0$, and a continuous convex function $\varphi : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \to \mathbb{R}_+$ with $\varphi(0) = 0$, such that

(2)
$$\partial \Omega^{\circ} \cap B_{\delta}(0,1) = \{ (w', 1 - \varphi(w',s) + is) | (w',s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \}.$$

If $\varphi > 0$ outside the origin, i.e. $\lim_{(z',t)\to 0} h(z',t)/|(z',t)| = 0$ (see Schneider [8], Lemma 2.2.3), and if in addition $\varphi(w',s) = \varphi(-w',-s)$, or, what is the same, h(z',t) = h(-z',-t), then the following assertions are equivalent:

- (i) There is a plurisubharmonic saddle for φ .
- (ii) $C_H(0,1) < \infty$.
- (iii) $C_H^*(0,1) > 0.$

Proof. Choose $0 < \varepsilon, \delta < 1$ with $B_{\varepsilon}(0) \subset \Omega \subset B_{1/\delta}(0)$. Then $B_{\delta}(0) \subset \Omega^{\circ}$. By the convexity of Ω and Ω° , $\partial\Omega \cap B_{\varepsilon}(0,1)$ is a graph over $\{(z', 1+it) : (z',t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)\}$, and $\partial\Omega^{\circ} \cap B_{\delta}(0,1)$ is a graph over $\{(w', 1+is) : (w',s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)\}$. Thus h and φ exist.

We may assume that ε and δ are chosen so small that h and φ are bounded from above by 1/2 on $B_{\varepsilon}(0)$ and $B_{\delta}(0)$, respectively.

S. Momm

Since $\Omega^{\circ} = \{ w \in \mathbb{C}^N : H(w) \leq 1 \}$, it follows that

$$\Gamma := \{\lambda z : \lambda \ge 0, \ z \in \partial \Omega^{\circ} \times \{1\}\}$$

is the graph of H. Let $G := \Gamma \cap E$ be its intersection with the hyperplane $E := \mathbb{C}^{N-1} \times (1 + i\mathbb{R}) \times \mathbb{R}$. Then there is a convex function $\psi : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \to \mathbb{R}_+$ with $\psi(0) = 0$ and

$$G \cap B_{\delta}((0,1),1) = \{ (z', 1+is, 1+\psi(z',s)) | (z',s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \}.$$

Let $(z', s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$. The ray from the origin of $\mathbb{C}^N \times \mathbb{R}$ through the point $(z', 1 - \varphi(z', s) + is, 1)$ hits the plane E at the point

$$\lambda(z', 1 - \varphi(z', s) + is, 1) = (\lambda z', 1 + i\lambda s, 1 + \psi(\lambda(z', s)))$$

for some $\lambda \geq 1$. This shows that

$$\frac{\varphi(z',s)}{1-\varphi(z',s)} = \frac{1}{1-\varphi(z',s)} - 1 = \lambda - 1 = \psi\left(\frac{(z',s)}{1-\varphi(z',s)}\right).$$

Since φ is bounded by 1/2, for all $(z', s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$ we obtain

(3)
$$\varphi(z',s) \le \psi(2(z',s)) \text{ and } \psi(z',s) \le 2\varphi(z',s).$$

For the sequel we note that $\{(z, \operatorname{Re} z_N) : z \in \mathbb{C}^N\}$ is a supporting hyperplane for Γ at ((0, 1), 1).

(i) \Rightarrow (ii). If there is a plurisubharmonic saddle for φ , then by (3) and Remark 2(a), there is also a saddle u for $\psi((1-\delta)\cdot)/(1+\delta)$. By the hypothesis, (3), and Remark 2(b), we may assume that $u < \psi(\cdot/(1+\delta))(1-\delta)$ outside the origin. We consider the plurisubharmonic function

$$v(z) := u(z - (0, 1)) + \operatorname{Re} z_N, \quad z \in B_{\delta}(0, 1).$$

Then v(0,1) = 1 = H(0,1). If $z = (z', z_N) \in B_{\delta}(0,1)$, put $\lambda := \operatorname{Re} z_N$ and $w := z/\lambda$. Since $1 - \delta \leq \lambda \leq 1 + \delta$, it follows that

$$v(z) \leq \psi((z', \operatorname{Im} z_N)/(1+\delta))(1-\delta) + \operatorname{Re} z_N$$

