
ANNALES
POLONICI MATHEMATICI

LXIV.1 (1996)

Generalized symmetric spaces
and minimal models
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Abstract.We prove that any compact simply connected manifold carrying a structure
of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result
generalizes Sullivan’s classical theorem on the formality of symmetric spaces, but the proof
is of a different nature, since for generalized symmetric spaces techniques based on
the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations
and the classification of 3- and 4-symmetric spaces.

1. Introduction. It is a classical result of Sullivan [15] that any Rie-
mannian symmetric space is formal. Various investigations in symplectic
geometry [13], Kählerian geometry [2], cohomology theory of transforma-
tion groups [1] and other geometric topics revealed deep relations between
formality and geometric structures. Any Kählerian compact manifold is for-
mal [2], there is a “formalizing tendency” of symplectic structures [13] etc.
On the other hand, there is a broad class of Riemannian manifolds, which
is a natural extension of that of symmetric spaces, namely, the generalized
symmetric spaces [10]. Therefore, it is quite natural (in view of Sullivan’s
theorem [15]) to ask whether generalized symmetric spaces are formal.

In the present paper we show that there are new geometric structures
implying formality of the underlying manifold, namely 3- and 4-symmetric
spaces [4, 8]. These two classes of generalized symmetric spaces play an out-
standing role in the whole theory because the geometry of manifolds carrying
a 3- or 4-symmetric structure is very rich. 3-Symmetric spaces are nearly
Kählerian, that is, ∇X(J)X = 0 for all vector fields X ∈ X(M) and for the
natural almost complex structure J determined by the 3-symmetric struc-
ture. The curvature tensor of a Riemannian 3-symmetric space is described
in [4].
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4-symmetric spaces were studied by J. A. Jiménez in [8]. They can be
fibered in a natural way over symmetric spaces, there is an interesting duality
theory, analogous to that of symmetric spaces, and some other deep results.

Main Theorem. Let M be any compact simply connected manifold car-
rying a structure of 3- or 4-symmetric Riemannian space. Then M is formal
in the sense of Sullivan.

The classical proof of formality of a symmetric space is based on the
Hodge theory [21]. One takes the unique harmonic representative in each de
Rham cohomology class and maps cohomology classes to their harmonic rep-
resentatives. Since for symmetric Riemannian spaces, harmonic =
I0(M, g)-invariant (I0(M, g) is an isometry group), the linear homomor-
phism constructed above is multiplicative, and therefore, gives formality
(see definitions below). For generalized symmetric spaces this proof does
not work. Moreover, it is known that there are non-formal homogeneous
spaces [5].

Our proof is of a different nature. It uses the technique of Koszul com-
plexes, the Thomas theory of minimal models of fibrations and Jiménez’s
and Gray’s classification of 3- and 4- symmetric spaces. This approach is of
independent interest.

The paper is organized as follows. Section 2 is devoted to generalized
symmetric spaces. Section 3 describes basic notions of rational homotopy
theory with applications to compact homogeneous spaces. The Thomas
theory of minimal models of Serre fibrations is presented in Section 4. Here
we prove the basic algebraic result of the paper (Theorem 7) and apply it
to bundles over homogeneous spaces (Theorem 8). In Section 5 we bring
together all previous results to obtain the proof of the main theorem. The
paper contains some new results on minimal models of homogeneous spaces.
These results are stated in Theorems 3, 5, 7 and 8.

2. Preliminaries on generalized symmetric spaces. Throughout
this paper we use the terminology and notations from [10]. Recall that a
generalized symmetric Riemannian space is a Riemannian manifold (M, g)
possessing at each point x ∈M an isometry sx : M →M with the isolated
fixed point x and satisfying the regularity condition

sxsy = ssx(y)sx

for any x, y ∈ M . The family {sx : x ∈ M} is called a regular Riemannian
s-structure.

Definition. If there exists a positive integer k such that skx = id for
any x ∈ M , but slx 6= id for l < k, then k is called the order of the
s-structure {sx : x ∈M} and denoted by ord{sx : x ∈M}. The smallest
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possible order ord{sx : x ∈ M} of all regular s-structures which are admit-
ted by a given generalized symmetric space (M, g) is called the order of the
generalized symmetric Riemannian space (M, g) and denoted by ord(M, g).
If ord(M, g) = 3, we call (M, g) a 3-symmetric space, and if ord(M, g) = 4,
we call it a 4-symmetric space.

The homogeneous structure of k-symmetric spaces can be described as
follows (see, e.g. [10]). Let G be the closure in the isometry group I(M, g)
of the subgroup generated by all sxs−1

y , x, y ∈M . Then G acts transitively
on M and we have

(∗) M = G/H with (Gσ)0 ⊂ H ⊂ Gσ,

where H is the isotropy subgroup of G at a fixed point in M and σ is the au-
tomorphism (of order k) of G induced by conjugation with s0; Gσ, as usual,
denotes the fixed point set of σ, and (Gσ)0 its identity component. Let g
be the Lie algebra of G and σ∗ the automorphism of g induced by σ. Since
H is compact, G/H is reductive, and g admits an Ad(H)- and σ∗-invariant
decomposition g = h ⊕ m, where h = gσ∗ is the Lie algebra corresponding
to H, and m can be identified with the tangent space of G/H at H, thus
m becomes equipped with an Ad(H)- and σ∗-invariant scalar product. Con-
versely, given a connected Lie group G and an automorphism σ of order k
of G and a subgroup H that satisfies (∗), assume that g admits an Ad(H)-
and σ∗-invariant decomposition g = h ⊕ m and m admits an Ad(H)- and
σ∗-invariant scalar product. Then G/H can be made into a Riemannian
k-symmetric space. It follows that the problem of classification of compact
connected Riemannian k-symmetric spaces is equivalent to the problem of
classifying automorphisms of order k of compact semisimple Lie algebras.
The latter classification was done by V. Kac [7]; 3- and 4-symmetric spaces
were classified by A. Gray [4] and J. A. Jiménez [8].

