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Plurisubharmonic saddles

by Siegfried Momm (Düsseldorf)

Abstract. A certain linear growth of the pluricomplex Green function of a bounded
convex domain of CN at a given boundary point is related to the existence of a certain
plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results
on the existence of angular derivatives of conformal mappings, for the case of a single
complex variable, this allows us to deduce a criterion for the existence of subharmonic
saddles.

Introduction. If ϕ : [−δ, δ] → [0,∞[ (δ > 0) is a convex function
with ϕ(0) = 0, a subharmonic saddle for ϕ is a subharmonic function u
on {z ∈ C : |z| ≤ δ′} (0 < δ′ ≤ δ) with u(z) ≤ ϕ(Im z) for all |z| ≤ δ′,
u(0) = 0, and u(x) < 0 for all x ∈ [−δ′, δ′]\{0}. In complex analysis the
existence of subharmonic saddles for ϕ(y) = |y|, y ∈ R, like the harmonic
function u(z) = −Re z2, is sometimes applied as a technical tool. There
are harmonic saddles also for ϕ(y) = |y|d (d ≥ 1). Of course, there is no
subharmonic saddle for ϕ ≡ 0. We prove

Theorem.Let ϕ : [−δ, δ] → [0,∞[ be convex with ϕ(0) = 0 and with
ϕ(y) = ϕ(−y), |y| ≤ δ. A subharmonic saddle for ϕ exists if and only if

δ∫
0

logϕ(t) dt > −∞.

This result will be deduced from a theorem of Warschawski and Tsuji on
the existence of angular derivatives of conformal mappings. The key of this
reduction is an observation which we prove for several complex variables:
Let ϕ be a nonnegative convex function defined on a zero neighborhood in
CN−1×R, with ϕ(z) = 0 if and only if z = 0, and with limz→0 ϕ(z)/|z| = 0.
If ϕ(z) = ϕ(−z) for all z, a plurisubharmonic saddle for ϕ exists if and only
if the pluricomplex Green function of every bounded convex domain Ω of
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CN has a certain linear growth at each point of the boundary of Ω at which
∂Ω can be represented as the graph of the Legendre conjugate function ϕ∗

over the supporting hyperplane of ∂Ω (Proposition 11). This is a type of
local version of a result of [6], for which the results of Kiselman [1], Lempert
[4], and Zakharyuta [10] have been applied. In the course of the proof, for
every bounded convex domain Ω ⊂ C, we prove that two cones R+PH and
R+P

∗
H in C coincide, where the first is related to the boundary behavior of

the complex Green function of Ω and the second is related to the complex
Green function of C\Ω (Proposition 6). The several-variable analogue of this
identity does not hold. For convex polyhedra, in general, R+PH ⊂ R+P

∗
H .

We give an example of a convex polyhedron in C2 for which this inclusion
is in fact strict (Example 8).

Notations. For z, w ∈ CN , we write 〈z, w〉 :=
∑N
i=1 ziwi and |z| :=

〈z, z〉1/2. We put BR(a) := {z ∈ CN : |z − a| ≤ R} for R > 0 and a ∈ CN ,
S := {z ∈ CN : |z| = 1}, D := {z ∈ C : |z| < 1}, R+ := {x ∈ R : x ≥ 0}.
For each set F ⊂ CN we write R+ F := {ta : t ≥ 0, a ∈ F}. Throughout
this paper, we identify CN and CN−1 with R2N and R2N−2, respectively.
We refer to Schneider [8] for notions from convex analysis.

1. Definition. For δ > 0 let ϕ : (CN−1 × R) ∩ Bδ(0) → R+ be a
convex function with ϕ(0) = 0. A plurisubharmonic function u on Bδ′(0)
(0 < δ′ ≤ δ) is called a plurisubharmonic saddle for ϕ if

(i) u(0) = 0,
(ii) u(0, xN ) < 0 for all xN ∈ [−δ′, δ′]\{0},
(iii) u(z′, zN ) ≤ ϕ(z′, ImzN ) for all (z′, zN ) ∈ (CN−1 × C) ∩Bδ′(0).

2. R e m a r k. (a) Let C1, C2 > 0. There is a plurisubharmonic saddle
for ϕ if and only if there is a plurisubharmonic saddle for C1ϕ(·/C2).

(b) If ϕ > 0 outside the origin and if ϕ admits a plurisubharmonic
saddle u then we may assume that u < ϕ outside the origin (otherwise
consider u/2).

