Plurisubharmonic saddles

by Siegfried Momm (Düsseldorf)

Abstract

A certain linear growth of the pluricomplex Green function of a bounded convex domain of \mathbb{C}^{N} at a given boundary point is related to the existence of a certain plurisubharmonic function called a "plurisubharmonic saddle". In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.

Introduction. If $\varphi:[-\delta, \delta] \rightarrow[0, \infty[(\delta>0)$ is a convex function with $\varphi(0)=0$, a subharmonic saddle for φ is a subharmonic function u on $\left\{z \in \mathbb{C}:|z| \leq \delta^{\prime}\right\}\left(0<\delta^{\prime} \leq \delta\right)$ with $u(z) \leq \varphi(\operatorname{Im} z)$ for all $|z| \leq \delta^{\prime}$, $u(0)=0$, and $u(x)<0$ for all $x \in\left[-\delta^{\prime}, \delta^{\prime}\right] \backslash\{0\}$. In complex analysis the existence of subharmonic saddles for $\varphi(y)=|y|, y \in \mathbb{R}$, like the harmonic function $u(z)=-\operatorname{Re} z^{2}$, is sometimes applied as a technical tool. There are harmonic saddles also for $\varphi(y)=|y|^{d}(d \geq 1)$. Of course, there is no subharmonic saddle for $\varphi \equiv 0$. We prove

Theorem.Let $\varphi:[-\delta, \delta] \rightarrow[0, \infty[$ be convex with $\varphi(0)=0$ and with $\varphi(y)=\varphi(-y),|y| \leq \delta$. A subharmonic saddle for φ exists if and only if

$$
\int_{0}^{\delta} \log \varphi(t) d t>-\infty
$$

This result will be deduced from a theorem of Warschawski and Tsuji on the existence of angular derivatives of conformal mappings. The key of this reduction is an observation which we prove for several complex variables: Let φ be a nonnegative convex function defined on a zero neighborhood in $\mathbb{C}^{N-1} \times \mathbb{R}$, with $\varphi(z)=0$ if and only if $z=0$, and with $\lim _{z \rightarrow 0} \varphi(z) /|z|=0$. If $\varphi(z)=\varphi(-z)$ for all z, a plurisubharmonic saddle for φ exists if and only if the pluricomplex Green function of every bounded convex domain Ω of

[^0]\mathbb{C}^{N} has a certain linear growth at each point of the boundary of Ω at which $\partial \Omega$ can be represented as the graph of the Legendre conjugate function φ^{*} over the supporting hyperplane of $\partial \Omega$ (Proposition 11). This is a type of local version of a result of [6], for which the results of Kiselman [1], Lempert [4], and Zakharyuta [10] have been applied. In the course of the proof, for every bounded convex domain $\Omega \subset \mathbb{C}$, we prove that two cones $\mathbb{R}_{+} P_{H}$ and $\mathbb{R}_{+} P_{H}^{*}$ in \mathbb{C} coincide, where the first is related to the boundary behavior of the complex Green function of Ω and the second is related to the complex Green function of $\mathbb{C} \backslash \bar{\Omega}$ (Proposition 6). The several-variable analogue of this identity does not hold. For convex polyhedra, in general, $\mathbb{R}_{+} P_{H} \subset \mathbb{R}_{+} P_{H}^{*}$. We give an example of a convex polyhedron in \mathbb{C}^{2} for which this inclusion is in fact strict (Example 8).

Notations. For $z, w \in \mathbb{C}^{N}$, we write $\langle z, w\rangle:=\sum_{i=1}^{N} z_{i} \bar{w}_{i}$ and $|z|:=$ $\langle z, z\rangle^{1 / 2}$. We put $B_{R}(a):=\left\{z \in \mathbb{C}^{N}:|z-a| \leq R\right\}$ for $R>0$ and $a \in \mathbb{C}^{N}$, $S:=\left\{z \in \mathbb{C}^{N}:|z|=1\right\}, \mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}, \mathbb{R}_{+}:=\{x \in \mathbb{R}: x \geq 0\}$. For each set $F \subset \mathbb{C}^{N}$ we write $\mathbb{R}_{+} F:=\{t a: t \geq 0, a \in F\}$. Throughout this paper, we identify \mathbb{C}^{N} and \mathbb{C}^{N-1} with $\mathbb{R}^{2 N}$ and $\mathbb{R}^{2 N-2}$, respectively. We refer to Schneider [8] for notions from convex analysis.

1. Definition. For $\delta>0$ let $\varphi:\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0) \rightarrow \mathbb{R}_{+}$be a convex function with $\varphi(0)=0$. A plurisubharmonic function u on $B_{\delta^{\prime}}(0)$ $\left(0<\delta^{\prime} \leq \delta\right)$ is called a plurisubharmonic saddle for φ if
(i) $u(0)=0$,
(ii) $u\left(0, x_{N}\right)<0$ for all $x_{N} \in\left[-\delta^{\prime}, \delta^{\prime}\right] \backslash\{0\}$,
(iii) $u\left(z^{\prime}, z_{N}\right) \leq \varphi\left(z^{\prime}, \operatorname{Im} z_{N}\right)$ for all $\left(z^{\prime}, z_{N}\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{C}\right) \cap B_{\delta^{\prime}}(0)$.
2. Remark. (a) Let $C_{1}, C_{2}>0$. There is a plurisubharmonic saddle for φ if and only if there is a plurisubharmonic saddle for $C_{1} \varphi\left(\cdot / C_{2}\right)$.
(b) If $\varphi>0$ outside the origin and if φ admits a plurisubharmonic saddle u then we may assume that $u<\varphi$ outside the origin (otherwise consider $u / 2)$.
3. Example. Let $N=1$. For each $d \geq 1$ there is a (sub)harmonic saddle $u: B_{1}(0) \rightarrow \mathbb{R}$ for $\varphi(y)=|y|^{d}$. Just choose an even integer $l \geq d$, a sufficiently small $\varepsilon>0$ and put $u(z):=-\varepsilon \operatorname{Re} z^{l}=-\varepsilon r^{l} \cos (l \theta)$ for all $z=r e^{i \theta} \in B_{1}(0)$.
4. Definition. Let Ω be a bounded convex domain of \mathbb{C}^{N} with $0 \in \Omega$. By $H: \mathbb{C}^{N} \rightarrow \mathbb{R}_{+}$we denote its support function, i.e.