Since we use the classification of A. Gray and J. A. Jiménez in the proof,
we reproduce it in the compact case.

Since any compact homogeneous space G/H of maximal rank is for-
mal [5], we consider only the case of rank G > rankH.

Table 1. Compact 3-symmetric spaces, rankG > rankH

G/H

1 Spin(8)/(SU(3)/Z3)
2 Spin(8)/G2
3 G×G×G
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Table 2. Compact 4-symmetric spaces, rankG > rankH

Classical type
G/H

1 SO(2n)/U(p)× SO(q)× SO(r)
2p+ q + r = 2n, both q and r odd,
n ≥ 3, q ≥ r ≥ 1

2 SU(2n)/S(U(n)× U(1))
3 SU(2p+ q)/ Sp(p)× SO(q)
4 {U × U × U × U}/U

where U is compact simple and
simply connected, and U is
diagonally embedded in
U × U × U × U

5 {U × U}/UΘ
where U is compact simple and
simply connected, and UΘ, the
fixed point of U, is diagonally
embedded in U × U, where Θ is an
involution

Exceptional type
G/H

6 E6/SU(2)× SO(6)
7 E6/SO(7)× SO(3)
8 E6/Sp(3)T1

3. Koszul complexes and minimal models of homogeneous
spaces. We assume the reader is familiar with rational homotopy theory
(see e.g. [2], [6], [12], [17]).

We consider the category R-DGA(c) of graded commutative differential
algebras over the reals and suppose all the differentials to be of degree +1.
We say that two graded differential algebras (A, dA), (B, dB) ∈ R-DGA(c)

are c-equivalent if there is a chain of algebras (Ai, dAi) ∈ R-DGA(c), i =
1, . . . , k, starting from (A, dA) = (A1, dA1) and ending with (Ak, dAk) =
(B, dB) such that each pair ((Ai, dAi), (Ai+1, dAi+1)) is related either by a
morphism

(Ai, dAi)→ (Ai+1, dAi+1)
or by a morphism

(Ai+1, dAi+1)→ (Ai, dAi)
inducing an isomorphism in cohomology. A morphism inducing an isomor-
phism on the cohomology level is called a quasi-isomorphism. Any graded
differential algebra (A, dA) that we consider satisfies H0(A, dA) = R and
Hn(A, dA) is a finite-dimensional vector space for each n. We denote the
ideal of positive degree elements in A by A+. If V is a vector space, then

∧
V

denotes the free graded commutative algebra generated by V . If {v1, v2, . . .}
is a basis for V , then we write V = 〈v1, v2, . . .〉 and

∧
V =

∧
(v1, v2, . . .).

A graded differential algebra is minimal if (1) A ∼=
∧
V for some V and

(2) there is a basis {v1, v2, . . .} such that, for each j, dvj ∈
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(
∧

(v1, . . . , vj−1))+(
∧

(v1, . . . , vj−1))+. We say that (
∧
V, d) ∈ R-DGA(c) is

a minimal model of (A, dA) if there is a quasi-isomorphism

% : (
∧
V, d)→ (A, dA).

We use the following

Proposition 1 [12]. Any two c-equivalent graded differential algebras
have isomorphic minimal models.

In this paper we consider only smooth manifolds and their “real minimal
models”. That is, for any smooth manifold M we call the graded differential
algebra mE (which is the minimal model of the de Rham algebra of M) the
minimal model of M . We use the notation

mM = mE.

By definition, we say that a minimal algebra (
∧
V, d) is formal if it is

c-equivalent to its cohomology algebra H∗(
∧
V, d). A manifold M is called

formal if mM is formal.

R e m a r k. Of course, it is enough for our purposes to use the above
notions, but [2, 6, 12, 17] contain a more subtle topological approach.

In what follows we consider P -algebras and their Koszul complexes. The
appropriate notions are defined in [5]. Each time we deal with them, we
change the notation for a free algebra. Namely,

∧
P denotes the exterior

algebra over a finite-dimensional graded vector space P =
⊕

k Pk, graded
by odd degrees. If Q denotes an evenly graded vector space, then we use the
notation

∨
Q for the symmetric algebra over Q.

Definition. A P -algebra is a pair (S, σ), where:

(1) P =
⊕

k P
k is a finite-dimensional positively graded vector space,

(2) σ : P → S is a linear mapping, homogeneous of degree 1, which
satisfies

σ(x) · z = z · σ(x), x ∈ P, z ∈ S,
(3) S is a positively graded associative algebra with identity.

Definition. With each P -algebra S there is associated the following
graded differential algebra: In the tensor product S ⊗

∧
P define a linear

operator ∇σ by setting

∇σ(z ⊗ 1) = 0, z ∈ S,

∇σ(z ⊗ x0 ∧ . . . ∧ xp) =
p∑
i=0

(−1)i−qzσ(xi)⊗ x0 ∧ . . . ∧ x̂i ∧ . . . ∧ xp

(here and below ̂ denotes the deleting of xi).
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Direct calculations imply that S ⊗
∧
P becomes a graded differential

algebra if one defines multiplication in S ⊗
∧
P by the rule

(z ⊗ Φ)(w ⊗ Ψ) = (−1)pqzw ⊗ Φ ∧ Ψ, z ∈ S, w ∈ Sq, Φ ∈
∧p
P, Ψ ∈

∧
P.