= $\psi(\lambda(w', \operatorname{Im} w_N)/(1+\delta))(1-\delta) + \operatorname{Re} z_N$
 $\leq \lambda \psi(w', \operatorname{Im} w_N) + \operatorname{Re} z_N = \lambda(H(w) - \operatorname{Re} w_N) + \operatorname{Re} z_N = H(z)$

and v(z) < H(z) if $z \neq (0, 1)$. By [6], Prop. 1.13, there is C > 0 such that $Cv_H(z/C) > v(z)$ for all $z \in \partial B_{\delta}(0, 1)$. Then

$$\widetilde{v}(z) := \begin{cases} Cv_H(z/C) & \text{if } z \in \mathbb{C}^N \setminus B_{\delta}(0,1), \\ \max\{Cv_H(z/C), v(z)\} & \text{if } z \in B_{\delta}(0,1), \end{cases}$$

is plurisubharmonic on \mathbb{C}^N with $\tilde{v} \leq H$ and $\tilde{v}(0,1) = H(0,1)$, and such that $\tilde{v}(z) - C \log |z|$ remains bounded if $z \in \mathbb{C}^N$ tends to infinity. This shows that $C_H(0,1) \leq C$.

238

(ii) \Rightarrow (i). Put $C := C_H(0, 1)$ and $v_H(\cdot; C) := Cv_H(\cdot/C)$. Then $v_H(\cdot; C) \leq H$, $v_H(0, 1; C) = H(0, 1)$ and $v_H(0, s; C) < H(0, s)$ if s > 1. Hence the function

$$v(z) := v_H(z; C) - \operatorname{Re} z_N, \quad z \in \mathbb{C}^N,$$

is plurisubharmonic with v(0,1) = 0 and with v(0,s) < 0 for all s > 1. Moreover, as in "(i) \Rightarrow (ii)" we obtain

$$v(z) \le H(z) - \operatorname{Re} z_N = \lambda \psi(w', \operatorname{Im} w_N) \le (1+\delta)\psi((z', \operatorname{Im} z_N)/(1-\delta))$$

for all $z \in B_{\delta}((0,1))$. This shows that

$$u(z) := v(z + (0, 1)) + v(-z + (0, 1)), \quad z = (z', z_N) \in \mathbb{C}^N$$

is a plurisubharmonic saddle for $2(1+\delta)\psi(\cdot/(1-\delta))$. Hence by Remark 2(a) and by (3), there is a plurisubharmonic saddle for φ .

 $(i) \Leftrightarrow (iii)$. As $(i) \Leftrightarrow (ii)$. Just apply [7] instead of [6].

A corollary to the proof of Proposition 5 is the following:

6. PROPOSITION. For N = 1 let Ω be a bounded convex domain in \mathbb{C} which contains the origin. Then for each $a \in S$, $C_H(a) < \infty$ if and only if $C_H^*(a) > 0$, i.e. $\mathbb{R}_+ P_H = \mathbb{R}_+ P_H^*$.

Proof. For N = 1, in the proof of (ii) \Rightarrow (i) of Proposition 5, we may replace u by

$$u(z) := v(z+1) + v(-\operatorname{Re} z + i\operatorname{Im} z + 1), \quad z \in \mathbb{C},$$

which is a subharmonic saddle for $2(1+\delta)\psi(\cdot/(1-\delta))$. This shows that for N = 1, we need no assumption on the symmetry of φ .

Furthermore, since a nonnegative subharmonic function u on a domain is negative everywhere if it is negative at some point, for N = 1 each subharmonic saddle u for φ is proper in the sense that $u < \varphi$ outside the origin (see Remark 2(b)). This shows that for N = 1, we need no assumption on the smoothness of $\partial \Omega$.

For N > 1, the assertion of Proposition 6 does not hold. To give an example, first we recall from [6], Thm. 2.11 (see also Krivosheev [3]), and from [7] a result which compares the cones \mathbb{R}_+P_H , $\mathbb{R}_+P_H^*$, and $\operatorname{supp}(dd^c H)^N$, which is defined to be the smallest closed subset of \mathbb{C}^N for which H is a maximal plurisubharmonic function on its complement (see Klimek [2]). By the homogeneity of H, this is a cone.