$$
H(z):=\sup _{w \in \Omega} \operatorname{Re}\langle z, w\rangle, \quad z \in \mathbb{C}^{N}
$$

(a) Let $v_{H}: \mathbb{C}^{N} \rightarrow \mathbb{R}_{+}$be the largest plurisubharmonic function on \mathbb{C}^{N} with $v_{H} \leq H$ and for which $v_{H}(z)-\log |z|$ remains bounded if $z \in \mathbb{C}^{N}$ tends
to infinity (for the existence see [6]). Since H is positively homogeneous, there is a lower semicontinuous function $\left.\left.C_{H}: S \rightarrow\right] 0, \infty\right]$ such that

$$
P_{H}:=\left\{z \in \mathbb{C}^{N}: v_{H}(z)=H(z)\right\}=\left\{\lambda a: a \in S, 0 \leq \lambda \leq 1 / C_{H}(a)\right\}
$$

(b) Let $v_{H}^{*}: \mathbb{C}^{N} \rightarrow \mathbb{R}_{+}$be the largest plurisubharmonic function on \mathbb{C}^{N} with $v_{H}^{*} \leq H$ and for which $v_{H}^{*}(z)-\log |z|$ remains bounded if $z \in \mathbb{C}^{N}$ tends to zero (for the existence see [7]). Since H is positively homogeneous, there is an upper semicontinuous function $C_{H}^{*}: S \rightarrow[0, \infty[$ such that

$$
P_{H}^{*}:=\left\{z \in \mathbb{C}^{N}: v_{H}^{*}(z)=H(z)\right\}=\left\{\lambda a: a \in S, 1 / C_{H}^{*}(a) \leq \lambda\right\}
$$

If $N=1$, and $\psi: \mathbb{D} \rightarrow \Omega$ and $\varphi: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash \bar{\Omega}$ are biholomorphic mappings, then the numbers $C_{H}(a)$ and $C_{H}^{*}(a)$ are closely related to the angular derivatives of ψ and φ, respectively (see [5]-[7]).

Notation. If Ω is a bounded convex domain with $0 \in \Omega$, we consider its polar set

$$
\Omega^{\circ}:=\left\{w \in \mathbb{C}^{N}: \operatorname{Re}\langle z, w\rangle \leq 1 \text { for all } z \in \Omega\right\}
$$

Ω° is a compact convex set with 0 in its interior. Since we deal with polar sets, we use the following normalization of Ω :
5. Proposition. Let Ω be a bounded convex domain in $\left\{z \in \mathbb{C}^{N}\right.$: $\left.\operatorname{Re} z_{N} \leq 1\right\}$, such that $0 \in \Omega$ and $(0,1):=(0, \ldots, 0,1) \in \partial \Omega$. There are $\varepsilon>0$ and a continuous convex function $h:\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0) \rightarrow \mathbb{R}_{+}$with $h(0)=0$ and such that
(1) $\partial \Omega \cap B_{\varepsilon}(0,1)=\left\{\left(z^{\prime}, 1-h\left(z^{\prime}, t\right)+i t\right) \mid\left(z^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cup B_{\varepsilon}(0)\right\}$.

The polar set Ω° is contained in $\left\{w \in \mathbb{C}^{N}: \operatorname{Re} w_{N} \leq 1\right\}$ and $(0,1) \in \partial \Omega^{\circ}$. There are $\delta>0$, and a continuous convex function $\varphi:\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0) \rightarrow$ \mathbb{R}_{+}with $\varphi(0)=0$, such that
(2) $\partial \Omega^{\circ} \cap B_{\delta}(0,1)=\left\{\left(w^{\prime}, 1-\varphi\left(w^{\prime}, s\right)+i s\right) \mid\left(w^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)\right\}$. If $\varphi>0$ outside the origin, i.e. $\lim _{\left(z^{\prime}, t\right) \rightarrow 0} h\left(z^{\prime}, t\right) /\left|\left(z^{\prime}, t\right)\right|=0$ (see Schneider [8], Lemma 2.2.3), and if in addition $\varphi\left(w^{\prime}, s\right)=\varphi\left(-w^{\prime},-s\right)$, or, what is the same, $h\left(z^{\prime}, t\right)=h\left(-z^{\prime},-t\right)$, then the following assertions are equivalent:
(i) There is a plurisubharmonic saddle for φ.
(ii) $C_{H}(0,1)<\infty$.
(iii) $C_{H}^{*}(0,1)>0$.