This algebra is called the Koszul complex .
The grading in S⊗

∧
P is defined as usual: if z ∈ Sq and xi ∈ P pi , then

z ⊗ x1 ∧ . . . ∧ xm ∈ (S ⊗
∧
P )q+p1+...+pm .

Under this grading, ∇σ is a derivation of degree +1. There is a second
grading, defined as follows:

S ⊗
∧
P =

⊕
k

(S ⊗
∧
P )k,

where (S ⊗
∧
P )k = S ⊗

∧k
P . One verifies that ∇σ is homogeneous of

degree −1 with respect to this grading, which is called the lower grading .
The two gradings of S ⊗

∧
P define the bigrading given by

S ⊗
∧
P =

⊕
k,r

(S ⊗
∧
P )rk, (S ⊗

∧
P )rk = (S ⊗

∧k
P )r.

The elements of (S ⊗
∧k

P )r are called homogeneous of lower degree k and
bidegree (r, k).

Since ∇σ is the derivation of S ⊗
∧
P , the cohomology algebra H∗(S ⊗∧

P,∇σ) inherits the gradings

Hr(S ⊗
∧
P ) =

⊕
k

Hr
k(S ⊗

∧
P ), Hk(S ⊗

∧
P ) =

⊕
r

Hr
k(S ⊗

∧
P ).

The following decomposition holds:

H∗(S ⊗
∧
P ) = H0(S ⊗

∧
P )⊕H+(S ⊗

∧
P ),

where

H0(S ⊗
∧
P ) =

⊕
r

Hr(S ⊗
∧0
P ), H+(S ⊗

∧
P ) =

⊕
r

Hr
k>0(S ⊗

∧
P ).

H0(S ⊗
∧
P ) is a graded subalgebra and H+(S ⊗

∧
P ) is a graded ideal.

Consider now (S ⊗
∧
P,∇σ) ∈ R-DGA(c) and define a linear map % :

S ⊗
∧
P →

∧
P by setting

(1) %(1⊗ Ψ + z ⊗ Φ) = Ψ, Φ, Ψ ∈
∧
P, z ∈ S+.

The direct computation shows that % ◦ ∇σ = 0 and therefore % induces a
morphism %∗ : H∗(S ⊗

∧
P )→

∧
P in the category R-DGA(c).

Definition. The homomorphism %∗ is called the Samelson projection
for (S, σ), the graded space P̂ = P ∩ Im %∗ is called the Samelson subspace
of P , and the graded subspace P̃ of P such that P = P̃ ⊕ P̂ is called the
Samelson complement .
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Let now Q be an evenly graded finite-dimensional vector space with
Qk = 0 for k ≤ 0. Let

∨
Q be the corresponding symmetric algebra endowed

with the induced grading

|y1 ∨ . . . ∨ yq| = |y1|+ . . .+ |yq|.

Definition. A P -algebra (S, σ) with S =
∨
Q is called a symmetric

P -algebra.

Theorem 1 [5]. Let (
∨
Q, σ) be a symmetric P -algebra such that

H∗(
∨
Q⊗

∧
P ) has finite dimension. Then

dimP ≥ dim P̂ + dimQ,

where P̂ is the Samelson subspace of P .

Corollary [5]. The following conditions are equivalent :

(2) dimP = dim P̂ + dimQ,

(3) H+(
∨
Q⊗

∧
P̃ ) = 0.

Theorem 2 [5]. Let (
∨
Q, σ) be a symmetric P -algebra with Samel-

son subspace P̂ . Then the graded differential algebra (
∨
Q ⊗

∧
P,∇σ) is

c-equivalent to (H∗(
∨
Q⊗

∧
P,∇σ), 0) if and only if (3) holds.

Definition. Let R be any ring. A sequence a1, a2, . . . in R is called regu-
lar if no ai is a zero divisor in the factor ring R/(a1, . . . , ai−1). Here and ev-
erywhere below (a1, . . . , ai−1) stands for the ideal generated by a1, . . . , ai−1.

Theorem 3. Let (
∨
Q⊗

∧
P,∇σ) be the Koszul complex associated with

a symmetric P -algebra. Let y1, . . . , yn be a basis of P and let s = dimQ.
Suppose that H∗(

∨
Q ⊗

∧
P,∇σ) is finite-dimensional. Then the minimal

model of (
∨
Q ⊗

∧
P,∇σ) is formal if and only if the following conditions

are satisfied :

(i) dimP = n ≥ dimQ = s,
(ii) ∇σ(y1), . . . ,∇σ(ys) constitute a regular sequence in

∨
Q and

∇σ(ys+1), . . . ,∇σ(yn) ∈ (∇σ(y1), . . . ,∇σ(ys)) (after reordering if necessary).

P r o o f. By Theorem 1, (i) is satisfied for any Koszul complex with finite-
dimensional cohomology algebra. Thus, only two possibilities may occur:

(1)∇σ(y1), . . . ,∇σ(ys) form a regular sequence, ∇σ(ys+1), . . . ,∇σ(yn)∈
(∇σ(y1), . . . ,∇σ(ys)),

(2) ∇σ(y1), . . . ,∇σ(ys) form a regular sequence, and at least one of
∇σ(yj) (j > s), say ∇σ(ys+1), is not in (∇σ(y1), . . . ,∇σ(ys)), but the se-
quence ∇σ(y1), . . . ,∇σ(ys),∇σ(ys+1) is not regular.
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If (1) is satisfied, then it is known that the minimal model of (
∨
Q ⊗∧

P,∇σ) is formal. Nevertheless, we give here a simple proof. We use the
following lemma, proved in [20].