7. PROPOSITION. Let $\Omega \subset \mathbb{C}^N$ be an open bounded convex polyhedron which contains the origin. Then

$$\operatorname{supp} (dd^{c}H)^{N} \subset \mathbb{R}_{+} P_{H} \subset \mathbb{R}_{+} P_{H}^{*}$$

where equalities hold for N = 1. More precisely: Let $a \in S$ belong to the relative interior of the cone $\mathbb{R}_+ F$ for some face F of $\partial \Omega^{\circ}$. Let L(F) denote

the \mathbb{R} -linear span of $\mathbb{R}_+ F$. Then

$$a \in \operatorname{supp} (dd^{c}H)^{N} \Leftrightarrow L(F) \cap iL(F) = \{0\};$$

$$C_{H}(a) < \infty \Leftrightarrow \mathbb{R}_{+} F \cap (L(F) \cap iL(F)) = \{0\},$$

$$C_{H}^{*}(a) > 0 \Leftrightarrow \mathbb{R}_{+} a \cap (L(F) \cap iL(F)) = \{0\}.$$

As the following example shows, for $N\geq 2,$ in general, both inclusions of Proposition 7 are strict.

8. EXAMPLE. Let

$$\Omega := \Big\{ z = (z_1, z_2) = (x_1, x_2, x_3, x_4) \in \mathbb{C}^2 : \sum_{j=1}^4 |x_j| < 1 \Big\}.$$

Its support function $H: \mathbb{C}^2 \to \mathbb{R}_+$ is given by

$$H(z) = H(x_1, \dots, x_4) = \max_{j=1,\dots,4} |x_j|, \quad z \in \mathbb{C}^2.$$

It has been proved in [6], 2.13, that $\operatorname{supp} (dd^{c}H)^{N} \neq \mathbb{R}_{+} P_{H}$. Moreover, for the face $F := \{z \in \mathbb{C}^{2} : x_{1} = x_{4} = 1\} \cap \partial \Omega^{\circ}$ of $\partial \Omega^{\circ} = \{z \in \mathbb{C}^{2} : H(z) = 1\}$, it has been calculated that $L(F) \cap iL(F) = \mathbb{R}(1,0,0,1) + \mathbb{R}(0,1,1,0)$ and that $\mathbb{R}_{+} F \cap (L(F) \cap iL(F)) \neq \{0\}$. Since $\mathbb{R}_{+} F$ has dimension 3, there exists a in the relative interior of $\mathbb{R}_{+}F$ with $a \notin L(F) \cap iL(F)$ and $a \in S$. Thus $\mathbb{R}_{+}a \cap (L(F) \cap iL(F)) = \{0\}$, and by Proposition 7, this gives $a \in \mathbb{R}_{+} P_{H}^{*} \setminus \mathbb{R}_{+} P_{H}$.

NOTATION. Let $\varepsilon > 0$ and $h : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0) \to \mathbb{R}_+$ be a continuous convex function with h(0) = 0. We extend h to a convex function on $\mathbb{C}^{N-1} \times \mathbb{R}$ by $h(w',t) := \infty$ whenever $(w',t) \notin B_{\varepsilon}(0)$. Its conjugate function $h^* : \mathbb{C}^{N-1} \times \mathbb{R} \to \mathbb{R}_+$ is defined by

$$h^*(z',s) := \sup_{(w',t) \in \mathbb{C}^{N-1} \times \mathbb{R}} (\operatorname{Re}\langle z', w' \rangle + st - h(w',t)), \quad (z',s) \in \mathbb{C}^{N-1} \times \mathbb{R}.$$

 h^* is again a convex function with $h^*(0) = 0$. Moreover, $h^{**} = h$ (see Schneider [8], Thm. 1.6.5).

9. Remark. If h_j , j = 1, 2, are two convex functions which coincide on $(\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)$ for some $\varepsilon > 0$, vanish in 0 and are positive outside 0, then there is $\delta > 0$ such that h_j^* , j = 1, 2, coincide on $(\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$.

