ANNALES POLONICI MATHEMATICI LXIII.3 (1996)

Convergence of iterates of Lasota–Mackey–Tyrcha operators

by WOJCIECH BARTOSZEK (Pretoria)

Abstract. We provide sufficient and necessary conditions for asymptotic periodicity of iterates of strong Feller stochastic operators.

1. Let (X, d) be a locally compact, metric, Polish space and \mathcal{B} denote the σ -algebra of Borel subsets in X. Given a σ -finite measure μ on (X, \mathcal{B}) we denote by $(L^1(\mu), \|\cdot\|)$ the Banach lattice of μ -integrable functions on X. Functions which are equal μ -almost everywhere are identified. A linear operator P on $L^1(\mu)$ is called *stochastic* (or *Markov* according to Lasota's terminology) if

$$Pf \ge 0$$
 and $\int_X Pf \, d\mu = 1$

for all nonnegative and normalized (densities) $f \in L^1(\mu)$. The convex set of all densities is denoted by \mathcal{D}_{μ} (simply \mathcal{D} if $X = \mathbb{R}_+$ and μ is the Lebesgue measure on \mathbb{R}_+). If there exists a Borel measurable function $k : X \times X \to \mathbb{R}_+$ such that

$$Pf(x) = \int_{X} k(x, y) f(y) \, d\mu(y)$$

then P is called a *kernel operator*.

We notice that each kernel stochastic operator may be extended to the Banach lattice M(X) of all bounded signed Borel measures on (X, \mathcal{B}) . Namely, if $\nu \in M(X)$ and A is Borel we define

[281]

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B38, 47B65, 47G10; Secondary 45D05, 60J05.

Key words and phrases: stochastic (Markov) operator, strong Feller kernel, stationary density, asymptotic periodicity.

I thank the Foundation for Research Development for financial support.

W. Bartoszek

$$P\nu(A) = \int_X \int_X k(x,y) \mathbf{1}_A(x) \, d\mu(x) \, d\nu(y).$$

Obviously $P\nu \in L^1(\mu)$.

The paper is particularly devoted to stochastic kernel operators on $L^1(\mathbb{R}_+)$ with kernels

(*)
$$k(x,y) = \begin{cases} -\frac{\partial}{\partial x} H(Q(\lambda(x)) - Q(y)) & \text{if } 0 \le y \le \lambda(x) \\ 0 & \text{otherwise.} \end{cases}$$

They appear in mathematical modelling of the cell cycle. A systematic study of the asymptotic properties of iterates of (*) is being continued by Lasota and his collaborators. The reader is referred to [6] for a comprehensive and updated review of the subject. Here we shall concentrate on the mathematical side rather than on biological applications. Our paper often refers to [1]. Following it we shall assume:

- (H) $H : [0, \infty) \to [0, \infty)$ is nonincreasing and absolutely continuous, H(0) = 1 and $\lim_{x \to \infty} H(x) = 0$,
- $\begin{array}{ll} (\mathrm{Q}\lambda) & Q : [0,\infty) \to [0,\infty) \text{ and } \lambda : [0,\infty) \to [0,\infty) \text{ are nondecreasing, absolutely continuous, } Q(0) = \lambda(0) = 0 \text{ and } \lim_{x\to\infty} Q(x) = \lim_{x\to\infty} \lambda(x) = \infty. \end{array}$

The class of stochastic operators P with kernels (*) satisfying (H) and $(Q\lambda)$ is denoted by LMT (Lasota, Mackey, Tyrcha (cf. [7]) who contributed much to the discussed matters). It has recently been proved in [1] that if a LMT stochastic operator P additionally satisfies:

- $\begin{array}{ll} (\alpha) & \int_0^\infty x^\alpha h(x)\,dx < \liminf_{x\to\infty} Q(\lambda(x))^\alpha Q(x)^\alpha \mbox{ for some } 0 < \alpha \leq 1, \\ & \mbox{ where } h(x) = -dH(x)/dx \mbox{ for almost all } x, \mbox{ and } \end{array}$
- (c) there exists a nonnegative c such that h(x) > 0 for almost all $x \ge c$,

then there exists a unique $f_* \in \mathcal{D}$ such that

$$\lim_{n \to \infty} \|P^n f - f_*\| = 0 \quad \text{ for all } f \in \mathcal{D}$$

(*P* is asymptotically stable). In this paper we drop condition (c) and prove that the iterates of a LMT operator with (H), (Q λ) and (α) are strong operator topology convergent to a finite-dimensional projection (with a slight abuse of the terminology such operators are also called *stable* (cf. [9])).

