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Generalized telegraph equation and

the Sova–Kurtz version of the Trotter–Kato theorem

by Adam Bobrowski (Lublin)

Abstract. The Sova–Kurtz approximation theorem for semigroups is applied to prove
convergence of solutions of the telegraph equation with small parameter. Convergence of
the solutions of the diffusion equation with varying boundary conditions is also considered.

Introduction. In the papers [1–2] convergence of the solutions to the
telegraph equation with a small parameter and to the diffusion equation with
varying boundary conditions were considered.They were viewed as examples
of the Trotter–Kato theorem [3], [8], [15–16]. The aim of this article is to
show that in dealing with the problem of convergence of those solutions,
the Sova–Kurtz version of the approximation theorem for semigroups can
be employed as well. The advantage of this method is that, on the one
hand, various norms in the same Banach space may be considered, and,
on the other hand, we avoid calculations of the resolvents of infinitesimal
operators, which simplifies some proofs.

In order to illustrate the above idea, two propositions will be proved.
While the proofs we present are new, the propositions are in essence equiv-
alent to Proposition 1 of [1] and Corollary 1 of [2], respectively.

Let us note here that convergence of the solutions of the telegraph equa-
tion has aroused considerable attention. An abundant bibliography on this
subject can be found in [1] and [7]. Our purpose, similarly to the paper [1],
is to present a new approach rather than to cover all the previous results.

1. The Sova–Kurtz theorem. Let (L, ‖ · ‖) and (Ln, ‖ · ‖n), n ≥ 1, be
Banach spaces and suppose that there are bounded linear transformations
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Pn : L → Ln such that for every f ∈ L, limn→∞ ‖Pnf‖n exists and equals
‖f‖. We say that a sequence (fn)n≥1 with fn ∈ Ln, n ≥ 1, is convergent iff
there exists f ∈ L such that

(1.1) lim
n→∞

‖fn − Pnf‖n = 0.

In that case we write limn→∞ fn = f .

Given a sequence of closed operators An : Ln ⊃ D(An) → Ln, n ≥ 1,
define the (possibly multivalued) operator A acting in L by

D(A) = {f ∈ L : there are fn ∈ D(An), n ≥ 1, such that lim
n→∞

fn = f

and the sequence (Anfn)n≥1 is convergent},
Af = lim

n→∞
Anfn.

The operator A is usually called the extended limit of the operators An, and
denoted by ex-lim An. The following theorem is due to M. Sova [14] and
T. G. Kurtz [11], who introduced the concept of extended limit.

Theorem 1. Let {Tn(t) : t ≥ 0} be a sequence of semigroups acting in

Ln, n ≥ 1, with respective generators An. Assume also that there exists a

constant M such that ‖Tn(t)‖L(Ln ,Ln) ≤ M uniformly in n ≥ 1, t ≥ 0. Then

the following are equivalent :

(a) there exists a strongly continuous semigroup {T (t) : t ≥ 0} acting in

L such that , for every f ∈ L,

(1.2) lim
n→∞

Tn(t)Pnf = T (t)f,

(b) the operator A = ex-lim An has the following properties:

(1.3) D(A) is dense in L,

(1.4) the range ℜ(λ − A) of λ − A is dense in L, for some λ > 0.

If (a) or (b) holds then the operator A = ex-lim An is single-valued and

generates the semigroup {T (t) : t ≥ 0}. Furthermore, the convergence in

(1.2) is in fact uniform with respect to t in bounded intervals ⊂ R
+.

2.Generalized telegraph equation. Throughout this section E de-
notes a Banach space and A : E ⊃ D(A) → E the infinitesimal generator
of a cosine operator function {C(t) : t ∈ R} ([13]) such that there exists a
constant M > 0 that satisfies

sup
t∈R

‖C(t)‖L(E,E) ≤ M.
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Define E1 = {x ∈ E : the function [0, 1] ∋ t → C(t)x is strongly continuously
differentiable} and set

‖x‖E1
= ‖x‖E + sup

0≤u≤1

∥∥∥∥
dC(u)x

du

∥∥∥∥
E

.