Lemma [20]. Let (A, dA) ∈ R-DGA(c) be of finite type. Let ϑ be the
ideal of A generated by the exterior generators, and let A = A/ϑ. If y is
an exterior generator of A such that the image of dAy in A is non-zero,
then H∗(Ã, d̃) = H∗(A, dA), where Ã = A/(y, dAy) and d̃ is the induced
differential on Ã.

Now, to prove the formality of the minimal model of (
∨
Q ⊗

∧
P,∇σ)

in case (1), it is enough to apply the previous lemma successively to each
∇σ(yj), j = 1, . . . , s (the regularity condition guarantees that this is possi-
ble). By this procedure one obtains

H∗(
∨
Q⊗

∧
P,∇σ) = (

∨
Q/(∇σ(y1), . . . ,∇σ(ys)))⊗

∧
(ys+1, . . . , yn),

and the natural projection

% : (
∨
Q⊗

∧
P,∇σ)→ (

∨
Q/(∇σ(y1), . . . ,∇σ(ys)))⊗

∧
(ys+1, . . . , yn)

becomes a c-equivalence. Applying now Proposition 1, one obtains the proof
in case (1).

It remains to consider the second possibility. Since the sequence
∇σ(y1), . . . ,∇σ(ys),∇σ(ys+1), . . . is not regular, it follows that ∇σ(ys+1) 6∈
(∇σ(y1), . . . ,∇σ(ys)), but ∇σ(ys+1) is a zero divisor in the quotient algebra∨
Q/(∇σ(y1), . . . ,∇σ(ys)), that is,

h · ∇σ(ys+1) = h1 · ∇σ(y1) + . . .+ hs · ∇σ(ys),
h 6∈ (∇σ(y1), . . . ,∇σ(ys)), h, hi ∈

∨
Q, i = 1, . . . , s.

Put v = h1y1 + . . .+hsys−hys+1. Obviously ∇σ(v) = 0 and v represents
a cohomology class [v] ∈ H∗(

∨
Q⊗

∧
P,∇σ).

Observe that ys+1 6∈ P̂ (recall that P̂ is the Samelson subspace). To see
this, write down the Samelson projection %, which in our case translates as

ys+1 = %∗
(
ys+1 +

s∑
j=1

gjyj +
∑
l,m

glmyl ∧ ym + . . .
)
.

The above equality implies ∇σ(ys+1) ∈ (∇σ(y1), . . . ,∇σ(ys)), because ys+1

is the image of a cocycle under %∗. Thus, one can choose the Samelson com-
plement ys+1 ∈ P̃ . But then the cohomology class [v] satisfies the condition

[v] ∈ H1(
∨
Q⊗

∧
P̃ ) ⊂ H+(

∨
Q⊗

∧
P̃ ).

Observe that [v] 6= 0. To prove this, suppose that

(4) v = h1y1 + . . .+ hsys − hys+1 = ∇σ(w).
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Then, without loss of generality, w can be chosen in the form

(5) w =
∑
k,t

hk,tyk∧yt =
s∑

k,t=1

hk,tyk∧yt+
s∑
l=1

glyl∧ys+1, hk,t, gl ∈
∨
Q.

Then, applying ∇σ to (5) one obtains from (4)

hi =
s∑

k=1

(hk,i − gk∇σ(ys+1)), h =
s∑
l=1

gl∇σ(yl),

which implies h ∈ (∇σ(y1), . . . ,∇σ(ys)), a contradiction. Thus H+(
∨
Q ⊗∧

P̃ ) 6= 0 and applying the corollary of Theorem 1 completes the proof.

Recall the notion of the Cartan algebra of a homogeneous space. We
consider compact Lie groups. To any compact homogeneous space G/H one
can assign a graded differential algebra (C,∇σ) ∈ R-DGA(c) by the proce-
dure described below. Let T , T ′ be maximal tori in G and H respectively
(T ⊃ T ′). Denote by W (G) and W (H) the Weyl groups associated with T
and T ′ and consider the corresponding W (G)- and W (H)-actions on the Lie
algebras T and T′ of T and T ′. These actions are extended in a natural way
to actions on the polynomial algebras R[T] and R[T′]:

σ(f)(x) = f(σ−1(x))

for any σ ∈ W (G) (resp. W (H)), f ∈ R[T] (resp. f ∈ R[T′]) and x ∈ T

(resp. x ∈ T′). Let R[T]W (G) and R[T′]W (H) be the subalgebras of W (G)-
and W (H)-invariants. By the Chevalley theorem,

R[T]W (G) ∼= R[f1, . . . , fn], n = rankG,

R[T′]W (H) ∼= R[u1, . . . , us], s = rankH.

Consider the usual representation of the cohomology algebra H∗(G,R) as
the exterior algebra over the primitive elements

H∗(G,R) ∼=
∧

(y1, . . . , yn).

Define

(6)

(C,∇σ) = (R[u1, . . . , us]⊗
∧

(y1, . . . , yn),∇σ),
∇σ(ui) = 0, i = 1, . . . , s,

∇σ(yj) = fj |T′ = f̃j(u1, . . . , us), j = 1, . . . , n.

Definition. The algebra (C,∇σ) defined by (6) is called the Cartan
algebra of the homogeneous space G/H.

Theorem 4 [5]. The following isomorphism holds:

mG/H
∼= m(C,∇σ).
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P r o o f. Let E be the de Rham algebra of G/H and Einv denote the
subalgebra of G-invariant forms. The following chain of c-equivalences is
proved in [5]:

E
c∼ Einv c∼ (C,∇σ).