3. Example. Let N = 1. For each d ≥ 1 there is a (sub)harmonic
saddle u : B1(0) → R for ϕ(y) = |y|d. Just choose an even integer l ≥ d,
a sufficiently small ε > 0 and put u(z) := −εRe zl = −εrl cos(lθ) for all
z = reiθ ∈ B1(0).

4. Definition. Let Ω be a bounded convex domain of CN with 0 ∈ Ω.
By H : CN → R+ we denote its support function, i.e.

H(z) := sup
w∈Ω

Re〈z, w〉, z ∈ CN .

(a) Let vH : CN → R+ be the largest plurisubharmonic function on CN
with vH ≤ H and for which vH(z)− log |z| remains bounded if z ∈ CN tends
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to infinity (for the existence see [6]). Since H is positively homogeneous,
there is a lower semicontinuous function CH : S → ]0,∞] such that

PH := {z ∈ CN : vH(z) = H(z)} = {λa : a ∈ S, 0 ≤ λ ≤ 1/CH(a)}.
(b) Let v∗H : CN → R+ be the largest plurisubharmonic function on CN

with v∗H ≤ H and for which v∗H(z)− log |z| remains bounded if z ∈ CN tends
to zero (for the existence see [7]). Since H is positively homogeneous, there
is an upper semicontinuous function C∗H : S → [0,∞[ such that

P ∗H := {z ∈ CN : v∗H(z) = H(z)} = {λa : a ∈ S, 1/C∗H(a) ≤ λ}.
If N = 1, and ψ : D → Ω and ϕ : C\D → C\Ω are biholomorphic map-
pings, then the numbers CH(a) and C∗H(a) are closely related to the angular
derivatives of ψ and ϕ, respectively (see [5]–[7]).

Notation. If Ω is a bounded convex domain with 0 ∈ Ω, we consider
its polar set

Ω◦ := {w ∈ CN : Re〈z, w〉 ≤ 1 for all z ∈ Ω}.
Ω◦ is a compact convex set with 0 in its interior. Since we deal with polar
sets, we use the following normalization of Ω:

5. Proposition. Let Ω be a bounded convex domain in {z ∈ CN :
Re zN ≤ 1}, such that 0 ∈ Ω and (0, 1) := (0, . . . , 0, 1) ∈ ∂Ω. There are
ε > 0 and a continuous convex function h : (CN−1 ×R) ∩Bε(0)→ R+ with
h(0) = 0 and such that

(1) ∂Ω ∩Bε(0, 1) = {(z′, 1− h(z′, t) + it) | (z′, t) ∈ (CN−1 × R) ∪Bε(0)}.
The polar set Ω◦ is contained in {w ∈ CN : RewN ≤ 1} and (0, 1) ∈ ∂Ω◦.
There are δ > 0, and a continuous convex function ϕ : (CN−1×R)∩Bδ(0)→
R+ with ϕ(0) = 0, such that

(2) ∂Ω◦∩Bδ(0, 1) = {(w′, 1−ϕ(w′, s)+is)| (w′, s) ∈ (CN−1×R)∩Bδ(0)}.
If ϕ>0 outside the origin, i.e. lim(z′,t)→0 h(z′, t)/|(z′, t)| = 0 (see Schneider
[8], Lemma 2.2.3), and if in addition ϕ(w′, s) = ϕ(−w′,−s), or , what is the
same, h(z′, t) = h(−z′,−t), then the following assertions are equivalent :

(i) There is a plurisubharmonic saddle for ϕ.
(ii) CH(0, 1) <∞.
(iii) C∗H(0, 1) > 0.

P r o o f. Choose 0 < ε, δ < 1 with Bε(0) ⊂ Ω ⊂ B1/δ(0). Then Bδ(0)
⊂ Ω◦. By the convexity of Ω and Ω◦, ∂Ω ∩ Bε(0, 1) is a graph over {(z′,
1 + it) : (z′, t) ∈ (CN−1 × R) ∩ Bε(0)}, and ∂Ω◦ ∩ Bδ(0, 1) is a graph over
{(w′, 1 + is) : (w′, s) ∈ (CN−1 × R) ∩Bδ(0)}. Thus h and ϕ exist.