Then E1 is a Banach space ([9]).

Given ε > 0 let us also define an operator Aε : E1 × E ⊃ D(Aε) →
E1 × E by

(2.1) D(Aε) = D(A) × E1, Aε

(
x

y

)
=

(
y

1
εAx

)
−

(
0
1
εy

)
.

Since 1
ε
A is the infinitesimal generator of the cosine operator function Cε(t)

= C
(

1√
ε
t
)
, by the main theorem of [9], the operator Âε : E1×E ⊃ D(Aε) →

E1 × E with

D(Âε) = D(Aε), Âε

(
x

y

)
=

(
y

1
εAx

)
,

generates a group of operators acting in E1 × E and, consequently, by the
Phillips perturbation theorem [12], the operator Aε is the infinitesimal gen-
erator of a group

Tε(t) =

(
S00(ε, t) S01(ε, t)
S10(ε, t) S11(ε, t)

)
,

acting in the same space.

Now we present a lemma due to J. Kisyński.

Lemma 1. There exists K > 0 such that , for all 1 > ε > 0 and t ≥ 0,

‖S00(ε, t)‖L(E1 ,E1)≤ M,

‖S11(ε, t)‖L(E,E) ≤ M,

‖S01(ε, t)‖L(E,E1) ≤ (ε +
√

ε)M ≤ 2
√

εM,

‖S10(ε, t)‖L(E1 ,E) ≤ 2MK
1√
ε
.

The proof is given in [1].

Lemma 2. The operator A is the infinitesimal generator of a semigroup

{T (t) : t ≥ 0} acting in E such that {T (t)|E1
: t ≥ 0} is a strongly continuous

semigroup in E1.

P r o o f. The fact that A is the generator of a semigroup {T (t) : t ≥ 0}
acting in E is well known (see [5–6], [10], [13]). Furthermore, the formula

T (t)x =
1

2
√

πt

∞\
−∞

e−s2/(4t)C(s) ds
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holds for every t > 0 and x ∈ E (see [5–6], [10]). It implies that {T (t)|E1
:

t ≥ 0} is a strongly continuous semigroup in E1. Indeed, we have C(s)T (t) =
T (t)C(s) for every s ∈ R and t ≥ 0, hence if x ∈ E1 then also T (t)x ∈ E1

and

dC(s)x

ds
T (t)x = T (t)

dC(s)x

ds
.

Finally,

‖T (t)x − x‖E1
= ‖T (t)x − x‖E(2.2)

+ sup
0≤s≤1

∥∥∥∥T (t)
dC(s)x

ds
− dC(s)x

ds

∥∥∥∥
E

,

the set {y ∈ E : y = dC(s)x/ds for some 0 ≤ s ≤ 1} is compact in E and
supt≥0 ‖T (t)‖L(E,E) ≤ M . Thus, the right-hand side of (2.2) tends to 0 as
t → 0.

Set

(2.3)

∥∥∥∥

(
x

y

)∥∥∥∥
ε

= ‖x‖E1
+

√
ε‖y‖E .

Lemma 3. The semigroups {Tε(t) : t ≥ 0}, 1 > ε > 0, are equibounded

when considered in the spaces (E1×E, ‖·‖ε), respectively. To be more specific,
for every x ∈ E1, y ∈ E and 1 > ε > 0, we have

∥∥∥∥Tε(t)

(
x

y

)∥∥∥∥
ε

≤ max(M + 2KM, 3M)

∥∥∥∥

(
x

y

)∥∥∥∥
ε

,

where K is the constant introduced in Lemma 1.