Proof. Choose $0<\varepsilon, \delta<1$ with $B_{\varepsilon}(0) \subset \Omega \subset B_{1 / \delta}(0)$. Then $B_{\delta}(0)$ $\subset \Omega^{\circ}$. By the convexity of Ω and $\Omega^{\circ}, \partial \Omega \cap B_{\varepsilon}(0,1)$ is a graph over $\left\{\left(z^{\prime}\right.\right.$, $\left.1+i t):\left(z^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)\right\}$, and $\partial \Omega^{\circ} \cap B_{\delta}(0,1)$ is a graph over $\left\{\left(w^{\prime}, 1+i s\right):\left(w^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)\right\}$. Thus h and φ exist.

We may assume that ε and δ are chosen so small that h and φ are bounded from above by $1 / 2$ on $B_{\varepsilon}(0)$ and $B_{\delta}(0)$, respectively.

Since $\Omega^{\circ}=\left\{w \in \mathbb{C}^{N}: H(w) \leq 1\right\}$, it follows that

$$
\Gamma:=\left\{\lambda z: \lambda \geq 0, z \in \partial \Omega^{\circ} \times\{1\}\right\}
$$

is the graph of H. Let $G:=\Gamma \cap E$ be its intersection with the hyperplane $E:=\mathbb{C}^{N-1} \times(1+i \mathbb{R}) \times \mathbb{R}$. Then there is a convex function $\psi:\left(\mathbb{C}^{N-1} \times\right.$ $\mathbb{R}) \cap B_{\delta}(0) \rightarrow \mathbb{R}_{+}$with $\psi(0)=0$ and
$G \cap B_{\delta}((0,1), 1)=\left\{\left(z^{\prime}, 1+i s, 1+\psi\left(z^{\prime}, s\right)\right) \mid\left(z^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)\right\}$.
Let $\left(z^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$. The ray from the origin of $\mathbb{C}^{N} \times \mathbb{R}$ through the point $\left(z^{\prime}, 1-\varphi\left(z^{\prime}, s\right)+i s, 1\right)$ hits the plane E at the point

$$
\lambda\left(z^{\prime}, 1-\varphi\left(z^{\prime}, s\right)+i s, 1\right)=\left(\lambda z^{\prime}, 1+i \lambda s, 1+\psi\left(\lambda\left(z^{\prime}, s\right)\right)\right)
$$

for some $\lambda \geq 1$. This shows that

$$
\frac{\varphi\left(z^{\prime}, s\right)}{1-\varphi\left(z^{\prime}, s\right)}=\frac{1}{1-\varphi\left(z^{\prime}, s\right)}-1=\lambda-1=\psi\left(\frac{\left(z^{\prime}, s\right)}{1-\varphi\left(z^{\prime}, s\right)}\right) .
$$

Since φ is bounded by $1 / 2$, for all $\left(z^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$ we obtain

$$
\begin{equation*}
\varphi\left(z^{\prime}, s\right) \leq \psi\left(2\left(z^{\prime}, s\right)\right) \quad \text { and } \quad \psi\left(z^{\prime}, s\right) \leq 2 \varphi\left(z^{\prime}, s\right) \tag{3}
\end{equation*}
$$

For the sequel we note that $\left\{\left(z, \operatorname{Re} z_{N}\right): z \in \mathbb{C}^{N}\right\}$ is a supporting hyperplane for Γ at $((0,1), 1)$.
(i) \Rightarrow (ii). If there is a plurisubharmonic saddle for φ, then by (3) and Remark 2(a), there is also a saddle u for $\psi((1-\delta) \cdot) /(1+\delta)$. By the hypothesis, (3), and Remark 2(b), we may assume that $u<\psi(\cdot /(1+\delta))(1-\delta)$ outside the origin. We consider the plurisubharmonic function

$$
v(z):=u(z-(0,1))+\operatorname{Re} z_{N}, \quad z \in B_{\delta}(0,1)
$$

Then $v(0,1)=1=H(0,1)$. If $z=\left(z^{\prime}, z_{N}\right) \in B_{\delta}(0,1)$, put $\lambda:=\operatorname{Re} z_{N}$ and $w:=z / \lambda$. Since $1-\delta \leq \lambda \leq 1+\delta$, it follows that

$$
\begin{aligned}
v(z) & \leq \psi\left(\left(z^{\prime}, \operatorname{Im} z_{N}\right) /(1+\delta)\right)(1-\delta)+\operatorname{Re} z_{N} \\
& =\psi\left(\lambda\left(w^{\prime}, \operatorname{Im} w_{N}\right) /(1+\delta)\right)(1-\delta)+\operatorname{Re} z_{N} \\
& \leq \lambda \psi\left(w^{\prime}, \operatorname{Im} w_{N}\right)+\operatorname{Re} z_{N}=\lambda\left(H(w)-\operatorname{Re} w_{N}\right)+\operatorname{Re} z_{N}=H(z)
\end{aligned}
$$

and $v(z)<H(z)$ if $z \neq(0,1)$. By [6], Prop. 1.13, there is $C>0$ such that $C v_{H}(z / C)>v(z)$ for all $z \in \partial B_{\delta}(0,1)$. Then

$$
\widetilde{v}(z):= \begin{cases}C v_{H}(z / C) & \text { if } z \in \mathbb{C}^{N} \backslash B_{\delta}(0,1) \\ \max \left\{C v_{H}(z / C), v(z)\right\} & \text { if } z \in B_{\delta}(0,1)\end{cases}
$$