We may assume that ε and δ are chosen so small that h and ϕ are
bounded from above by 1/2 on Bε(0) and Bδ(0), respectively.
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Since Ω◦ = {w ∈ CN : H(w) ≤ 1}, it follows that

Γ := {λz : λ ≥ 0, z ∈ ∂Ω◦ × {1}}

is the graph of H. Let G := Γ ∩ E be its intersection with the hyperplane
E := CN−1 × (1 + iR) × R. Then there is a convex function ψ : (CN−1 ×
R) ∩Bδ(0)→ R+ with ψ(0) = 0 and

G ∩Bδ((0, 1), 1) = {(z′, 1 + is, 1 + ψ(z′, s))| (z′, s) ∈ (CN−1 × R) ∩Bδ(0)}.

Let (z′, s) ∈ (CN−1×R)∩Bδ(0). The ray from the origin of CN×R through
the point (z′, 1− ϕ(z′, s) + is, 1) hits the plane E at the point

λ(z′, 1− ϕ(z′, s) + is, 1) = (λz′, 1 + iλs, 1 + ψ(λ(z′, s)))

for some λ ≥ 1. This shows that

ϕ(z′, s)
1− ϕ(z′, s)

=
1

1− ϕ(z′, s)
− 1 = λ− 1 = ψ

(
(z′, s)

1− ϕ(z′, s)

)
.

Since ϕ is bounded by 1/2, for all (z′, s) ∈ (CN−1 × R) ∩Bδ(0) we obtain

(3) ϕ(z′, s) ≤ ψ(2(z′, s)) and ψ(z′, s) ≤ 2ϕ(z′, s).

For the sequel we note that {(z,Re zN ) : z ∈ CN} is a supporting hyperplane
for Γ at ((0, 1), 1).

(i)⇒(ii). If there is a plurisubharmonic saddle for ϕ, then by (3) and
Remark 2(a), there is also a saddle u for ψ((1−δ)·)/(1+δ). By the hypothesis,
(3), and Remark 2(b), we may assume that u < ψ(·/(1 + δ))(1− δ) outside
the origin. We consider the plurisubharmonic function

v(z) := u(z − (0, 1)) + Re zN , z ∈ Bδ(0, 1).

Then v(0, 1) = 1 = H(0, 1). If z = (z′, zN ) ∈ Bδ(0, 1), put λ := Re zN and
w := z/λ. Since 1− δ ≤ λ ≤ 1 + δ, it follows that

v(z) ≤ ψ((z′, Im zN )/(1 + δ))(1− δ) + Re zN
= ψ(λ(w′, ImwN )/(1 + δ))(1− δ) + Re zN
≤ λψ(w′, ImwN ) + Re zN = λ(H(w)− RewN ) + Re zN = H(z)

and v(z) < H(z) if z 6= (0, 1). By [6], Prop. 1.13, there is C > 0 such that
CvH(z/C) > v(z) for all z ∈ ∂Bδ(0, 1). Then

ṽ(z) :=
{
CvH(z/C) if z ∈ CN\Bδ(0, 1),
max{CvH(z/C), v(z)} if z ∈ Bδ(0, 1),

is plurisubharmonic on CN with ṽ ≤ H and ṽ(0, 1) = H(0, 1), and such that
ṽ(z)−C log |z| remains bounded if z ∈ CN tends to infinity. This shows that
CH(0, 1) ≤ C.
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(ii)⇒(i). Put C := CH(0, 1) and vH(· ;C) := CvH(·/C). Then vH(· ;C)
≤ H, vH(0, 1;C) = H(0, 1) and vH(0, s;C) < H(0, s) if s > 1. Hence the
function

v(z) := vH(z;C)− Re zN , z ∈ CN ,
is plurisubharmonic with v(0, 1) = 0 and with v(0, s) < 0 for all s > 1.
Moreover, as in “(i)⇒(ii)” we obtain

v(z) ≤ H(z)− Re zN = λψ(w′, ImwN ) ≤ (1 + δ)ψ((z′, Im zN )/(1− δ))
for all z ∈ Bδ((0, 1)). This shows that

u(z) := v(z + (0, 1)) + v(−z + (0, 1)), z = (z′, zN ) ∈ CN ,
is a plurisubharmonic saddle for 2(1+δ)ψ(·/(1−δ)). Hence by Remark 2(a)
and by (3), there is a plurisubharmonic saddle for ϕ.

(i)⇔(iii). As (i)⇔(ii). Just apply [7] instead of [6].