P r o o f. According to Lemma 1 we have, for
(
x
y

)
∈ E1 × E,

∥∥∥∥Tε(t)

(
x

y

)∥∥∥∥
ε

≤ ‖S00(ε, t)x‖E1
+ ‖S01(ε, t)y‖E1

+
√

ε‖S10(ε, t)x‖E +
√

ε‖S11(ε, t)y‖E

≤ M‖x‖E1
+ (

√
ε + ε)M‖y‖E +

√
ε

2KM√
ε

‖x‖E1
+ M

√
ε‖y‖E

≤ M(1 + 2K)‖x‖E1
+ 3M

√
ε‖y‖E

≤ max(M + 2KM, 3M)

∥∥∥∥

(
x

y

)∥∥∥∥
ε

.

Proposition 1. Let (εn)n≥1 be a sequence of positive numbers such that

limn→∞ εn = 0. Set Ln = (E1 ×E, ‖ · ‖εn
), and define operators Pn : E1 →

Ln by Pnx =
(
x
0

)
. Then the spaces Ln approximate the space L = E1 in the

sense of Section 1 and , for every x ∈ E1 and t ≥ 0,
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lim
n→∞

Tεn
(t)x = T (t)x,

i.e.

lim
n→∞

‖Tεn
(t)Pnx − PnT (t)x‖εn

= lim
n→∞

∥∥∥∥Tεn
(t)

(
x

0

)
−

(
T (t)x

0

)∥∥∥∥
εn

= 0.

P r o o f. It is obvious, by the very definition (2.3), that (1.1) is satisfied.
According to Lemma 3 the semigroups {Tεn

(t) : t ≥ 0}, n ≥ 1, Tεn
(t) :

Ln → Ln, are equibounded. We now prove that both (1.3) and (1.4) hold.

Let A0 denote the infinitesimal generator of the semigroup {T (t)|E1
:

t ≥ 0}. By the Hille–Yosida theorem, D(A0) = E1 and, for all λ > 0,
ℜ(λ − A0) = E1. Thus, it is enough to prove that A0 ⊂ ex-lim Aεn

, where
the Aεn

are defined by (2.1). Take x ∈ D(A0). Define

fn =

(
x

A0x

)
∈ D(Aεn

) ⊂ Ln.

We have ‖fn − Pnx‖εn
=

√
εn‖A0x‖E → 0 as n → ∞, i.e. limn→∞ fn = x.

Moreover, since A0 is a restriction of A, we have

Aεn
fn =

(
A0x

1
εn

Ax − 1
εn

A0x

)
=

(
A0x
0

)

and, consequently, limn→∞ Aεn
fn = A0x, whence x ∈ D(ex-lim Aεn

), and
A0x = ex-lim Aεn

x, as desired.

R e m a r k 2. The above Proposition 1 and Proposition 1 of [1] are equiv-
alent in the sense that both state that

lim
ε→0

S00(ε, t)x = T (t)x for all x ∈ E1,

lim
ε→0

√
εS10(ε, t)y = 0 for all y ∈ E.

3. Diffusion equation. Let a < b be fixed real numbers. Consider the
space Lε = L = C[a,b], 1 > ε > 0, of all continuous functions f : [a, b] → R,
equipped with the norm ‖f‖ = supa≤x≤b |f(x)|. Given µ, ν > 0, define

D(Aµ,ν) = {f ∈ C2
[a,b] : f(a) − µf ′(a) = 0, f(b) + νf ′(b) = 0},

Aµ,νf =
1

2

d2f

dx2
.

Analogously, set L′ = {f ∈ L : f(a) = f(b) = 0} and

D(A00) = {f ∈ L′ : f ′′ ∈ L′}, A00f =
1

2

d2f

dx2
.

Throughout this section we will not distinguish between norms in L and
L′ (both are the supremum norms).
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Lemma 4. The operators Aµ,ν , µ, ν > 0, satisfy the positive maximum

principle.

(For the definition, see for example [4], p. 165.)