Now, applying Proposition 1 completes the proof.

Theorem 5. Let M = G/H be a homogeneous space of a compact Lie
group G. Let (C,∇σ) be its Cartan algebra given by (6). Then M is formal
if and only if the sequence f̃1, . . . , f̃n satisfies the following conditions (after
an appropriate ordering):

(i) f̃1, . . . , f̃s constitute a regular sequence,
(ii) f̃s+1, . . . , f̃n ∈ (f̃1, . . . , f̃s).

P r o o f. Since (C,∇σ) is a particular case of (
∨
Q⊗

∧
P,∇σ), the result

follows from Theorems 3 and 4.

4. Twisted tensor products of Koszul complexes and the
Thomas theory of minimal models of rational fibrations. The proof
of the main theorem requires some facts from rational homotopy theory of
Serre fibrations. This theory was developed by Halperin, Grivel and Thomas
[18], [19]. We use the Thomas approach.

Definition. Let (A, dA) and (B, dB) be graded differential algebras,
and let f : (A, dA) → (B, dB) be a homomorphism of graded differential
algebras. Then f is said to be a KS-extension if there exists a subset E ⊂
B, E = {xα : α ∈ A} (A is an ordered set), such that

(i) if j :
∧

(E) → B is the homomorphism induced by the inclusion
E → B and if ϕ : A⊗

∧
(E)→ B is the homomorphism induced by f and j,

then ϕ is an isomorphism,

(ii) dBϕ(1⊗ xα) ∈ ϕ(A⊗
∧

(Eα)), where Eα = {xβ : β < α}.
Since dBϕ(a ⊗ 1) = dBf(a) = f(dA(a)) = ϕ(dA(a) ⊗ 1) it follows that,

if we use ϕ to identify B with A⊗
∧

(E), then dB satisfies the conditions

(7) dB(a⊗ 1) = dA(a)⊗ 1, dB(xα) ∈ A⊗
∧

(Eα).

If ε : A→ k is an augmentation, then one can define

d|∧(E) = (ε⊗ id)(dB(xα))

and therefore (
∧

(E), d) can be included in the sequence

(8) (A, dA)→ (A⊗
∧

(E), dB)→ (
∧

(E), d).

Definition. If (A, dA) is minimal and (A⊗
∧

(E), dB) is a KS-extension,
the sequence (8) is called the minimal KS-extension.
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Let

(9) F → E → B

be any Serre fibration. The following theorem was proved by Grivel, Halperin
and Thomas (independently).

Theorem 6 [18]. Let (9) be a Serre fibration satisfying the following
conditions:

(i) F is path-connected ,
(ii) π1(B) acts nilpotently on Hj(F ; k) for all j ≥ 1,
(iii) either B or F has finite k-type.

Then there exists the following minimal KS-extension, corresponding to (9):

(10) mB → mB ⊗mF → mF ,

where mB ⊗mF is a model for E, but , owing to the possible twisting of the
differential in mB ⊗mF (see (7)), not necessarily minimal.

Consider now two Koszul complexes T ,S associated with P -algebras:

T = (
∨
Q⊗

∧
P,∇1), S = (

∨
Q′ ⊗

∧
P ′,∇2),

and construct the KS-extension

T → T ⊗τ S → S,
where the additional symbol τ expresses the “twisting” of the differential.
Formulae (7) show that the derivation dτ is determined by a linear map
τ : P ′ → Z(T ) such that

(11) dτ |Q = dτ |Q′ = 0, dτ |P = ∇1|P , dτ |P ′ = ∇2 + τ |P ′ .
It is convenient to use the notion of pureness, introduced in [13].

Definition. Let
∧

(V, d) = (
∧
V even ⊗

∧
V odd, d) be a minimal graded

differential algebra. This algebra is called pure if

d(V odd) ⊂
∧
V even.

R e m a r k. This definition is essentially stronger than the definition of
pureness in [18]. Observe that the statement about pureness in this article
is stronger than in [18] and does not follow from the cited works.

Theorem 7. Let T ⊗τ S be a twisted tensor product of Koszul complexes
T and S, determined by the KS-extension (8) corresponding to formulae
(11). Suppose that

dimQ′ = dimP ′

and H∗(T ), H∗(S) and H∗(T ⊗τ S) are finite-dimensional. Then the min-
imal model of T ⊗τ S is formal if and only if the minimal model of T is
formal.
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P r o o f. The first step is the following statement: under the conditions of
Theorem 7, the graded differential algebra T ⊗τ S is pure. To see this, write

(T ⊗τ S, dτ ) = (
∨
Q⊗

∧
P ⊗

∨
Q′ ⊗

∧
P ′, dτ ).

Let P = 〈z1, . . . , zn〉, P ′ = 〈y1, . . . , ys〉, s = dimQ′. Introduce the notations

dτzi = gi ∈
∨
Q, dτ (yj) = uj + fj , uj ∈

∨
Q⊗

∧
P, fj ∈

∨
Q′

(according to (11)). If T ⊗τ S is not pure, then at least for one j,

(12) dτyj = fj +
∑

i1<...<it

hi1...itj zi1 ∧ . . . ∧ zit ,

where hi1...itj ∈
∨
Q and |zi1∧. . .∧zit | is even. Since dimQ′ = dimP ′ = s, the

sequence f1, . . . , fs is regular in
∨
Q′. We claim that there exists an infinite

sequence of linearly independent elements qαfj , α = 1, 2, . . . , qα ∈
∨
Q′,

which are not coboundaries. To prove this, consider the opposite condition

qfj = dτ (w + u⊗ v + v) = dτ (w) + dτ (u)⊗ v + u⊗ dτ (v) + dτ (v),

where w, u ∈
∨
Q ⊗

∧
P and v, v ∈

∨
Q′ ⊗

∧
P ′. Since T ⊗τ S is a free

algebra, the above equality implies dτ (w) = 0. Let

v =
∑

j1<...<jk

gj1...jkyj1 ∧ . . . ∧ yjk , v =
∑

l1<...<lr

gl1...lryl1 ∧ . . . ∧ ylr .