Proof. Since $h_j > 0$ outside the origin, we may choose $0 < \delta \leq \min_{|a|=\varepsilon} h_j(a)/\varepsilon$, j = 1, 2. Fix j = 1, 2 and let $(z', s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$. If $(w', t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \setminus B_{\varepsilon}(0)$, we put

$$(\widetilde{w}',\widetilde{t}) := \varepsilon(w',t)/|(w',t)| \in B_{\varepsilon}(0)$$

and get $|(\widetilde{w}',\widetilde{t})| \leq |(w',t)|$. By the convexity of h_j we obtain

 $h_j(\widetilde{w}',\widetilde{t})/|(\widetilde{w}',\widetilde{t})| \le h_j(w',t)/|(w',t)|.$

Since

$$|\operatorname{Re}\langle (z',s), (\widetilde{w}', \widetilde{t}) \rangle / \varepsilon| \le \delta \le h_j(\widetilde{w}', \widetilde{t}) / |(\widetilde{w}', \widetilde{t})|,$$

we get

$$\begin{aligned} \operatorname{Re}\langle z', w' \rangle + st - h_j(w', t) &= |(w', t)|(\operatorname{Re}\langle (z', s), (\widetilde{w}', \widetilde{t}) \rangle / \varepsilon - h_j(w', t) / |(w', t)|) \\ &\leq \varepsilon(\operatorname{Re}\langle (z', s), (\widetilde{w}', \widetilde{t}) \rangle / \varepsilon - h_j(\widetilde{w}', \widetilde{t}) / |(\widetilde{w}', \widetilde{t})|) \\ &= \operatorname{Re}\langle z', \widetilde{w}' \rangle + s\widetilde{t} - h_j(\widetilde{w}', \widetilde{t}). \end{aligned}$$

This shows that

$$h_j^*(z',s) = \sup_{\substack{(w',t) \in \mathbb{C}^{N-1} \times \mathbb{R} \\ (w',t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)}} (\operatorname{Re}\langle z', w' \rangle + st - h_j(w',t))$$

Hence $h_1^* = h_2^*$ on $(\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$.

10. LEMMA. Let h, φ, ε , and δ be as in Proposition 5. Assume that h > 0 outside the origin. Then there is $0 < \delta' \leq \delta$ such that for all $(z', s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0)$,

$$h^*(z',s) \le \varphi(z',s) \le 2h^*(z',s).$$

 $\Pr{\rm o\,o\,f.}$ Since h>0 outside the origin, we can choose $0<\delta'\leq\delta$ such that

(4)
$$\Omega^{\circ} \cap B_{\delta'}(0,1)$$

= { $z \in \mathbb{C}^N$: Re $\langle w, z \rangle \leq 1$ for all $w \in \partial \Omega \cap B_{\varepsilon}(0,1)$ } $\cap B_{\delta'}(0,1)$.

Let $(z', s) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta'}(0)$. Then $a := (z', 1 - \varphi(z', s) + is) \in \partial \Omega^{\circ}$, by (2). Thus by the definition of Ω° , by (4) and (1), we have

$$1 = \sup_{w \in \partial \Omega \cap B_{\varepsilon}(0,1)} \operatorname{Re}\langle w, a \rangle$$

=
$$\sup_{(w',t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)} (\operatorname{Re}\langle w', z' \rangle + (1 - h(w',t))(1 - \varphi(z',s)) + ts).$$

Hence

$$1 - \varphi(z', s) = \inf_{(w', t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)} \frac{1 - \operatorname{Re}\langle w', z' \rangle - ts}{1 - h(w', t)}$$
$$= 1 - \sup_{(w', t) \in (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\varepsilon}(0)} \frac{\operatorname{Re}\langle w', z' \rangle + ts - h(w', t)}{1 - h(w', t)}.$$

Since we may assume that $0 \le h(w',t) \le 1/2$, we obtain $h^*(z',s) \le \varphi(z',s) \le 2h^*(z',s)$.