is plurisubharmonic on \mathbb{C}^{N} with $\widetilde{v} \leq H$ and $\widetilde{v}(0,1)=H(0,1)$, and such that $\widetilde{v}(z)-C \log |z|$ remains bounded if $z \in \mathbb{C}^{N}$ tends to infinity. This shows that $C_{H}(0,1) \leq C$.
(ii) \Rightarrow (i). Put $C:=C_{H}(0,1)$ and $v_{H}(\cdot ; C):=C v_{H}(\cdot / C)$. Then $v_{H}(\cdot ; C)$ $\leq H, v_{H}(0,1 ; C)=H(0,1)$ and $v_{H}(0, s ; C)<H(0, s)$ if $s>1$. Hence the function

$$
v(z):=v_{H}(z ; C)-\operatorname{Re} z_{N}, \quad z \in \mathbb{C}^{N}
$$

is plurisubharmonic with $v(0,1)=0$ and with $v(0, s)<0$ for all $s>1$. Moreover, as in "(i) \Rightarrow (ii)" we obtain

$$
v(z) \leq H(z)-\operatorname{Re} z_{N}=\lambda \psi\left(w^{\prime}, \operatorname{Im} w_{N}\right) \leq(1+\delta) \psi\left(\left(z^{\prime}, \operatorname{Im} z_{N}\right) /(1-\delta)\right)
$$

for all $z \in B_{\delta}((0,1))$. This shows that

$$
u(z):=v(z+(0,1))+v(-z+(0,1)), \quad z=\left(z^{\prime}, z_{N}\right) \in \mathbb{C}^{N}
$$

is a plurisubharmonic saddle for $2(1+\delta) \psi(\cdot /(1-\delta))$. Hence by Remark 2(a) and by (3), there is a plurisubharmonic saddle for φ.
(i) \Leftrightarrow (iii). As (i) \Leftrightarrow (ii). Just apply [7] instead of [6].

A corollary to the proof of Proposition 5 is the following:
6. Proposition. For $N=1$ let Ω be a bounded convex domain in \mathbb{C} which contains the origin. Then for each $a \in S, C_{H}(a)<\infty$ if and only if $C_{H}^{*}(a)>0$, i.e. $\mathbb{R}_{+} P_{H}=\mathbb{R}_{+} P_{H}^{*}$.

Proof. For $N=1$, in the proof of (ii) \Rightarrow (i) of Proposition 5, we may replace u by

$$
u(z):=v(z+1)+v(-\operatorname{Re} z+i \operatorname{Im} z+1), \quad z \in \mathbb{C}
$$

which is a subharmonic saddle for $2(1+\delta) \psi(\cdot /(1-\delta))$. This shows that for $N=1$, we need no assumption on the symmetry of φ.

Furthermore, since a nonnegative subharmonic function u on a domain is negative everywhere if it is negative at some point, for $N=1$ each subharmonic saddle u for φ is proper in the sense that $u<\varphi$ outside the origin (see Remark 2(b)). This shows that for $N=1$, we need no assumption on the smoothness of $\partial \Omega$.

For $N>1$, the assertion of Proposition 6 does not hold. To give an example, first we recall from [6], Thm. 2.11 (see also Krivosheev [3]), and from [7] a result which compares the cones $\mathbb{R}_{+} P_{H}, \mathbb{R}_{+} P_{H}^{*}$, and $\operatorname{supp}\left(d d^{c} H\right)^{N}$, which is defined to be the smallest closed subset of \mathbb{C}^{N} for which H is a maximal plurisubharmonic function on its complement (see Klimek [2]). By the homogeneity of H, this is a cone.
7. Proposition. Let $\Omega \subset \mathbb{C}^{N}$ be an open bounded convex polyhedron which contains the origin. Then

$$
\operatorname{supp}\left(d d^{\mathrm{c}} H\right)^{N} \subset \mathbb{R}_{+} P_{H} \subset \mathbb{R}_{+} P_{H}^{*}
$$

where equalities hold for $N=1$. More precisely: Let $a \in S$ belong to the relative interior of the cone $\mathbb{R}_{+} F$ for some face F of $\partial \Omega^{\circ}$. Let $L(F)$ denote
the \mathbb{R}-linear span of $\mathbb{R}_{+} F$. Then

$$
\begin{gathered}
a \in \operatorname{supp}\left(d d^{\mathrm{c}} H\right)^{N} \Leftrightarrow L(F) \cap i L(F)=\{0\} \\
C_{H}(a)<\infty \Leftrightarrow \mathbb{R}_{+} F \cap(L(F) \cap i L(F))=\{0\}, \\
C_{H}^{*}(a)>0 \Leftrightarrow \mathbb{R}_{+} a \cap(L(F) \cap i L(F))=\{0\}
\end{gathered}
$$

As the following example shows, for $N \geq 2$, in general, both inclusions of Proposition 7 are strict.
8. Example. Let

$$
\Omega:=\left\{z=\left(z_{1}, z_{2}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{C}^{2}: \sum_{j=1}^{4}\left|x_{j}\right|<1\right\} .
$$

Its support function $H: \mathbb{C}^{2} \rightarrow \mathbb{R}_{+}$is given by

$$
H(z)=H\left(x_{1}, \ldots, x_{4}\right)=\max _{j=1, \ldots, 4}\left|x_{j}\right|, \quad z \in \mathbb{C}^{2}
$$