A corollary to the proof of Proposition 5 is the following:

6. Proposition. For N = 1 let Ω be a bounded convex domain in C
which contains the origin. Then for each a ∈ S, CH(a) < ∞ if and only if
C∗H(a) > 0, i.e. R+PH = R+P

∗
H .

P r o o f. For N = 1, in the proof of (ii)⇒(i) of Proposition 5, we may
replace u by

u(z) := v(z + 1) + v(−Re z + i Im z + 1), z ∈ C,
which is a subharmonic saddle for 2(1 + δ)ψ(·/(1− δ)). This shows that for
N = 1, we need no assumption on the symmetry of ϕ.

Furthermore, since a nonnegative subharmonic function u on a domain
is negative everywhere if it is negative at some point, for N = 1 each sub-
harmonic saddle u for ϕ is proper in the sense that u < ϕ outside the origin
(see Remark 2(b)). This shows that for N = 1, we need no assumption on
the smoothness of ∂Ω.

For N > 1, the assertion of Proposition 6 does not hold. To give an ex-
ample, first we recall from [6], Thm. 2.11 (see also Krivosheev [3]), and from
[7] a result which compares the cones R+PH , R+P

∗
H , and supp (ddcH)N ,

which is defined to be the smallest closed subset of CN for which H is a
maximal plurisubharmonic function on its complement (see Klimek [2]). By
the homogeneity of H, this is a cone.

7. Proposition. Let Ω ⊂ CN be an open bounded convex polyhedron
which contains the origin. Then

supp (ddcH)N ⊂ R+ PH ⊂ R+ P
∗
H ,

where equalities hold for N = 1. More precisely : Let a ∈ S belong to the
relative interior of the cone R+ F for some face F of ∂Ω◦. Let L(F ) denote
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the R-linear span of R+ F . Then

a ∈ supp (ddcH)N ⇔ L(F ) ∩ iL(F ) = {0};
CH(a) <∞⇔ R+ F ∩ (L(F ) ∩ iL(F )) = {0},

C∗H(a) > 0⇔ R+ a ∩ (L(F ) ∩ iL(F )) = {0}.
As the following example shows, for N ≥ 2, in general, both inclusions

of Proposition 7 are strict.

8. Example. Let

Ω :=
{
z = (z1, z2) = (x1, x2, x3, x4) ∈ C2 :

4∑
j=1

|xj | < 1
}
.

Its support function H : C2 → R+ is given by

H(z) = H(x1, . . . , x4) = max
j=1,...,4

|xj |, z ∈ C2.

It has been proved in [6], 2.13, that supp (ddcH)N 6= R+ PH . Moreover, for
the face F := {z ∈ C2 : x1 = x4 = 1} ∩ ∂Ω◦ of ∂Ω◦ = {z ∈ C2 : H(z) = 1},
it has been calculated that L(F ) ∩ iL(F ) = R(1, 0, 0, 1) + R(0, 1, 1, 0) and
that R+ F ∩ (L(F ) ∩ iL(F )) 6= {0}. Since R+ F has dimension 3, there
exists a in the relative interior of R+F with a 6∈ L(F ) ∩ iL(F ) and a ∈ S.
Thus R+a ∩ (L(F ) ∩ iL(F )) = {0}, and by Proposition 7, this gives a ∈
R+ P

∗
H\R+ PH .

Notation. Let ε > 0 and h : (CN−1×R)∩Bε(0)→ R+ be a continuous
convex function with h(0) = 0. We extend h to a convex function on CN−1×
R by h(w′, t) := ∞ whenever (w′, t) 6∈ Bε(0). Its conjugate function h∗ :
CN−1 × R→ R+ is defined by

h∗(z′, s) := sup
(w′,t)∈CN−1×R

(Re〈z′, w′〉+ st− h(w′, t)), (z′, s) ∈ CN−1 × R.

h∗ is again a convex function with h∗(0) = 0. Moreover, h∗∗ = h (see
Schneider [8], Thm. 1.6.5).

9. R e m a r k. If hj , j = 1, 2, are two convex functions which coincide on
(CN−1 × R) ∩Bε(0) for some ε > 0, vanish in 0 and are positive outside 0,
then there is δ > 0 such that h∗j , j = 1, 2, coincide on (CN−1 × R) ∩Bδ(0).