Then
qfj = dτ (u)⊗

∑
j1<...<jk

gj1...jkyj1 ∧ . . . ∧ yjk

± u⊗
∑
m

∑
j1<...<jk

dτ (ym)gj1...jk ⊗ yj1 ∧ . . . ∧ ŷjm ∧ . . . ∧ yjk

±
∑
p

∑
l1<...<lt

gl1...ltr ⊗ dτ (ylp)⊗ yl1 ∧ . . . ∧ ŷlp ∧ . . . ∧ yltr

(the sign of summands does not influence the argument).
In any case the above equality can be valid only if k = r = 1 (otherwise

the right-hand side is either zero, or contains elements of non-zero y′-degree,
both cases contradicting the left-hand side). If k = 1 the same freeness
argument implies

(13) qfj = dτ

(∑
q

gqjyq

)
.

Consider all yj for which τ(yj) ∈ Z+(S). Without loss of generality one
can assume that all expressions (12) either differ by variables zi1 ∧ . . .∧ zit ,
or hi1...itj are linearly independent, since otherwise one could obtain, for
example,

dτ (yp) = fp+
∑

hi1...itp zi1 ∧ . . .∧zit , dτ (yq) = fq+
∑

hi1...itq zi1 ∧ . . .∧zit



Generalized symmetric spaces 29

with hi1...itq = µhi1...itp and dτ (yq−µyp) = fq−µfp, and taking the appropri-
ate variable change, one would obtain τ(yq) ∈ Z0(S), lowering the number
of variables whose image is contained in Z+(S). Thus, (13) can be rewritten
as

qfj = dτ

(∑
q

gqjyq

)
=
∑
q

fqg
q
j +

∑
q

(∑
hi1...itq zi1 ∧ . . . ∧ zit

)
gqj .

Using the freeness condition, one obtains∑
l

hi1...itl ⊗ glj = 0, hi1...itl ∈
∨
Q, glj ∈

∨
Q′,

where by assumption hi1...itl are linearly independent. Thus necessarily glj=
0. Therefore, finally,

(14) qfj ∈ (f1, . . . , f̂j , . . . , fs)

(because gjj certainly belongs to the set {glj}). Since f1, . . . , fs is a regular
sequence, q ∈ (f1, . . . , f̂j , . . . , fs). Since dimQ′ = s, one can find an infinite
sequence of polynomials qα, α = 1, 2, . . . , with qα 6∈ (f1, . . . , f̂j , . . . , fs).
Then (14) implies the existence of an infinite sequence of linearly indepen-
dent cohomology classes [qαfj ], α = 1, 2, . . . , in H∗(T ⊗τ S, dτ ), which is a
contradiction. The first statement is proved.

Suppose now that the minimal model of T is formal. Then

(15) T c∼ (
∨
Q⊗

∧
P̂ ,∇1)⊗ (

∧
P̃ , 0),

where, as in the previous section, P̂ is the Samelson subspace and P̃ is
the Samelson complement. To prove the above quasi-isomorphism, apply
Theorem 3 and the well-known derivation change:

∇1(z1) = ∇1(z1), . . . , ∇1(zt) = ∇1(zt), t = dimQ,

∇1(zt+1) = ∇1(zt+1)−∇1(z1)z1 − . . .−∇1(zt)zt.

In (15), ∇1(z1), . . . ,∇1(zt) constitute a regular sequence in
∨
Q. Finally,

T is quasi-isomorphic to the algebra

(
∨
Q⊗

∧
P̂ )⊗τ (

∨
Q′ ⊗

∧
P ′)⊗ (

∧
P̃ , 0) = T1 ⊗ (

∧
P̃ , 0)

and the twisted tensor product T1 is pure. Therefore, dτ (z1), . . . , dτ (zt),
dτ (y1), . . . , dτ (ys) is a sequence of polynomials in

∨
Q ⊗

∨
Q′ and T1 is

again a Koszul complex. Since the number of the polynomials (s+ t) equals
the dimension of Q⊕Q′, the minimal model of T1 (and T ⊗τ S) is formal,
by the corollary to Theorem 1 and Theorem 2.

Let the minimal model T ⊗τ S be formal. Consider the representation

(T ⊗τ S, dτ ) = (
∨
Q⊗

∨
Q′ ⊗

∧
P ⊗

∧
P ′, dτ ),
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where dτ (z1), . . . , dτ (zn), dτ (y1), . . . , dτ (ys) is a sequence of polynomials in∨
Q⊗

∨
Q′ of the form

dτ (zi) = fi(q1, . . . , qt), i = 1, . . . , n,
dτ (yj) = τ j(q1, . . . , qt) + gj(u1, . . . , us), j = 1, . . . , s,

where Q = 〈q1, . . . , qt〉 and Q′ = 〈u1, . . . , us〉. By Theorem 3 there is a
regular sequence of polynomials fi in