NOTATION. Let Ω be a bounded convex domain of \mathbb{C}^N and fix $w_0 \in \Omega$. By g_{Ω} we denote the *pluricomplex Green function* of Ω with pole at w_0 , i.e. g_{Ω} is the largest negative plurisubharmonic function on Ω for which $g_{\Omega}(z) - \log |z - w_0|, z \in \Omega \setminus \{w_0\}$, is bounded (for the existence see Klimek [2]). We consider the level sets $\Omega_x := \{z \in \Omega : g_{\Omega}(z) < x\}, x < 0$, which are convex by a result of Lempert (see [6], Lemma 1.2). By $H_x : \mathbb{C}^N \to \mathbb{R}$ we denote their support functions

$$H_x(z) := \sup_{w \in \Omega_x} \operatorname{Re}\langle z, w \rangle, \quad z \in \mathbb{C}^N, \ x < 0.$$

Then (see [6], Prop. 1.3) the limits

$$D_{\Omega}(a) := \lim_{x \uparrow 0} \frac{H(a) - H_x(a)}{-x} \in \left[0, \infty\right], \quad a \in S,$$

exist. By [6], Thms. 1.14 and 1.20, there is C > 0 with $C_H \leq D_{\Omega} \leq CC_H$.

11. PROPOSITION. Let $\Omega \subset \mathbb{C}^N$ be a bounded convex domain normalized as in Proposition 5. Let h and φ be convex functions as there. In addition, assume that also h > 0 outside the origin. If g_Ω is the pluricomplex Green function of Ω with pole at 0, the following are equivalent:

- (i) There is a plurisubharmonic saddle for h^* .
- (ii) There is a plurisubharmonic saddle for φ .
- (iii) $D_{\Omega}(0,\ldots,0,1) < \infty$.

Proof. (i) \Leftrightarrow (ii). Since h > 0 outside the origin, this follows from the remark in Proposition 5, Lemma 10, and Remark 2(a).

(ii) \Leftrightarrow (iii). By the hypothesis and by the remark in Proposition 5, we have $\varphi > 0$ outside the origin. Hence we deduce from Proposition 5 that (ii) holds if and only if $C_H(0,\ldots,0,1) < \infty$. By [6], Thms. 1.14 and 1.20, this is equivalent to (iii).

For N = 1 there is a close relation between the limits $D_{\Omega}(a)$ and the angular derivatives of the Riemann conformal mappings from the unit disc \mathbb{D} onto Ω . This relationship is applied in the proof of the following lemma.

12. LEMMA. Let Ω be a bounded convex domain of \mathbb{C}^N . Let $w \in \partial \Omega$ and let $a \in S$ be an outer normal to $\partial \Omega$ at w. Put $\Omega^1 := \{z \in \mathbb{C} : zia + w \in \Omega\}$ and let Ω^2 be the set of all $z \in \mathbb{C}$ such that zia + w is contained in the image of the orthogonal projection of Ω onto $\mathbb{C}a + w$. Then $\Omega^1 \subset \Omega^2 \subset$ $\{z \in \mathbb{C} : \operatorname{Im} z > 0\}$. Assume that there are $\varepsilon > 0$ and convex functions $h_j : [-\varepsilon, \varepsilon] \to \mathbb{R}_+$ with $h_j(0) = 0$ and

$$\partial \Omega^j \cap B_{\varepsilon}(0) = \{t + ih_j(t) : t \in [-\varepsilon, \varepsilon]\}, \quad j = 1, 2.$$

Let g_{Ω} be the pluricomplex Green function of Ω with pole at some fixed $w_0 \in \Omega$. If $\int_{-\varepsilon}^{\varepsilon} (h_1(t)/t^2) dt < \infty$ then $D_{\Omega}(a) < \infty$. If $D_{\Omega}(a) < \infty$ then $\int_{-\varepsilon}^{\varepsilon} (\tilde{h}_2(t)/t^2) dt < \infty$, where $\tilde{h}_2(t) := \min\{h_2(t), h_2(-t)\}, |t| \le \varepsilon$.

Proof. After a translation followed by a unitary transformation of \mathbb{C}^N , we may assume that $a = (0, \ldots, 0, -i)$ and w = 0. Since the finiteness

of $D_{\Omega}(a)$ does not depend on the choice of the pole, we may assume that $w_0 \in \mathbb{C}a + w = \{0\} \times \mathbb{C}$, i.e. $w_0 = (0, w'_0)$. Since $\{0\} \times \Omega^1 \subset \Omega \subset \mathbb{C}^{N-1} \times \Omega^2$, for the complex Green functions g_{Ω^j} of Ω^j , j = 1, 2, with pole at w'_0 , the following holds:

$$g_{\Omega^1}(z_N) \ge g_{\Omega}(0, z_N), \quad z_N \in \Omega^1,$$

and

$$g_{\Omega}(z', z_N) \ge g_{\Omega^2}(z_N), \quad (z', z_N) \in \mathbb{C}^{N-1} \times \Omega^2$$