P r o o f. Since hj > 0 outside the origin, we may choose 0 < δ ≤
min|a|=ε hj(a)/ε, j = 1, 2. Fix j = 1, 2 and let (z′, s) ∈ (CN−1×R)∩Bδ(0).
If (w′, t) ∈ (CN−1 × R)\Bε(0), we put

(w̃′, t̃ ) := ε(w′, t)/|(w′, t)| ∈ Bε(0)

and get |(w̃′, t̃ )| ≤ |(w′, t)|. By the convexity of hj we obtain

hj(w̃′, t̃ )/|(w̃′, t̃ )| ≤ hj(w′, t)/|(w′, t)|.
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Since
|Re〈(z′, s), (w̃′, t̃ )〉/ε| ≤ δ ≤ hj(w̃′, t̃ )/|(w̃′, t̃ )|,

we get

Re〈z′, w′〉+ st−hj(w′, t) = |(w′, t)|(Re〈(z′, s), (w̃′, t̃ )〉/ε−hj(w′, t)/|(w′, t)|)
≤ ε(Re〈(z′, s), (w̃′, t̃ )〉/ε−hj(w̃′, t̃ )/|(w̃′, t̃ )|)
= Re〈z′, w̃′〉+ st̃− hj(w̃′, t̃ ).

This shows that
h∗j (z

′, s) = sup
(w′,t)∈CN−1×R

(Re〈z′, w′〉+ st− hj(w′, t))

= sup
(w′,t)∈(CN−1×R)∩Bε(0)

(Re〈z′, w′〉+ st− hj(w′, t)).

Hence h∗1 = h∗2 on (CN−1 × R) ∩Bδ(0).

10. Lemma. Let h, ϕ, ε, and δ be as in Proposition 5. Assume that
h > 0 outside the origin. Then there is 0 < δ′ ≤ δ such that for all (z′, s) ∈
(CN−1 × R) ∩Bδ(0),

h∗(z′, s) ≤ ϕ(z′, s) ≤ 2h∗(z′, s).

P r o o f. Since h > 0 outside the origin, we can choose 0 < δ′ ≤ δ such
that

(4) Ω◦ ∩Bδ′(0, 1)
= {z ∈ CN : Re〈w, z〉 ≤ 1 for all w ∈ ∂Ω ∩Bε(0, 1)} ∩Bδ′(0, 1).

Let (z′, s) ∈ (CN−1 × R) ∩ Bδ′(0). Then a := (z′, 1 − ϕ(z′, s) + is) ∈ ∂Ω◦,
by (2). Thus by the definition of Ω◦, by (4) and (1), we have

1 = sup
w∈∂Ω∩Bε(0,1)

Re〈w, a〉

= sup
(w′,t)∈(CN−1×R)∩Bε(0)

(Re〈w′, z′〉+ (1− h(w′, t))(1− ϕ(z′, s)) + ts).

Hence

1− ϕ(z′, s) = inf
(w′,t)∈(CN−1×R)∩Bε(0)

1− Re〈w′, z′〉 − ts
1− h(w′, t)

= 1− sup
(w′,t)∈(CN−1×R)∩Bε(0)

Re〈w′, z′〉+ ts− h(w′, t)
1− h(w′, t)

.

Since we may assume that 0 ≤ h(w′, t) ≤ 1/2, we obtain h∗(z′, s) ≤
ϕ(z′, s) ≤ 2h∗(z′, s).

Notation. Let Ω be a bounded convex domain of CN and fix w0 ∈ Ω.
By gΩ we denote the pluricomplex Green function of Ω with pole at w0,
i.e. gΩ is the largest negative plurisubharmonic function on Ω for which
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gΩ(z)− log |z − w0|, z ∈ Ω\{w0}, is bounded (for the existence see Klimek
[2]). We consider the level sets Ωx := {z ∈ Ω : gΩ(z) < x}, x < 0, which are
convex by a result of Lempert (see [6], Lemma 1.2). By Hx : CN → R we
denote their support functions

Hx(z) := sup
w∈Ωx

Re〈z, w〉, z ∈ CN , x < 0.

Then (see [6], Prop. 1.3) the limits

DΩ(a) := lim
x↑0

H(a)−Hx(a)
−x

∈ ]0,∞], a ∈ S,

exist. By [6], Thms. 1.14 and 1.20, there is C > 0 with CH ≤ DΩ ≤ CCH .