We begin with considering a general case. Let us recall (cf. [10]) that a kernel stochastic operator P on $L^1(\mu)$ is called *strong Feller in the strict* sense if

(SFS)
$$X \ni y \to k(\cdot, y) \in \mathcal{D}_{\mu}$$
 is L^1 -norm continuous.

Note that (SFS) implies the continuity of P^*h , where $h \in L^{\infty}(\mu)$ and P^* stands for the adjoint operator. This easily follows from $P^*h(y) = \int_X k(x,y)h(x) d\mu(x)$. It is also well known that if X is compact then (SFS) kernel stochastic operators are compact (see [10]). More details concerning asymptotic properties of iterates of compact (or quasi-compact) positive contractions on Banach lattices can be found in [3] and [4].

If X is not compact then (SFS) does not guarantee automatically any regularity of the trajectories $P^n f$. For instance, it may happen that for some $f \in \mathcal{D}_{\mu}$ the sequence $P^n f$ converges to a density, while for other fwe have $\int_K P^n f d\mu \to 0$ for every compact $K \subset X$. Roughly speaking, starting from "good" states the process is rather concentrated, but starting from "bad" states it escapes to "infinity". Also all mixed situations may occur. The so-called Doeblin condition is never satisfied if the transition kernels $k(\cdot, \cdot)$ do not allow "long jumps" (i.e. if $d(y, z) \to \infty$ implies $\int_X |k(x, y) - k(x, z)| d\mu(x) \to 0$).

For noncompact X, in order to obtain asymptotic regularity of iterates of (SFS) stochastic operators, we must impose some extra assumptions. Following [5] we say that a stochastic operator P on $L^1(\mu)$ is asymptotically periodic if there exist densities $g_1, \ldots, g_r \in L^1(\mu)$ with disjoint supports, functionals $\Lambda_1, \ldots, \Lambda_r$ on $L^1(\mu)$ and a permutation α of $\{1, \ldots, r\}$ so that for all $f \in L^1(\mu)$ we have

$$\lim_{n \to \infty} \left\| P^n f - \sum_{j=1}^r \Lambda_j(f) g_{\alpha^n(j)} \right\| = 0.$$

P is said to be *constrictive* if there exists an L^1 -norm compact set $\mathcal{F} \subseteq \mathcal{D}_{\mu}$ such that $\operatorname{dist}(P^n f, \mathcal{F}) \to 0$ for all $f \in \mathcal{D}_{\mu}$. It has been proved in [5] that each constrictive stochastic operator P on $L^1(\mu)$ is asymptotically periodic.

Given a (SFS) stochastic operator P on $L^1(\mu)$ we identify here an invariant sublattice on which P is asymptotically periodic. This sublattice appears to be trivial exactly when for each compact $K \subseteq X$ there exists $f \in \mathcal{D}_{\mu}$ such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N-1} \int_{K} P^{j} f \, d\mu = 0.$$

Condition (SFS) is usually easy to verify. We remark that many important kernels used in mathematical modelling of biological systems have this property. For instance, using [8], Theorem 7.4.8, we easily check that if $y_n \to y$ then

W. Bartoszek

$$\int_{0}^{\infty} \left| \frac{\partial}{\partial x} H(Q(\lambda(x)) - Q(y)) - \frac{\partial}{\partial x} H(Q(\lambda(x)) - Q(y_n)) \right| dx$$
$$= \int_{0}^{\infty} |h(Q(\lambda(x)) - Q(y)) - h(Q(\lambda(x)) - Q(y_n))| (Q \circ \lambda)'(x) dx$$
$$= \int_{0}^{\infty} |h(t - Q(y)) - h(t - Q(y_n))| dt \xrightarrow[n \to \infty]{} 0,$$

with our convention that $h(x) \equiv 0$ if $x \leq 0$. Hence LMT operators satisfy (SFS).