∨
Q, say f1, . . . , ft, and we claim that

the sequence

(16) f1, . . . , ft, τ1 + g1, . . . , τ s + gs

is regular in
∨
Q ⊗

∨
Q′. To prove the above claim, consider the ideal

I = (f1, . . . , ft, τ1 +g1, . . . , τ s+gs) ⊂
∨
Q⊗

∨
Q′ generated by the sequence

(16) and denote by V (I) the affine algebraic variety in Q ⊕ Q′ generated
by I. Observe that since f1, . . . , ft form a regular sequence in

∨
Q, we have

V (I) = {(0, . . . , 0︸ ︷︷ ︸
t

, u1, . . . , us) ∈ Q⊕Q′},

because dimQ = t and fi(q1, . . . , qt, u1, . . . , us) = fi(q1, . . . , qt) (the latter
equality expresses the fact that the fi on the left-hand side are considered
as polynomials in

∨
(Q ⊕ Q′)). Since I1 = (f1, . . . , ft)⊂

∨
Q is a complete

intersection (h(I1) = µ(I1) = d(I1), its height equals the number of gen-
erators and the depth because of regularity), the algebraic variety V (I1)
is an ideal-theoretic complete intersection (see [11], p. 135) and therefore
dimV (I1) = 0. Since all the polynomials are homogeneous, V (I1) = 0.
Then

(τ i + gi)(0, . . . , 0︸ ︷︷ ︸
t

, u1, . . . , us) = gi(u1, . . . , us) = 0,

because the τ i are homogeneous. Since g1, . . . , gs is a regular sequence in∨
Q′ and dimQ′ = s, the above argument applied to g1, . . . , gs gives u1 =

. . . = us = 0 and V (I) = 0. Therefore, I is a complete intersection.
By [11], p. 135, (16) is regular in

∨
Q⊗

∨
Q′. Since t+s = dimQ+dimQ′

and the minimal model of T ⊗τ S is formal, Theorem 3 implies

ft+1, . . . , fn ∈ (f1, . . . , ft, τ1 + g1, . . . , τ s + gs).

Comparing (q1, . . . , qt)-degrees and (u1, . . . , us)-degrees, one obtains neces-
sarily

ft+1, . . . , fn ∈ (f1, . . . , ft)
in
∨
Q and by Theorem 3 the minimal model of T is formal (it is necessary,

however, to use the regularity of g1, . . . , gs). Theorem 7 is proved.

Now we apply the above theorem to total spaces of some bundles.
Let P G−→ M be a principal bundle and L ⊂ G be a closed subgroup of

maximal rank. Suppose that G is compact. Let E = P ×GG/L be the total



Generalized symmetric spaces 31

space of the associated bundle

(17) E
G/L−→M.

Theorem 8. Let P G−→M and L be as above. Suppose that M = H/K
is a homogeneous space of a compact connected Lie group H. Then the total
space of the associated bundle E = P ×G G/L is formal if and only if M is
formal.

P r o o f. The associated bundle (17) becomes the Serre fibration

(18) G/L→ E →M

satisfying the conditions of Theorem 6 (Grivel, Halperin, Thomas). By the
conditions of Theorem 8, rankG = rankL and therefore mG/L satisfies the
conditions of Theorem 7 (for S). Taking the minimal KS-extension corre-
sponding to the fibration (18), one can notice that this KS-extension satisfies
the conditions of Theorem 7, since the minimal model of a Koszul complex
is again a Koszul complex (see [12], Section 8). Now, an application of The-
orem 7 completes the proof.

5. Proof of the main theorem. The proof is based on the classification
of 3- and 4-symmetric spaces and Theorem 8. Let G be a compact Lie group,
H be its closed subgroup,

G
H−→ G/H

be an H-principal bundle. Let H ⊃ K, where K is a closed Lie subgroup
in G, and consider the associated bundle with fiber H/K, which leads to
the Serre fibration

(19) H/K → G/K → G/H.

We now consider 3- and 4-symmetric spaces separately.

3-symmetric case. The case G × G × G is evident, since any compact
Lie group is formal. The case Spin(8)/G2 can be treated as follows. The
homogeneous space Spin(8)/G2 is a Z2-covering of SO(8)/G2 and therefore
has the same minimal model. But then one constructs the fibration (19),
taking H = SO(7), G = SO(8) and K = G2. Then

SO(7)/G2 → SO(8)/G2 → SO(8)/SO(7),

which means that one obtains a bundle over S7 with fiber S7. Since mS7 =
(
∧

(z), 0), |z| = 7, the Thomas theorem (see Theorem 6) implies formality of
SO(8)/G2 (there is no twisting in the tensor product).

Consider now the case Spin(8)/(SU(3)/Z3). To treat it, we need the
explicit expression for its Cartan algebra, given in Section 2. An explicit
expression for W (G)- and W (H)-invariants in the cases under considera-
tion can be found in [3]. In fact, it is enough for us to write appropriate
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degrees (see [3]). Calculating formulae (6) for the Cartan algebra (C,∇σ),
one obtains in this particular case

(C,∇σ) = (R[u1, u2]⊗
∧

(y1, y2, y3, y4),∇σ),
∇σ(ui) = 0, i = 1, 2,

∇σ(yj) = f̃j(u1, u2), j = 1, . . . , 4,

and |u1| = 4, |u2| = 6, |f̃1| = 4, |f̃2| = 8, |f̃3| = 12, |f̃4| = 8. Therefore
f̃1 = α · u1, α ∈ R, and f̃2 = µ · u2

1, µ ∈ R. Now we claim that α 6= 0.
To prove this, one needs explicit expressions for fi and uj , which can be
written (after introducing appropriate coordinates in the Cartan subalgebra
of SO(8)) as

f1 = x2
1 + . . .+ x2

4, u1 = x2
1 + x2

2 + x2
3, x1 + x2 + x3 = 0

(we need no other expressions).
Now, observe that (C,∇σ) is not minimal. To obtain its minimal model,

one can notice that (C,∇σ) is free and apply the Sullivan algorithm ([12],
Section 8). This algorithm eliminates non-decomposable generators. In our
case we eliminate u1 and y1. As a result, ∇̃σ(y2) = 0 (∇̃σ denotes the
differential in the minimal model of (C,∇σ)). Thus, finally, the minimal
model of (C,∇σ) contains only one even-degree generator. Therefore it is
evidently formal since the condition of Theorem 5 is satisfied automatically.