11. Proposition. Let Ω ⊂ CN be a bounded convex domain normalized
as in Proposition 5. Let h and ϕ be convex functions as there. In addition,
assume that also h > 0 outside the origin. If gΩ is the pluricomplex Green
function of Ω with pole at 0, the following are equivalent :

(i) There is a plurisubharmonic saddle for h∗.
(ii) There is a plurisubharmonic saddle for ϕ.
(iii) DΩ(0, . . . , 0, 1) <∞.

P r o o f. (i)⇔(ii). Since h > 0 outside the origin, this follows from the
remark in Proposition 5, Lemma 10, and Remark 2(a).

(ii)⇔(iii). By the hypothesis and by the remark in Proposition 5, we
have ϕ > 0 outside the origin. Hence we deduce from Proposition 5 that (ii)
holds if and only if CH(0, . . . , 0, 1) < ∞. By [6], Thms. 1.14 and 1.20, this
is equivalent to (iii).

For N = 1 there is a close relation between the limits DΩ(a) and the
angular derivatives of the Riemann conformal mappings from the unit disc
D onto Ω. This relationship is applied in the proof of the following lemma.

12. Lemma. Let Ω be a bounded convex domain of CN . Let w ∈ ∂Ω and
let a ∈ S be an outer normal to ∂Ω at w. Put Ω1 := {z ∈ C : zia+w ∈ Ω}
and let Ω2 be the set of all z ∈ C such that zia + w is contained in the
image of the orthogonal projection of Ω onto Ca + w. Then Ω1 ⊂ Ω2 ⊂
{z ∈ C : Im z > 0}. Assume that there are ε > 0 and convex functions
hj : [−ε, ε]→ R+ with hj(0) = 0 and

∂Ωj ∩Bε(0) = {t+ ihj(t) : t ∈ [−ε, ε]}, j = 1, 2.

Let gΩ be the pluricomplex Green function of Ω with pole at some fixed
w0 ∈ Ω. If

∫ ε
−ε(h1(t)/t2) dt < ∞ then DΩ(a) < ∞. If DΩ(a) < ∞ then∫ ε

−ε(h̃2(t)/t2) dt <∞, where h̃2(t) := min{h2(t), h2(−t)}, |t| ≤ ε.

P r o o f. After a translation followed by a unitary transformation of CN ,
we may assume that a = (0, . . . , 0,−i) and w = 0. Since the finiteness
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of DΩ(a) does not depend on the choice of the pole, we may assume that
w0 ∈ Ca+w = {0}×C, i.e. w0 = (0, w′0). Since {0}×Ω1 ⊂ Ω ⊂ CN−1×Ω2,
for the complex Green functions gΩj of Ωj , j = 1, 2, with pole at w′0, the
following holds:

gΩ1(zN ) ≥ gΩ(0, zN ), zN ∈ Ω1,

and
gΩ(z′, zN ) ≥ gΩ2(zN ), (z′, zN ) ∈ CN−1 ×Ω2.

Hence for the corresponding level sets Ωjx, x < 0, j = 1, 2, we obtain

{0} ×Ω1
x ⊂ Ωx ⊂ CN−1 ×Ω2

x.

This shows that H1
x(−i) ≤ H(a) ≤ H2

x(−i), x < 0, for the corresponding
support functions. Hence DΩ2(−i) ≤ DΩ(a) ≤ DΩ1(−i).

Now the assertion follows from [5], Lemma 3.3, Ex. 4.2, [6], Lemma 2.3,
and a result of Warschawski and Tsuji (see Tsuji [9], Thm. IX.10).

13. Lemma. Let ε > 0 and let h : [−ε, ε] → R+ be a convex function
with h(0) = 0.

(a) If h(t) = tq(t), t > 0, with limt↓0 q(t) = 0, such that q(t) is strictly
increasing for t > 0, then there is δ > 0 such that for all 0 < s ≤ δ,

2q−1(s)s ≥ h∗(s) ≥ q−1(s/2)s/2.

(b)
∫ ε
−ε(h(t)/t2) dt < ∞ if and only if

∫ δ
−δ log h∗(s) ds > −∞ for some

δ > 0.

P r o o f. (a) Since q(t) is strictly increasing, we have h(t) > 0 for all
0 < t ≤ ε. Fix 0 < s ≤ δ. Since st − tq(t) ≤ 0 for all q−1(s) ≤ t ≤ ε, we
obtain

h∗(s) = sup
0≤t≤q−1(s)

(st− h(t)) ≤ sup
0≤t≤q−1(s)

st ≤ sq−1(s).