2. The purpose of this section is to show asymptotic periodicity of (SFS) operators. The reader can view it as a generalization of [2].

We denote by $C_0(X)$ the Banach lattice of all continuous functions h on X such that for every $\varepsilon > 0$ there exists a compact set $E_{\varepsilon} \subseteq X$ such that $|h(x)| \leq \varepsilon$ for all $x \notin E_{\varepsilon}$ (endowed with the ordinary sup-norm $\|\cdot\|_{\sup}$). Given a stochastic operator P we denote by F the minimal (modulo sets of measure zero) measurable set which carries supports of all P-invariant densities (its existence follows from separability of the $L^1(\mu)$). Obviously $L^1(F)$ is P-invariant.

The next result, which will be the main ingredient of the proofs in Section 3, is also of some independent interest.

THEOREM 1. Let P be a (SFS) stochastic operator on $L^1(\mu)$ such that P^* preserves $C_0(X)$. If

(i) there exists a compact set $K \subseteq X$ such that

$$\lim_{N \to \infty} \frac{1}{N} \int_{K} \sum_{j=0}^{N-1} P^{j} f \, d\mu > 0 \quad \text{for all } f \in \mathcal{D}_{\mu},$$

then F is nontrivial and P is asymptotically periodic on $L^1(F)$. In particular, there are only finitely many P-invariant ergodic densities.

Proof. The set of all subprobabilistic positive measures on X is a compact convex set with respect to the vague topology (we say that a variation norm bounded sequence of measures ν_n is vaguely convergent to ν if $\lim_{n\to\infty} \int_X h \, d\nu_n = \int_X h \, d\nu$ for all $h \in C_0(X)$). Given $f \in \mathcal{D}_{\mu}$ we may choose a sequence $n_k \nearrow \infty$ so that the measures with densities

$$\frac{1}{n_k}\sum_{j=0}^{n_k-1}P^jf = A_{n_k}f$$

are vaguely convergent. By (i) the limit ν is nonzero and $PA_{n_i}f$ tends to

 $P\nu$ vaguely. Since

$$\|A_{n_k}f - PA_{n_k}f\| = \left\|\frac{P^{n_k}f - f}{n_k}\right\| \xrightarrow[k \to \infty]{} 0$$

we conclude that $\nu = P\nu \in L^1(\mu)$ is a fixed point of P. Normalizing ν if necessary we obtain a P-invariant density.

Now we show that the linear subspace (sublattice) $\operatorname{Fix}(P)$ of all *P*-invariant functions is finite-dimensional. Assume we are given pairwise orthogonal *P*-invariant densities f_1, \ldots, f_k . By (i) we have $\int_K f_j d\mu > 0$. Consider the following family of (restricted to *K*) continuous functions:

$$g_j = (P^* \mathbf{1}_{F_j})|_K$$
, where $F_j = \operatorname{supp}(f_j)$.

Clearly

$$g_j(x) = 1$$
 for all $x \in \overline{F}_j \cap K_j$

and

$$g_j(x) = 0$$
 if $x \in \bigcup_{l \neq j} \overline{F}_l \cap K$

As a result, $||g_j - g_l||_{\sup} = 1$ for $j \neq l$. The condition (SFS) combined with the Arzelà theorem easily gives $|| \cdot ||_{\sup}$ -compactness of $\overline{P^*B_1}|_K$, where B_1 stands for the unit ball of $L^{\infty}(\mu)$. Hence, k is bounded and there are only finitely many ergodic P-invariant densities f_1, \ldots, f_r .