It has been proved in [6], 2.13, that $\operatorname{supp}\left(d d^{c} H\right)^{N} \neq \mathbb{R}_{+} P_{H}$. Moreover, for the face $F:=\left\{z \in \mathbb{C}^{2}: x_{1}=x_{4}=1\right\} \cap \partial \Omega^{\circ}$ of $\partial \Omega^{\circ}=\left\{z \in \mathbb{C}^{2}: H(z)=1\right\}$, it has been calculated that $L(F) \cap i L(F)=\mathbb{R}(1,0,0,1)+\mathbb{R}(0,1,1,0)$ and that $\mathbb{R}_{+} F \cap(L(F) \cap i L(F)) \neq\{0\}$. Since $\mathbb{R}_{+} F$ has dimension 3, there exists a in the relative interior of $\mathbb{R}_{+} F$ with $a \notin L(F) \cap i L(F)$ and $a \in S$. Thus $\mathbb{R}_{+} a \cap(L(F) \cap i L(F))=\{0\}$, and by Proposition 7 , this gives $a \in$ $\mathbb{R}_{+} P_{H}^{*} \backslash \mathbb{R}_{+} P_{H}$.

Notation. Let $\varepsilon>0$ and $h:\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0) \rightarrow \mathbb{R}_{+}$be a continuous convex function with $h(0)=0$. We extend h to a convex function on $\mathbb{C}^{N-1} \times$ \mathbb{R} by $h\left(w^{\prime}, t\right):=\infty$ whenever $\left(w^{\prime}, t\right) \notin B_{\varepsilon}(0)$. Its conjugate function h^{*} : $\mathbb{C}^{N-1} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$is defined by

$$
h^{*}\left(z^{\prime}, s\right):=\sup _{\left(w^{\prime}, t\right) \in \mathbb{C}^{N-1} \times \mathbb{R}}\left(\operatorname{Re}\left\langle z^{\prime}, w^{\prime}\right\rangle+s t-h\left(w^{\prime}, t\right)\right), \quad\left(z^{\prime}, s\right) \in \mathbb{C}^{N-1} \times \mathbb{R}
$$

h^{*} is again a convex function with $h^{*}(0)=0$. Moreover, $h^{* *}=h$ (see Schneider [8], Thm. 1.6.5).
9. Remark. If $h_{j}, j=1,2$, are two convex functions which coincide on $\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)$ for some $\varepsilon>0$, vanish in 0 and are positive outside 0 , then there is $\delta>0$ such that $h_{j}^{*}, j=1,2$, coincide on $\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$.

Proof. Since $h_{j}>0$ outside the origin, we may choose $0<\delta \leq$ $\min _{|a|=\varepsilon} h_{j}(a) / \varepsilon, j=1,2$. Fix $j=1,2$ and let $\left(z^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$. If $\left(w^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \backslash B_{\varepsilon}(0)$, we put

$$
\left(\widetilde{w}^{\prime}, \widetilde{t}\right):=\varepsilon\left(w^{\prime}, t\right) /\left|\left(w^{\prime}, t\right)\right| \in B_{\varepsilon}(0)
$$

and get $\left|\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right| \leq\left|\left(w^{\prime}, t\right)\right|$. By the convexity of h_{j} we obtain

$$
h_{j}\left(\widetilde{w}^{\prime}, \widetilde{t}\right) /\left|\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right| \leq h_{j}\left(w^{\prime}, t\right) /\left|\left(w^{\prime}, t\right)\right|
$$

Since

$$
\left|\operatorname{Re}\left\langle\left(z^{\prime}, s\right),\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right\rangle / \varepsilon\right| \leq \delta \leq h_{j}\left(\widetilde{w}^{\prime}, \widetilde{t}\right) /\left|\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right|
$$

we get

$$
\begin{aligned}
\operatorname{Re}\left\langle z^{\prime}, w^{\prime}\right\rangle+s t-h_{j}\left(w^{\prime}, t\right) & =\left|\left(w^{\prime}, t\right)\right|\left(\operatorname{Re}\left\langle\left(z^{\prime}, s\right),\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right\rangle / \varepsilon-h_{j}\left(w^{\prime}, t\right) /\left|\left(w^{\prime}, t\right)\right|\right) \\
& \leq \varepsilon\left(\operatorname{Re}\left\langle\left(z^{\prime}, s\right),\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right\rangle / \varepsilon-h_{j}\left(\widetilde{w}^{\prime}, \widetilde{t}\right) /\left|\left(\widetilde{w}^{\prime}, \widetilde{t}\right)\right|\right) \\
& =\operatorname{Re}\left\langle z^{\prime}, \widetilde{w}^{\prime}\right\rangle+s \widetilde{t}-h_{j}\left(\widetilde{w}^{\prime}, \widetilde{t}\right)
\end{aligned}
$$

This shows that

$$
\begin{aligned}
h_{j}^{*}\left(z^{\prime}, s\right) & =\sup _{\left(w^{\prime}, t\right) \in \mathbb{C}^{N-1} \times \mathbb{R}}\left(\operatorname{Re}\left\langle z^{\prime}, w^{\prime}\right\rangle+s t-h_{j}\left(w^{\prime}, t\right)\right) \\
& =\sup _{\left(w^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)}\left(\operatorname{Re}\left\langle z^{\prime}, w^{\prime}\right\rangle+s t-h_{j}\left(w^{\prime}, t\right)\right) .
\end{aligned}
$$

Hence $h_{1}^{*}=h_{2}^{*}$ on $\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$.
10. Lemma. Let h, φ, ε, and δ be as in Proposition 5. Assume that $h>0$ outside the origin. Then there is $0<\delta^{\prime} \leq \delta$ such that for all $\left(z^{\prime}, s\right) \in$ $\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0)$,

$$
h^{*}\left(z^{\prime}, s\right) \leq \varphi\left(z^{\prime}, s\right) \leq 2 h^{*}\left(z^{\prime}, s\right)
$$