Let 0 < s ≤ δ := 2q(ε). Then q−1(s/2) ≤ ε and

h∗(s) ≥ sq−1(s/2)− h(q−1(s/2)) = sq−1(s/2)/2.

(b) For the proof we have to consider the integrals over negative and
positive numbers separately. It is no restriction to consider the positive ones
only. If q(t) := h(t)/t = c is constant for all t > 0 in a neighborhood of 0,
then the assertion obviously holds (we have to distinguish the cases c = 0
and c > 0). Otherwise the map t 7→ q(t) is strictly increasing for 0 < t ≤ ε,
with limt↓0 q(t) = 0. We claim that

(5)
δ∫
η

log(sq−1(s)) ds+
q−1(δ)∫
η

q(t)
t
dt

= δ log(δq−1(δ))− q−1(δ)− q(η) log(q(η)η)
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for all 0 < η < δ. Fix η. Since we may approximate the continuous function
q uniformly on [η, δ] by strictly increasing C1-functions, we may assume that
q itself is of class C1. We obtain

δ∫
η

log(sq−1(s)) ds =
q−1(δ)∫

0

log(q(t)t)q′(t) dt

= [log(q(t)t)q(t)]q
−1(δ)
η −

(q−1(δ)∫
η

q′(t) dt+
q−1(δ)∫
η

q(t) dt
t

)
.

This proves (5).
Let

∫ ε
0

(h(t)/t2) dt < ∞. Since lim supt↓0 q(t) log(q(t)t) ≤ 0, we deduce

from (5) letting η ↓ 0 that
∫ δ
0

log(sq−1(s)) ds > −∞. This proves∫ δ
0

log h∗(s) ds > −∞.

Let
∫ δ
0

log h∗(s) ds > −∞, i.e.
∫ δ
0

log(sq−1(s)) ds > −∞. Since for all
0 < t < ε we have q(t) ≤ δ and

−∞ <
δ∫

0

log(sq−1(s)) ds ≤
q(t)∫
0

log(sq−1(s)) ds ≤ q(t) log(q(t)t),

we get lim inft↓0 q(t) log(q(t)t) > −∞. Hence by (5), we get
∫ ε
0

(h(t)/t2) dt
<∞.

14. Proposition. Let N = 1, δ > 0, and let ϕ : [−δ, δ]→ R+ be convex
with ϕ(0) = 0 and with ϕ(y) = ϕ(−y), |y| ≤ δ. There is a subharmonic
saddle for ϕ if and only if

δ∫
0

logϕ(t) dt > −∞.

P r o o f. If ϕ = 0 in a neighborhood of 0, the integral equals −∞, and by
the maximum principle, there is no subharmonic saddle for ϕ. If ϕ(y) = c|y|
in a neighborhood of 0, the integral converges, and by Example 3, there is a
subharmonic saddle for ϕ. Thus we may assume that ϕ>0 outside the origin
and that limy→0 ϕ(y)/|y| = 0. We choose a bounded convex domain Ω in C
such that (2) holds. By Proposition 11 (and the remark in Proposition 5),
there is a subharmonic saddle for ϕ if and only if DΩ(1) <∞. By Lemmas
12, 10 and 13, this is equivalent to

∫ δ
0

logϕ(t) dt > −∞.

15. R e m a r k. Let δ > 0 and let ϕ : (CN−1 × R) ∩ Bδ(0) → R+ be a
convex function with ϕ(0) = 0, ϕ > 0 outside the origin, and ϕ(y) = ϕ(−y)
for all y. If there is no plurisubharmonic saddle for ϕ, then the following
holds:
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Each plurisubharmonic function u on Bδ′(0) (0 < δ′ ≤ δ) which satisfies

u(z′, zN ) ≤ ϕ(z′, Im zN ), z = (z′, zN ) ∈ CN−1 × C,
vanishes on {0} × R if u(0) = 0.

P r o o f. Consider [a, b] := {s ∈ [δ′, δ′] : u(0, s) = 0}. If for example
b 6= δ′, then

v(z) := 1
2 (u(z + (0, b)) + u(−z + (0, b)), z = (z′, zN ) ∈ CN−1 × C,

would be a plurisubharmonic saddle for ϕ.
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