For fixed $1 \leq j \leq r$ we show that P is asymptotically periodic on $L^1(F_j)$. First we notice that each trajectory

$$\gamma(f) = \{P^n f\}_{n \ge 0}, \quad \text{where} \quad f \in L^1(F_j),$$

is L^1 -norm relatively compact. We may confine discussion to $0 \le f \le f_j$. Clearly $\gamma(f)$ is weakly compact, which follows from invariance and weak compactness of the order interval $[0, f_j] = \{f \in L^1(F_j) : 0 \le f \le f_j\}$ (see [11], II.5.10). Let $P^{n_l}f$ be an arbitrary sequence. We choose a subsequence $P^{n_{l_m}}f$ which is weakly convergent to \tilde{f} . Suppose $P^{n_{l_m}}f$ is not norm relatively compact. Choosing a further subsequence if necessary we may assume that

$$||P^{n_{l_{m+1}}+1}f - P^{n_{l_m}+1}f|| > \varepsilon$$

for some $\varepsilon > 0$ and all m. By Prokhorov's theorem the sequence of densities $P^n f$ is tight. Hence there exists a compact set $K_{\varepsilon} \subseteq X$ such that for all n,

$$\int_{X\setminus K_{\varepsilon}} P^n f \, d\mu \le \varepsilon/4$$

Now we find $h_m \in L^{\infty}(F_j)$ with $|h_m| \leq 1$ so that

$$\int\limits_X P(P^{n_{l_{m+1}}}f - P^{n_{l_m}}f)h_m \, d\mu > \varepsilon.$$

Then

$$\int_{K_{\varepsilon}} (P^{n_{l_{m+1}}}f - P^{n_{l_m}}f)P^*h_m \, d\mu \ge \varepsilon/2.$$

As before $\{P^*h_m|_{K_{\varepsilon}}\}_{m=1}^{\infty}$ is relatively compact for the uniform convergence on K_{ε} . Choosing again a subsequence we may assume that $P^*h_m \to h$ uniformly on K_{ε} . This leads to a contradiction as

$$\varepsilon/2 \leq \overline{\lim}_{m \to \infty} \int_{K_{\varepsilon}} (P^{n_{l_{m+1}}} f - P^{n_{l_m}} f) P^* h_m d\mu$$
$$= \lim_{m \to \infty} \int_{K_{\varepsilon}} (P^{n_{l_{m+1}}} f - P^{n_{l_m}} f) h d\mu = 0.$$

We denote by Ω_j the subspace of all L^1 -norm recurrent $f \in L^1(F_j)$. It is well known that Ω_j consists of all limit vectors in $L^1(F_j)$ (see [3], [4] for all details). Given a sequence $\underline{n} = n_k \nearrow \infty$ we denote the by $\Omega_{\underline{n}}$ the closed sublattice of Ω_j consisting of all vectors f which are recurrent along the sequence n_k (i.e. $\|P^{n_k}f - f\| \to 0$ as $k \to \infty$). We notice that regardless of the dimension of $\Omega_{\underline{n}}$, for every compact $C \subseteq X$ the restricted sublattice $\Omega_{\underline{n}}|_C$ is finite-dimensional. In fact, $\dim \Omega_{\underline{n}}|_C \leq r_C$, where r_C denotes the largest j such that there are $0 \leq h_1, \ldots, h_j \leq 1, h_l \in P^*B_1$, with

$$\sup_{x \in C} |h_l(x) - h_{\tilde{l}}(x)| = 1$$

for distinct l, \tilde{l} (it follows from (SFS) that r_C is finite). Let $\tilde{g}_1 = \beta_1 g_1 |_C, \ldots, \tilde{g}_{r_C} = \beta_{r_C} g_{r_C} |_C$ form a normalized, positive and orthogonal basis in $\Omega_{\underline{n}}|_C$ (for some $\beta_l \geq 1$ and $g_l \in \Omega_{\underline{n}}$). Given $\varepsilon > 0$ we find a compact set $C = C_{\varepsilon} \subseteq X$ such that

$$\int\limits_C f_j \, d\mu > 1 - \varepsilon$$

It follows from the ergodicity of f_j that for each density $g \in \Omega_{\underline{n}}$ we have $A_n g \to f_j$ in $L^1(F_j)$. Hence there exists n such that

$$\int\limits_C P^n g \, dx > 1 - \varepsilon.$$

We have

$$P^n g|_C = \sum_{l=1}^{r_C} \alpha_l \widetilde{g}_l, \text{ where } \alpha_l \ge 0, \text{ and } 1 \ge \sum_{l=1}^{r_C} \alpha_l > 1 - \varepsilon.$$