Hence for the corresponding level sets Ω_x^j , x < 0, j = 1, 2, we obtain

$$\{0\} \times \Omega^1_x \subset \Omega_x \subset \mathbb{C}^{N-1} \times \Omega^2_x.$$

This shows that $H_x^1(-i) \leq H(a) \leq H_x^2(-i)$, x < 0, for the corresponding support functions. Hence $D_{\Omega^2}(-i) \leq D_{\Omega}(a) \leq D_{\Omega^1}(-i)$.

Now the assertion follows from [5], Lemma 3.3, Ex. 4.2, [6], Lemma 2.3, and a result of Warschawski and Tsuji (see Tsuji [9], Thm. IX.10).

13. LEMMA. Let $\varepsilon > 0$ and let $h : [-\varepsilon, \varepsilon] \to \mathbb{R}_+$ be a convex function with h(0) = 0.

(a) If h(t) = tq(t), t > 0, with $\lim_{t \downarrow 0} q(t) = 0$, such that q(t) is strictly increasing for t > 0, then there is $\delta > 0$ such that for all $0 < s \le \delta$,

$$q^{-1}(s)s \ge h^*(s) \ge q^{-1}(s/2)s/2.$$

(b) $\int_{-\varepsilon}^{\varepsilon} (h(t)/t^2) dt < \infty$ if and only if $\int_{-\delta}^{\delta} \log h^*(s) ds > -\infty$ for some $\delta > 0$.

Proof. (a) Since q(t) is strictly increasing, we have h(t) > 0 for all $0 < t \le \varepsilon$. Fix $0 < s \le \delta$. Since $st - tq(t) \le 0$ for all $q^{-1}(s) \le t \le \varepsilon$, we obtain

$$h^*(s) = \sup_{0 \le t \le q^{-1}(s)} (st - h(t)) \le \sup_{0 \le t \le q^{-1}(s)} st \le sq^{-1}(s).$$

Let $0 < s \le \delta := 2q(\varepsilon)$. Then $q^{-1}(s/2) \le \varepsilon$ and $h^*(s) \ge sq^{-1}(s/2) - h(q^{-1}(s/2)) = sq^{-1}(s/2)/2.$

(b) For the proof we have to consider the integrals over negative and positive numbers separately. It is no restriction to consider the positive ones only. If q(t) := h(t)/t = c is constant for all t > 0 in a neighborhood of 0, then the assertion obviously holds (we have to distinguish the cases c = 0 and c > 0). Otherwise the map $t \mapsto q(t)$ is strictly increasing for $0 < t \le \varepsilon$, with $\lim_{t \ge 0} q(t) = 0$. We claim that

(5)
$$\int_{\eta}^{\delta} \log(sq^{-1}(s)) ds + \int_{\eta}^{q^{-1}(\delta)} \frac{q(t)}{t} dt$$

= $\delta \log(\delta q^{-1}(\delta)) - q^{-1}(\delta) - q(\eta) \log(q(\eta)\eta)$

for all $0 < \eta < \delta$. Fix η . Since we may approximate the continuous function q uniformly on $[\eta, \delta]$ by strictly increasing C^1 -functions, we may assume that q itself is of class C^1 . We obtain

$$\int_{\eta}^{\delta} \log(sq^{-1}(s)) \, ds = \int_{0}^{q^{-1}(\delta)} \log(q(t)t)q'(t) \, dt$$
$$= [\log(q(t)t)q(t)]_{\eta}^{q^{-1}(\delta)} - \left(\int_{\eta}^{q^{-1}(\delta)} q'(t) \, dt + \int_{\eta}^{q^{-1}(\delta)} \frac{q(t) \, dt}{t}\right).$$

This proves (5).

Let $\int_0^{\varepsilon} (h(t)/t^2) dt < \infty$. Since $\limsup_{t \downarrow 0} q(t) \log(q(t)t) \leq 0$, we deduce from (5) letting $\eta \downarrow 0$ that $\int_0^{\delta} \log(sq^{-1}(s)) ds > -\infty$. This proves $\int_0^{\delta} \log h^*(s) ds > -\infty$.