Proof. Since $h>0$ outside the origin, we can choose $0<\delta^{\prime} \leq \delta$ such that
(4) $\quad \Omega^{\circ} \cap B_{\delta^{\prime}}(0,1)$

$$
=\left\{z \in \mathbb{C}^{N}: \operatorname{Re}\langle w, z\rangle \leq 1 \text { for all } w \in \partial \Omega \cap B_{\varepsilon}(0,1)\right\} \cap B_{\delta^{\prime}}(0,1)
$$

Let $\left(z^{\prime}, s\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta^{\prime}}(0)$. Then $a:=\left(z^{\prime}, 1-\varphi\left(z^{\prime}, s\right)+i s\right) \in \partial \Omega^{\circ}$, by (2). Thus by the definition of Ω°, by (4) and (1), we have

$$
\begin{aligned}
1 & =\sup _{w \in \partial \Omega \cap B_{\varepsilon}(0,1)} \operatorname{Re}\langle w, a\rangle \\
& =\sup _{\left(w^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)}\left(\operatorname{Re}\left\langle w^{\prime}, z^{\prime}\right\rangle+\left(1-h\left(w^{\prime}, t\right)\right)\left(1-\varphi\left(z^{\prime}, s\right)\right)+t s\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
1-\varphi\left(z^{\prime}, s\right) & =\inf _{\left(w^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)} \frac{1-\operatorname{Re}\left\langle w^{\prime}, z^{\prime}\right\rangle-t s}{1-h\left(w^{\prime}, t\right)} \\
& =1-\sup _{\left(w^{\prime}, t\right) \in\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\varepsilon}(0)} \frac{\operatorname{Re}\left\langle w^{\prime}, z^{\prime}\right\rangle+t s-h\left(w^{\prime}, t\right)}{1-h\left(w^{\prime}, t\right)}
\end{aligned}
$$

Since we may assume that $0 \leq h\left(w^{\prime}, t\right) \leq 1 / 2$, we obtain $h^{*}\left(z^{\prime}, s\right) \leq$ $\varphi\left(z^{\prime}, s\right) \leq 2 h^{*}\left(z^{\prime}, s\right)$.

Notation. Let Ω be a bounded convex domain of \mathbb{C}^{N} and fix $w_{0} \in \Omega$. By g_{Ω} we denote the pluricomplex Green function of Ω with pole at w_{0}, i.e. g_{Ω} is the largest negative plurisubharmonic function on Ω for which
$g_{\Omega}(z)-\log \left|z-w_{0}\right|, z \in \Omega \backslash\left\{w_{0}\right\}$, is bounded (for the existence see Klimek [2]). We consider the level sets $\Omega_{x}:=\left\{z \in \Omega: g_{\Omega}(z)<x\right\}, x<0$, which are convex by a result of Lempert (see [6], Lemma 1.2). By $H_{x}: \mathbb{C}^{N} \rightarrow \mathbb{R}$ we denote their support functions

$$
H_{x}(z):=\sup _{w \in \Omega_{x}} \operatorname{Re}\langle z, w\rangle, \quad z \in \mathbb{C}^{N}, x<0
$$

Then (see [6], Prop. 1.3) the limits

$$
\left.\left.D_{\Omega}(a):=\lim _{x \uparrow 0} \frac{H(a)-H_{x}(a)}{-x} \in\right] 0, \infty\right], \quad a \in S,
$$

exist. By [6], Thms. 1.14 and 1.20, there is $C>0$ with $C_{H} \leq D_{\Omega} \leq C C_{H}$.
11. Proposition. Let $\Omega \subset \mathbb{C}^{N}$ be a bounded convex domain normalized as in Proposition 5. Let h and φ be convex functions as there. In addition, assume that also $h>0$ outside the origin. If g_{Ω} is the pluricomplex Green function of Ω with pole at 0 , the following are equivalent:
(i) There is a plurisubharmonic saddle for h^{*}.
(ii) There is a plurisubharmonic saddle for φ.
(iii) $D_{\Omega}(0, \ldots, 0,1)<\infty$.

Proof. (i) \Leftrightarrow (ii). Since $h>0$ outside the origin, this follows from the remark in Proposition 5, Lemma 10, and Remark 2(a).
(ii) $\Leftrightarrow($ iii). By the hypothesis and by the remark in Proposition 5, we have $\varphi>0$ outside the origin. Hence we deduce from Proposition 5 that (ii) holds if and only if $C_{H}(0, \ldots, 0,1)<\infty$. By [6], Thms. 1.14 and 1.20 , this is equivalent to (iii).