Equivalently, for each $g \in \Omega_{\underline{n}}$ there is a natural n so that

$$\operatorname{dist}(P^n g, \operatorname{conv}\{\widetilde{g}_1, \ldots, \widetilde{g}_{r_C}, 0\}) < \varepsilon.$$

Therefore,

$$\operatorname{dist}(P^{n+k}g, \mathcal{F}_{\varepsilon,\underline{n}}) \leq \varepsilon \quad \text{for all } k \geq 0$$

where $\mathcal{F}_{\varepsilon,n}$ denotes the L^1 -norm closure of the set

$$\left\{\sum_{l=1}^{r_{C}} \alpha_{l} P^{k} \widetilde{g}_{l} : k = 0, 1, 2, \dots, \sum_{l=1}^{r_{C}} \alpha_{l} \le 1, \ \alpha_{l} \ge 0\right\}$$

As all trajectories in $L^1(F_j)$ are norm relatively compact the set $\mathcal{F}_{\varepsilon,\underline{n}}$ is compact. Clearly it is *P*-invariant. Hence by recurrence of P^ng we obtain

$$\operatorname{dist}(g, \mathcal{F}_{\varepsilon, n}) \leq \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this implies that the set of all densities from $\Omega_{\underline{n}}$ is relatively compact, and $\Omega_{\underline{n}}$ is finite-dimensional with dim $\Omega_{\underline{n}} \leq r_C$. Moreover, P has a positive inverse on $\Omega_{\underline{n}}$, so from the general theory of Markov operators P permutes vectors of a unique, positive, normalized and orthogonal basis in $\Omega_{\underline{n}}$. In particular, P is periodic (i.e. $P^{d} = \text{Id}$, where $d = d(\underline{n})$ depends on \underline{n}) on $\Omega_{\underline{n}}$.

For arbitrary $\Omega_{\underline{n}}$, $\Omega_{\underline{m}}$ we may find d (for instance $d = d(\underline{n}) \cdot d(\underline{m})$) such that $\Omega_n, \Omega_m \subseteq \Omega_{\{kd\}}$. Hence,

$$\dim \Omega_j|_C = \dim\{f|_C : f \in \Omega_j\} \le r_C.$$

Repeating the arguments applied to $\Omega_{\underline{n}}|_{C}$, we construct a compact set $\mathcal{F}_{\varepsilon}$ such that

$$\operatorname{list}(g, \mathcal{F}_{\varepsilon}) \leq \varepsilon$$
 for all densities $g \in \Omega_j$.

Since ε may be taken as small as we wish, Ω_j is finite-dimensional. For each density $f \in L^1(F_j)$ the iterates $P^n f$ are attracted to the set $\mathcal{D}_{\mu} \cap \Omega_j$, which obviously is norm compact. In particular, P is constrictive. By [5] (see also [2]–[4]), P is asymptotically periodic on $L^1(F_j)$. We easily extend this property to $L^1(F)$ where $F = \bigcup_{j=1}^r F_j$.