Let $\int_0^{\delta} \log h^*(s) \, ds > -\infty$, i.e. $\int_0^{\delta} \log(sq^{-1}(s)) \, ds > -\infty$. Since for all $0 < t < \varepsilon$ we have $q(t) \le \delta$ and

$$-\infty < \int_{0}^{\delta} \log(sq^{-1}(s)) \, ds \le \int_{0}^{q(t)} \log(sq^{-1}(s)) \, ds \le q(t) \log(q(t)t),$$

we get $\liminf_{t\downarrow 0} q(t) \log(q(t)t) > -\infty$. Hence by (5), we get $\int_0^{\varepsilon} (h(t)/t^2) dt < \infty$.

14. PROPOSITION. Let N = 1, $\delta > 0$, and let $\varphi : [-\delta, \delta] \to \mathbb{R}_+$ be convex with $\varphi(0) = 0$ and with $\varphi(y) = \varphi(-y)$, $|y| \leq \delta$. There is a subharmonic saddle for φ if and only if

$$\int_{0}^{\delta} \log \varphi(t) \, dt > -\infty.$$

Proof. If $\varphi = 0$ in a neighborhood of 0, the integral equals $-\infty$, and by the maximum principle, there is no subharmonic saddle for φ . If $\varphi(y) = c|y|$ in a neighborhood of 0, the integral converges, and by Example 3, there is a subharmonic saddle for φ . Thus we may assume that $\varphi > 0$ outside the origin and that $\lim_{y\to 0} \varphi(y)/|y| = 0$. We choose a bounded convex domain Ω in \mathbb{C} such that (2) holds. By Proposition 11 (and the remark in Proposition 5), there is a subharmonic saddle for φ if and only if $D_{\Omega}(1) < \infty$. By Lemmas 12, 10 and 13, this is equivalent to $\int_0^{\delta} \log \varphi(t) dt > -\infty$.

15. Remark. Let $\delta > 0$ and let $\varphi : (\mathbb{C}^{N-1} \times \mathbb{R}) \cap B_{\delta}(0) \to \mathbb{R}_+$ be a convex function with $\varphi(0) = 0$, $\varphi > 0$ outside the origin, and $\varphi(y) = \varphi(-y)$ for all y. If there is no plurisubharmonic saddle for φ , then the following holds:

Each plurisubharmonic function u on $B_{\delta'}(0)$ $(0 < \delta' \leq \delta)$ which satisfies

$$u(z', z_N) \leq \varphi(z', \operatorname{Im} z_N), \quad z = (z', z_N) \in \mathbb{C}^{N-1} \times \mathbb{C},$$

vanishes on $\{0\} \times \mathbb{R}$ if u(0) = 0.

Proof. Consider $[a,b] := \{s \in [\delta',\delta'] : u(0,s) = 0\}$. If for example $b \neq \delta'$, then

$$v(z) := \frac{1}{2}(u(z+(0,b)) + u(-z+(0,b)), \quad z = (z',z_N) \in \mathbb{C}^{N-1} \times \mathbb{C},$$

would be a plurisubharmonic saddle for φ .

References

- [1] C. O. Kiselman, The partial Legendre transform for plurisubharmonic functions, Invent. Math. 49 (1978), 137–148.
- [2] M. Klimek, *Pluripotential Theory*, Oxford Univ. Press, 1991.
- [3] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of \mathbb{C}^N , Math. USSR-Izv. 36 (1991), 497–517.
- [4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), 85–103.
- [6] —, The boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51–75.
- [7] —, Extremal plurisubharmonic functions associated to convex pluricomplex Green functions with pole at infinity, J. Reine Angew. Math., to appear.
- [8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
- [9] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
- [10] V. P. Zakharyuta, Extremal plurisubharmonic functions, Hilbert scales and isomorphisms of spaces of analytic functions, Teor. Funktsii Funktsional. Anal. i Prilozhen., part I, 19 (1974), 133–157, part II, 21 (1974), 65–83 (in Russian).

Mathematisches Institut Heinrich-Heine-Universität Universitätsstr. 1 40225 Düsseldorf, Germany

> Reçu par la Rédaction le 10.9.1994 Révisé le 30.5.1995