For $N=1$ there is a close relation between the limits $D_{\Omega}(a)$ and the angular derivatives of the Riemann conformal mappings from the unit disc \mathbb{D} onto Ω. This relationship is applied in the proof of the following lemma.
12. Lemma. Let Ω be a bounded convex domain of \mathbb{C}^{N}. Let $w \in \partial \Omega$ and let $a \in S$ be an outer normal to $\partial \Omega$ at w. Put $\Omega^{1}:=\{z \in \mathbb{C}: z i a+w \in \Omega\}$ and let Ω^{2} be the set of all $z \in \mathbb{C}$ such that zia $+w$ is contained in the image of the orthogonal projection of Ω onto $\mathbb{C} a+w$. Then $\Omega^{1} \subset \Omega^{2} \subset$ $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Assume that there are $\varepsilon>0$ and convex functions $h_{j}:[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}_{+}$with $h_{j}(0)=0$ and

$$
\partial \Omega^{j} \cap B_{\varepsilon}(0)=\left\{t+i h_{j}(t): t \in[-\varepsilon, \varepsilon]\right\}, \quad j=1,2
$$

Let g_{Ω} be the pluricomplex Green function of Ω with pole at some fixed $w_{0} \in \Omega$. If $\int_{-\varepsilon}^{\varepsilon}\left(h_{1}(t) / t^{2}\right) d t<\infty$ then $D_{\Omega}(a)<\infty$. If $D_{\Omega}(a)<\infty$ then $\int_{-\varepsilon}^{\varepsilon}\left(\widetilde{h}_{2}(t) / t^{2}\right) d t<\infty$, where $\widetilde{h}_{2}(t):=\min \left\{h_{2}(t), h_{2}(-t)\right\},|t| \leq \varepsilon$.

Proof. After a translation followed by a unitary transformation of \mathbb{C}^{N}, we may assume that $a=(0, \ldots, 0,-i)$ and $w=0$. Since the finiteness
of $D_{\Omega}(a)$ does not depend on the choice of the pole, we may assume that $w_{0} \in \mathbb{C} a+w=\{0\} \times \mathbb{C}$, i.e. $w_{0}=\left(0, w_{0}^{\prime}\right)$. Since $\{0\} \times \Omega^{1} \subset \Omega \subset \mathbb{C}^{N-1} \times \Omega^{2}$, for the complex Green functions $g_{\Omega^{j}}$ of $\Omega^{j}, j=1,2$, with pole at w_{0}^{\prime}, the following holds:

$$
g_{\Omega^{1}}\left(z_{N}\right) \geq g_{\Omega}\left(0, z_{N}\right), \quad z_{N} \in \Omega^{1}
$$

and

$$
g_{\Omega}\left(z^{\prime}, z_{N}\right) \geq g_{\Omega^{2}}\left(z_{N}\right), \quad\left(z^{\prime}, z_{N}\right) \in \mathbb{C}^{N-1} \times \Omega^{2}
$$

Hence for the corresponding level sets $\Omega_{x}^{j}, x<0, j=1,2$, we obtain

$$
\{0\} \times \Omega_{x}^{1} \subset \Omega_{x} \subset \mathbb{C}^{N-1} \times \Omega_{x}^{2}
$$

This shows that $H_{x}^{1}(-i) \leq H(a) \leq H_{x}^{2}(-i), x<0$, for the corresponding support functions. Hence $D_{\Omega^{2}}(-i) \leq D_{\Omega}(a) \leq D_{\Omega^{1}}(-i)$.

Now the assertion follows from [5], Lemma 3.3, Ex. 4.2, [6], Lemma 2.3, and a result of Warschawski and Tsuji (see Tsuji [9], Thm. IX.10).
13. Lemma. Let $\varepsilon>0$ and let $h:[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}_{+}$be a convex function with $h(0)=0$.
(a) If $h(t)=t q(t), t>0$, with $\lim _{t \downarrow 0} q(t)=0$, such that $q(t)$ is strictly increasing for $t>0$, then there is $\delta>0$ such that for all $0<s \leq \delta$,

$$
2 q^{-1}(s) s \geq h^{*}(s) \geq q^{-1}(s / 2) s / 2
$$

(b) $\int_{-\varepsilon}^{\varepsilon}\left(h(t) / t^{2}\right) d t<\infty$ if and only if $\int_{-\delta}^{\delta} \log h^{*}(s) d s>-\infty$ for some $\delta>0$.

Proof. (a) Since $q(t)$ is strictly increasing, we have $h(t)>0$ for all $0<t \leq \varepsilon$. Fix $0<s \leq \delta$. Since $s t-t q(t) \leq 0$ for all $q^{-1}(s) \leq t \leq \varepsilon$, we obtain

$$
h^{*}(s)=\sup _{0 \leq t \leq q^{-1}(s)}(s t-h(t)) \leq \sup _{0 \leq t \leq q^{-1}(s)} s t \leq s q^{-1}(s)
$$

Let $0<s \leq \delta:=2 q(\varepsilon)$. Then $q^{-1}(s / 2) \leq \varepsilon$ and

$$
h^{*}(s) \geq s q^{-1}(s / 2)-h\left(q^{-1}(s / 2)\right)=s q^{-1}(s / 2) / 2
$$

(b) For the proof we have to consider the integrals over negative and positive numbers separately. It is no restriction to consider the positive ones only. If $q(t):=h(t) / t=c$ is constant for all $t>0$ in a neighborhood of 0 , then the assertion obviously holds (we have to distinguish the cases $c=0$ and $c>0$). Otherwise the map $t \mapsto q(t)$ is strictly increasing for $0<t \leq \varepsilon$, with $\lim _{t \downarrow 0} q(t)=0$. We claim that

$$
\begin{align*}
& \int_{\eta}^{\delta} \log \left(s q^{-1}(s)\right) d s+\int_{\eta}^{q^{-1}(\delta)} \frac{q(t)}{t} d t \tag{5}\\
& =\delta \log \left(\delta q^{-1}(\delta)\right)-q^{-1}(\delta)-q(\eta) \log (q(\eta) \eta)
\end{align*}
$$

for all $0<\eta<\delta$. Fix η. Since we may approximate the continuous function q uniformly on $[\eta, \delta]$ by strictly increasing C^{1}-functions, we may assume that q itself is of class C^{1}. We obtain

$$
\begin{aligned}
\int_{\eta}^{\delta} \log \left(s q^{-1}(s)\right) d s & =\int_{0}^{q^{-1}(\delta)} \log (q(t) t) q^{\prime}(t) d t \\
& =[\log (q(t) t) q(t)]_{\eta}^{q^{-1}(\delta)}-\left(\int_{\eta}^{q^{-1}(\delta)} q^{\prime}(t) d t+\int_{\eta}^{q^{-1}(\delta)} \frac{q(t) d t}{t}\right)
\end{aligned}
$$