We want to emphasize that if P satisfies (SFS) and P^* preserves $C_0(X)$, and F is nontrivial, then for each $f \in L^1(F)$ and $\varepsilon > 0$ there exists f_{ε} such that $||f - f_{\varepsilon}|| \leq \varepsilon$ and the trajectory $\gamma(f_{\varepsilon})$ asymptotically becomes periodic (i.e. $\omega(f_{\varepsilon}) = \{\tilde{f} : \underline{\lim}_{n \to \infty} ||P^n f_{\varepsilon} - \tilde{f}|| = 0\}$ is finite, and P permutes $\omega(f_{\varepsilon})$). Then we may say that P is almost asymptotically periodic on $L^1(F)$. In contrast to this, one can show that the substochastic operator \tilde{P} defined on $L^1(F^c)$ by $\tilde{P}f = (Pf)|_{F^c}$ (where $F^c = X \setminus F$) is Cesàro sweeping (consult [6] for the terminology). For general $f \in \mathcal{D}_{\mu}$ the asymptotic properties of the trajectory $\gamma(f)$ depend on

$$\delta(f) = \lim_{n \to \infty} \int_F P^n f \, d\mu.$$

If $\delta(f) > 0$ then an asymptotically nontrivial portion of $P^n f$ behaves periodically. The case when the quantity $\delta(f)$ is uniformly separated from 0, for all $f \in \mathcal{D}$, is discussed below.

COROLLARY 1. Let P be a kernel stochastic operator on $L^1(\mu)$ satisfying (SFS) and such that P^* preserves $C_0(X)$. Then the following conditions are equivalent:

- (i) P is asymptotically periodic on $L^{1}(\mu)$,
- (ii) there exist a compact set $K \subseteq X$ and $\delta > 0$ such that

$$\lim_{n \to \infty} \int_{K} \frac{f + Pf + \ldots + P^{n-1}f}{n} d\mu > \delta \quad \text{for all } f \in \mathcal{D}_{\mu}.$$

Proof. Only (ii) implies (i) needs to be proved. By Theorem 1 it is enough to show that for each $f \in \mathcal{D}_{\mu}$ we have

$$\lim_{n \to \infty} \int\limits_{F} P^n f d\mu = 1$$

(here we may repeat essentially the same arguments as in the proof of Theorem 1.3 in [1], but for the sake of completeness we provide a full proof). Choosing a subsequence if necessary we may assume that

$$\left(\frac{1}{n_k}\sum_{j=0}^{n_k-1}P^jf\right)\Big|_K \xrightarrow{k\to\infty} f_*|_K$$

in the L^1 -norm, where f_* is *P*-invariant. By (ii) we easily get $\delta < ||f_*|_K||$. As a result, for every $f \in \mathcal{D}_{\mu}$ there is a natural *n* so that

$$\int_{F} P^{n} f \, d\mu > \delta.$$

Suppose that there exists $f \in \mathcal{D}_{\mu}$ with $\delta(f) < 1$. If m is large enough then

$$\int_{F} P^{m} f \, d\mu > \delta(f) - \frac{(1 - \delta(f))\delta}{2}.$$

Consider

$$f_1 = \frac{\mathbf{1}_{F^c} P^m f}{\int_{F^c} P^m f \, d\mu}.$$

There is n such that

$$\int_{F} P^{n} f_{1} d\mu = \frac{1}{\int_{F^{c}} P^{m} f d\mu} \int_{F} P^{n}(\mathbf{1}_{F^{c}} P^{m} f) d\mu > \delta.$$

Thus,

Convergence of iterates

$$\begin{split} \int_{F} P^{n+m} f \, d\mu &= \int_{F} P^{n} (\mathbf{1}_{F} P^{m} f + \mathbf{1}_{F^{c}} P^{m} f) \, d\mu \\ &= \int_{F} P^{n} (\mathbf{1}_{F} P^{m} f) \, d\mu + \int_{F} P^{n} (\mathbf{1}_{F^{c}} P^{m} f) \, d\mu \\ &> \int_{F} P^{m} f \, d\mu + \delta \int_{F^{c}} P^{m} f \, d\mu \\ &\geq \delta(f) - \frac{(1 - \delta(f))\delta}{2} + (1 - \delta(f))\delta \\ &= \delta(f) + \frac{(1 - \delta(f))\delta}{2} > \delta(f), \end{split}$$

contradicting the definition of $\delta(f)$.

Comment. We remark that all the above results remain valid for P being *strongly Feller* (i.e. P^*h is continuous for all bounded measurable h). In fact, it is well known (see Theorem 5.9 on p. 37 of [10]) that strong Feller implies (SFS) for P^2 .