4-symmetric case. Use the Jiménez classification (Table 2) and Theo-
rem 8. The proof is based on fibering 4-symmetric spaces over formal bases
with fiber of maximal rank. The method is the same, but calculations differ
in each particular case, therefore we have to reproduce all of them. Let us
consider the 4-symmetric spaces according to their numbers in Table 2.

C a s e 1. Since SO(2p)/U(p) is of maximal rank, it suffices to apply
Theorem 8 provided that we prove that

SO(2n)/SO(2p)× SO(q)× SO(r)

is formal. Recall that q and r are odd (see Table 2). Therefore, q=2s+1, r=
2t+ 1 and since 2n = 2p+ 2s+ 2t+ 1 + 1 = 2(p+ s+ t+ 1),

(∗∗) rankSO(2n)− rank(SO(2p)× SO(q)× SO(r)) = n− p− s− t = 1.

Recall the explicit expressions of invariant polynomials for SO(2n) (see [3]).
If x1, . . . , xn are coordinates in a Cartan subalgebra of the Lie algebra of
SO(2n), then

fi = x2i
1 + . . .+ x2i

n , i = 1, . . . , n− 1, fn = x1 . . . xn.

Taking into consideration the explicit form of the embedding

SO(2p)× SO(q)× SO(r)→ SO(2n)
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one easily obtains f̃n = 0. Then apply Theorem 5 and the equality (∗∗) to
complete the proof.

R e m a r k. The proof could also be derived from [5] (p. 480, Example 8)
using the equality jΘ=0(Pf) = 0 on page 481. In fact, we constructed a new
example of a homogeneous space with the group SO(2n) which is formal.

C a s e 2. Consider the evident fibration

SU(n+ 1)/SU(n)× T1 → SU(2n)/SU(n)× T1 → SU(2n)/SU(n+ 1).

Its base is formal by [5] (p. 475), the fiber is of maximal rank and Theorem 8
is applicable.

C a s e 3. This case can be treated in two steps. Consider the following
two fibrations:

Sp(p)/U(p)→ SU(2p+ q)/U(p)× SO(q)→ SU(2p+ q)/Sp(p)× SO(q),
SO(2p+ q)/U(p)× SO(q)→ SU(2p+ q)/U(p)× SO(q)

→ SU(2p+ q)/SO(2p+ q).

Both have fibres of maximal rank. Since SU(2p + q)/SO(2p + q) is formal
as a symmetric space, the second fibration yields the formality of the space
SU(2p+q)/U(p)×SO(q) (Theorem 8). Since the total space of the first fibra-
tion is formal [5] (p. 483), the same theorem yields the formality of the base.

C a s e s 4 a n d 5. These are evident, since one obtains a homeomor-
phism either to a product of Lie groups, or of symmetric spaces.

C a s e 6. Consider the fibration

SO(9)/SO(6)× SO(3)→ E6/SO(6)× SO(3)→ E6/SO(9).

Since SO(9)/SO(6)× SO(3) is of maximal rank, it is enough to show that
E6/SO(9) is formal. To prove that, use Theorem 5 again. The degrees of
invariants of W (E6) and W (SO(9)) are given in [16] (the exceptional type)
and [3] (the classical type). Using the explicit expressions one obtains the
Cartan algebra of E6/SO(9):

(C,∇σ) = (R[u1, u2, u3, u4]⊗
∧

(y1, . . . , y6),∇σ),
∇σ(ui) = 0, i = 1, . . . , 4,

∇σ(yj) = f̃j(u1, u2, u3, u4),

and the degrees are the following:

|u1| = 4, |u2| = 18, |u3| = 12, |u4| = 16,

|f̃1| = 4, |f̃2| = 10, |f̃3| = 12, |f̃4| = 16, |f̃5| = 18, |f̃6| = 24,

which implies f̃1 = α ·u1, f̃2 = 0, f̃3 = v ·u3, f̃5 = 0 and Theorem 5 applies
(f̃1, f̃3, f̃4, f̃6 constitute necessarily a regular sequence).
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C a s e 7. The homogeneous space E6/SO(7)×SO(3) can be considered
as the base of the fibration

S6 → E6/SO(6)× SO(3)→ E6/SO(7)× SO(3)

and Theorem 8 applies.

C a s e 8. The appropriate fibration is

Sp(4)/Sp(3)× T1 → E6/Sp(3)× T1 → E6/pSp(4),

where pSp(4) denotes the projective symplectic group. The base of the fi-
bration is the symmetric space E6/ pSp(4). To finish the proof it is enough
to notice that by [4] and [8] any 3- or 4-symmetric space is the product
of spaces appearing in Tables 1 and 2 and that the case rankG = rankH
follows from [5].

The proof is complete.

R e m a r k. All generalized symmetric spaces of dimension ≤ 5 classified
by O. Kowalski [9] are formal, but the reason for this is of different nature:
by the Neisendorfer theorem [14] any manifold of dimension ≤ 6 is formal.
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Anna Dumańska-Ma lyszko Aleksy Tralle
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