This proves (5).
Let $\int_{0}^{\varepsilon}\left(h(t) / t^{2}\right) d t<\infty$. Since $\lim \sup _{t \downarrow 0} q(t) \log (q(t) t) \leq 0$, we deduce from (5) letting $\eta \downarrow 0$ that $\int_{0}^{\delta} \log \left(s q^{-1}(s)\right) d s>-\infty$. This proves $\int_{0}^{\delta} \log h^{*}(s) d s>-\infty$.

Let $\int_{0}^{\delta} \log h^{*}(s) d s>-\infty$, i.e. $\int_{0}^{\delta} \log \left(s q^{-1}(s)\right) d s>-\infty$. Since for all $0<t<\varepsilon$ we have $q(t) \leq \delta$ and

$$
-\infty<\int_{0}^{\delta} \log \left(s q^{-1}(s)\right) d s \leq \int_{0}^{q(t)} \log \left(s q^{-1}(s)\right) d s \leq q(t) \log (q(t) t)
$$

we get $\liminf _{t \downarrow 0} q(t) \log (q(t) t)>-\infty$. Hence by (5), we get $\int_{0}^{\varepsilon}\left(h(t) / t^{2}\right) d t$ $<\infty$.
14. Proposition. Let $N=1, \delta>0$, and let $\varphi:[-\delta, \delta] \rightarrow \mathbb{R}_{+}$be convex with $\varphi(0)=0$ and with $\varphi(y)=\varphi(-y),|y| \leq \delta$. There is a subharmonic saddle for φ if and only if

$$
\int_{0}^{\delta} \log \varphi(t) d t>-\infty
$$

Proof. If $\varphi=0$ in a neighborhood of 0 , the integral equals $-\infty$, and by the maximum principle, there is no subharmonic saddle for φ. If $\varphi(y)=c|y|$ in a neighborhood of 0 , the integral converges, and by Example 3, there is a subharmonic saddle for φ. Thus we may assume that $\varphi>0$ outside the origin and that $\lim _{y \rightarrow 0} \varphi(y) /|y|=0$. We choose a bounded convex domain Ω in \mathbb{C} such that (2) holds. By Proposition 11 (and the remark in Proposition 5), there is a subharmonic saddle for φ if and only if $D_{\Omega}(1)<\infty$. By Lemmas 12,10 and 13 , this is equivalent to $\int_{0}^{\delta} \log \varphi(t) d t>-\infty$.
15. Remark. Let $\delta>0$ and let $\varphi:\left(\mathbb{C}^{N-1} \times \mathbb{R}\right) \cap B_{\delta}(0) \rightarrow \mathbb{R}_{+}$be a convex function with $\varphi(0)=0, \varphi>0$ outside the origin, and $\varphi(y)=\varphi(-y)$ for all y. If there is no plurisubharmonic saddle for φ, then the following holds:

Each plurisubharmonic function u on $B_{\delta^{\prime}}(0)\left(0<\delta^{\prime} \leq \delta\right)$ which satisfies

$$
u\left(z^{\prime}, z_{N}\right) \leq \varphi\left(z^{\prime}, \operatorname{Im} z_{N}\right), \quad z=\left(z^{\prime}, z_{N}\right) \in \mathbb{C}^{N-1} \times \mathbb{C}
$$

vanishes on $\{0\} \times \mathbb{R}$ if $u(0)=0$.
Proof. Consider $[a, b]:=\left\{s \in\left[\delta^{\prime}, \delta^{\prime}\right]: u(0, s)=0\right\}$. If for example $b \neq \delta^{\prime}$, then

$$
v(z):=\frac{1}{2}\left(u(z+(0, b))+u(-z+(0, b)), \quad z=\left(z^{\prime}, z_{N}\right) \in \mathbb{C}^{N-1} \times \mathbb{C},\right.
$$

would be a plurisubharmonic saddle for φ.

References

[1] C. O. Kiselman, The partial Legendre transform for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148.
[2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
[3] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of \mathbb{C}^{N}, Math. USSR-Izv. 36 (1991), 497-517.
[4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
[5] S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), 85-103.
[6] -, The boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75.
[7] -, Extremal plurisubharmonic functions associated to convex pluricomplex Green functions with pole at infinity, J. Reine Angew. Math., to appear.
[8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
[9] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
[10] V. P. Zakharyuta, Extremal plurisubharmonic functions, Hilbert scales and isomorphisms of spaces of analytic functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., part I, 19 (1974), 133-157, part II, 21 (1974), 65-83 (in Russian).

Mathematisches Institut
Heinrich-Heine-Universität
Universitätsstr. 1
40225 Düsseldorf, Germany

[^0]: 1991 Mathematics Subject Classification: 31A05, 32F05.
 Key words and phrases: extremal plurisubharmonic functions, uniqueness theorem, convex sets.