3. In this section we study asymptotic properties of the iterates of LMT operators. It has been just noticed that they are strong Feller in the strict sense. Since

$$k(x,y) = -\frac{\partial}{\partial x}H(Q(\lambda(x)) - Q(y)) = 0$$

if

$$x \le \lambda_*^{-1}(y) = \inf\{0 \le z : \lambda(z) = y\},$$

and $\lambda_*^{-1}(y)$ tends to ∞ with y, it follows that P^* preserves $C_0(\mathbb{R}_+)$. Therefore the results of Section 2 are applicable.

THEOREM 2. Let P be a LMT stochastic operator associated with H, Q, λ . Assume that there exist a > 0 and $\delta > 0$ so that

$$\lim_{n \to \infty} \int_{0}^{a} \frac{f + Pf + \ldots + P^{n-1}f}{n} dx > \delta \quad \text{for all } f \in \mathcal{D}.$$

Then

(a) $a_* = \sup\{x \ge 0 : \lambda(x) \le x\} < a$,

(b) Fix(P) is finite-dimensional and $\lim_{n\to\infty} ||P^n f - Sf|| = 0$ for all $f \in L^1(\mathbb{R}_+)$, where S is a stochastic projection onto Fix(P),

(c) dim Fix(P) $\leq \lceil a/T(P,a) \rceil$, where $T(P,r) = \sup\{t > 0 : if \ 0 \leq y, \\ \widetilde{y} \leq r \text{ and } |y - \widetilde{y}| \leq t \text{ then } ||k(\cdot, y) - k(\cdot, \widetilde{y})|| < 2\}$ and $\lceil z \rceil$ stands for the smallest natural number greater than or equal to z. In particular, P is asymptotically stable if $T(P,a) \geq a$.

Proof. By Corollary 1 the operator P is asymptotically periodic. If $\lambda(x) \leq x$ then the space $L^1([x,\infty))$ is P-invariant. By easy calculations, $P^* \mathbf{1}_{[c,d)}(y)$

$$= \begin{cases} H(Q(\lambda(c)) - Q(y)) - H(Q(\lambda(d)) - Q(y)) & \text{if } 0 \le y < \lambda(c), \\ 1 - H(Q(\lambda(d)) - Q(y)) & \text{if } \lambda(c) \le y < \lambda(d), \\ 0 & \text{if } \lambda(d) \le y. \end{cases}$$

If $\lambda(c) \leq c$ then substituting $d = \infty$ we get

$$P^* \mathbf{1}_{[c,\infty)}(y) \ge \mathbf{1}_{[c,\infty)}(y)$$
 for all y .

Hence the set $\{x : \lambda(x) \leq x\}$ must be bounded and a_* is finite. Now it is clear that

$$\lambda(a_*) = a_* \quad \text{and} \quad a_* < a.$$

Let g_1, \ldots, g_r be a basis of positive, normalized and pairwise orthogonal functions in the space Ω of all recurrent elements and g_1, \ldots, g_l be a cycle (i.e. $Pg_j = g_{j+1}$ for $1 \leq j \leq l$, where j + 1 is understood modulo l). Define $D_j = \text{supp } g_j$ and $c_j = \text{ess inf } D_j$. Then we have

(
$$\beta$$
) $P^* \mathbf{1}_{D_j}(y) = \begin{cases} 1 & \text{if } y \in \overline{D}_{j-1}, \\ 0 & \text{for all } y \in \overline{D}_s & \text{if } s \neq j-1. \end{cases}$

We may assume that $\max\{c_1, \ldots, c_l\} = c_l$. Thus,

$$P^*\mathbf{1}_{[c_l,\infty)} \ge P^*\mathbf{1}_{D_l} \ge \mathbf{1}_{D_{l-1}}.$$

By continuity,

$$P^*\mathbf{1}_{[c_l,\infty)}(c_{l-1}) = P^*\mathbf{1}_{D_l}(c_{l-1}) = 1.$$

Since

$$P^* \mathbf{1}_{[c_l,\infty)}(y) = \begin{cases} H(Q(\lambda(c_l)) - Q(y)), & 0 \le y \le \lambda(c_l) \\ 1 & \text{otherwise,} \end{cases}$$

we conclude that

$$H(Q(\lambda(c_l)) - Q(y)) = 1 \quad \text{for all } c_{l-1} \le y \le \lambda(c_l).$$

Therefore

$$P^*\mathbf{1}_{[c_l,\infty)} \ge \mathbf{1}_{[c_{l-1},\infty)} \ge \mathbf{1}_{[c_l,\infty)}.$$

This implies that $L^1([c_l, \infty))$ is *P*-invariant. Since g_1, \ldots, g_l form a cycle it is possible only if $c_1 = c_2 = \ldots = c_l$. Hence l = 1, since by (β) the continuous functions $P^* \mathbf{1}_{D_j}$ would take values 0 and 1 arbitrary close to c_l . Repeating the previous discussion for other cycles, one shows that each of them reduces to a singleton, and the convergence

$$\lim_{n \to \infty} \|P^n f - Sf\| = 0$$

follows. Clearly S is a finite-dimensional stochastic projection onto $\Omega = Fix(P)$. Let F_1, \ldots, F_r be the supports of ergodic densities. We have

$$||k(\cdot, y) - k(\cdot, \widetilde{y})|| = 2$$

if y, \tilde{y} are taken from distinct sets $F_j \cap [0, a]$. This yields the estimate

 $\dim(S) \leq \lceil 1/T(P,a) \rceil. \bullet$

Combining [1], Theorem 2.1, with our Theorem 2 we immediately get

COROLLARY 2. Let P be a LMT stochastic operator and suppose there exist positive ε, ϱ, a and $0 < \alpha \leq 1$ such that

$$\varepsilon + \int_{0}^{\infty} x^{\alpha} h(x) dx < \varrho < Q(\lambda(t))^{\alpha} - Q(t)^{\alpha} \quad \text{for all } t \ge a.$$

Then there exists a finite-dimensional stochastic projection S such that

$$\lim_{n \to \infty} \|P^n f - Sf\| = 0 \quad \text{for all } f \in L^1(\mathbb{R}_+).$$

Moreover, $\dim(S) \leq \lceil a/T(P,a) \rceil$.

Proof. By [1] (see the proof of Theorem 2.1) for every $f \in \mathcal{D}$ there exists a natural $n_0(f)$ such that

$$\frac{1}{n}\sum_{j=0}^{n-1}\int_{0}^{a}P^{j}fdx \ge \frac{\varepsilon}{2M} \quad \text{for all } n \ge n_{0}(f),$$

where $M = \sup\{|Q(\lambda(x))^{\alpha} - Q(x)^{\alpha} - \varrho| : 0 \le x \le a\}$. Now we can apply Theorem 2. \blacksquare

References

- K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 57 (1993), 161–175.
- W. Bartoszek, Asymptotic stability of the iterates of contractions on Banach lattices, in: Proc. Internat. Conf. on Function Spaces, Poznań 1986, J. Musielak (ed.), Teubner, Leipzig, 1987, 153–157.
- [3] —, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179–188.
- [4] —, Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices, Ann. Polon. Math. 52 (1990), 165–173.
- [5] A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), 751–764.
- [6] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1993.
- [7] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biology 30 (1992), 775–800.

W. Bartoszek

- [8] S. Lojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
- F. Räbiger, Attractors and asymptotic periodicity of positive operators on Banach lattices, Tübingen Ber. Funktionanal. 3 (1993/94), 184-203.
- [10] D. Revuz, Markov Chains, Elsevier, Amsterdam, 1984.
- [11] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974.

Department of Mathematics University of South Africa P.O. Box 392 Pretoria 0001, South Africa E-mail: bartowk@risc5.unisa.ac.za

> Reçu par la Rédaction le 20.11.1994 Révisé le 26.4.1995