P r o o f. Fix µ, ν > 0 and f ∈ D(Aµ,ν), f 6≡ 0. If the total maximum
of f is attained at a point x 6= a, x 6= b, the conclusion is obvious. If
maxa≤x≤b f(x) = f(a) then f ′(a) ≤ 0,

0 ≤ f(a) = µf ′(a) ≤ 0,

and, consequently, f(a) = f ′(a) = 0. The function

f∗(x) =

{
f(x), x ∈ [a, b],
f(2a − x), x ∈ [2a − b, a],

is then of class C2 in [2a − b, b], and supx∈[2a−b,b] f
∗(x) = f∗(a) = f(a). Of

course

Aµ,νf(a) = 1
2f ′′(a) = 1

2 (f∗)′′(a) ≤ 0,

as desired. If maxa≤x≤b f(x) = f(b) we proceed similarly.

Proposition 2. For every µ, ν > 0, the operator Aµ,ν is the infinitesimal

generator of a positive contraction semigroup {Sµ,ν(t) : t ≥ 0} acting in L.

The operator A00 generates a semigroup {S00(t) : t ≥ 0} acting in L′.
Furthermore,

lim
µ,ν→0

Sµ,ν(t)f = S00(t)f for all f ∈ L′, t ≥ 0.

P r o o f. To prove that Aµ,ν is the infinitesimal generator of a strongly
continuous semigroup note first that D(Aµ,ν) is dense in L. Indeed, the
set of all twice continuously differentiable functions is dense in L, and, for
every ε > 0 and every twice continuously differentiable function f ∈ L with
f ′′ ∈ L such that f 6∈ D(Aµ,ν), there exists a function fε with ‖fε − f‖ ≤ ε
and fε ∈ D(Aµ,ν). Indeed, put

fε(x) = f(x) + αe−β(x−a)/(b−x) + γe−δ(b−x)/(x−a) for a < x < b,

α = min

(
ε

2
,
1

2
|µf ′(a) − f(a)|

)
sign(µf ′(a) − f(a)),

γ = − min

(
ε

2
,
1

2
|νf ′(b) + f(b)|

)
sign(νf ′(b) + f(b)),

β =
b − a

µ

[
µf ′(a) − f(a)

α
− 1

]
, δ =

b − a

ν

[
νf ′(b) + f(b)

−γ
− 1

]

(if either µf ′(a) − f(a) = 0 or νf ′(b) + f(b) = 0, then put α = β = 0 and
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γ = δ = 0, respectively) and note that

β ≥
(

2
|µf ′(a) − f(a)|
|µf ′(a) − f(a)| − 1

)
b − a

µ
=

b − a

ν
> 0,

δ ≥
(

2
|νf ′(b) + f(b)|
|νf ′(b) + f(b)| − 1

)
b − a

ν
=

b − a

ν
> 0.

Furthermore,

fε(a) = f(a) + α, f ′
ε(a) = f ′(a) − αβ

b − a
,

fε(b) = f(b) + γ, f ′
ε(b) = f ′(b) +

γδ

b − a
.

Thus fε ∈ D(Aµ,ν) and ‖f − fε‖ ≤ |α| + |γ| ≤ ε.

The operators Aµ,ν satisfy the positive maximum principle and are closed.
We have to show that for all λ > 0, g ∈ L and µ, ν > 0 there exists
f ∈ D(Aµ,ν) such that

λf(x) − 1
2
f ′′(x) = g(x) for x ∈ [a, b]

(i.e. ℜ(λ−Aµ,ν) = L). Note that the general solution to the above equation
is

(3.1) f(x) = fg,λ(x) + C1e
−
√

2λx + C2e
√

2λx,

where fg,λ(x) = 1√
2λ

Tb
a
e−

√
2λ|x−y|g(y) dy. The boundary conditions f(a)−

µf ′(a) = 0 and f(b)+ νf ′(b) = 0 lead to the system of equations for C1, C2:

C1e
−
√

2λa + C2e
√

2λa + fg,λ(a) = µ
√

2λ(−C1e
−
√

2λa + C2e
√

2λa + fg,λ(a)),

C1e
−
√

2λb + C2e
√

2λb + fg,λ(b) = −ν
√

2λ(−C1e
−
√

2λb + C2e
√

2λb−fg,λ(b))

(in deriving it the relations f ′
g,λ(a) =

√
2λfg,λ(a) and f ′

g,λ(b) = −
√

2λfg,λ(b)
were employed). Thus

C1e
−
√

2λa(1 + µ
√

2λ) + C2e
√

2λa(1 − µ
√

2λ) = (µ
√

2λ − 1)fg,λ(a),

C1e
−
√

2λb(1 − ν
√

2λ) + C2e
√

2λb(1 + ν
√

2λ) = (ν
√

2λ − 1)fg,λ(b),

i.e.

(3.2)
C1 − H(µ

√
2λ)e2

√
2λaC2 = H(µ

√
2λ)fg,λ(a)e

√
2λa,

−H(ν
√

2λ)e−2
√

2λbC1 + C2 = H(ν
√

2λ)fg,λ(b)e−
√

2λb,

where H(z) = (z − 1)/(z + 1). The system has a unique solution since its
determinant

W = 1 − H(µ
√

2λ)H(ν
√

2λ)e−2
√

2λ(b−a)

is not 0. Thus the first part of the proposition is proved.
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Since it is well known that A00 is the generator of a strongly continu-
ous semigroup in L′ (for a non-standard proof based on the approximation
theorem one may consult [2]), it remains to prove, as in Proposition 1, that
ex-limµ,ν→0 Aµ,ν ⊃ A00. Let f ∈ D(A00) be given. Define

fµ,ν(x) = f(x) + µf ′(a)e−(x−a)2/(b−x) − νf ′(b)e−(x−b)2/(x−a), a < x < b.

Since

lim
x→a+

e−(x−b)2/(x−a) = lim
x→b−

e−(x−a)2/(b−x) = 0

and

lim
x→a+

e−(x−b)2/(x−a)

x − a
= lim

x→b−

e−(x−a)2/(b−x)

x − b
= 0,

it follows that fµ,ν ∈ L, fµ,ν(a) = f(a) + µf ′(a) = µf ′(a), fµ,ν(b) = f(b) −
νf ′(b) = −νf ′(b) and

f ′
µ,ν(a) =

(
f(x) − µf ′(a)

(x − a)(2b − a − x)

(b − x)2
e−(x−a)2/(b−x)

)

|x=a

= f ′(a),

f ′
µ,ν(b) =

(
f(x) + νf ′(b)

(x − b)(x − 2a + b)

(x − a)2
e−(x−b)2/(x−a)

)

|x=b

= f ′(b).

It is easily proven that the second derivative at x = a and x = b also exists,
and fµ,ν is of class C2. Thus fµ,ν ∈ D(Aµ,ν), and limµ,ν→0 fµ,ν = f . Finally,

lim
µ,ν→0

Aµ,νfµ,ν(x) = f ′′(x) + lim
µ→0

µf ′(a)

(
(x − a)2(2b − a − x)2

(b − x)4

− 2(b − x)2 + 2(2b − a − x)(x − a)

(b − x)3

)
e−(x−a)2/(b−x)

− lim
ν→0

νf ′(b)

(
2(x − a)2 − 2(x − 2a + b)(x − b)

(x − a)3

− (x − b)2(x − 2a + b)2

(x − a)4

)
e−(x−b)2/(x−a)

= A00f(x)

(uniformly with respect to x ∈ [a, b]). This proves that f ∈ ex-lim Aµ,ν , as
desired.

R e m a r k 3. Let us note that in the paper [2], where a result similar
to Proposition 2 was proved, tiresome estimations concerning the resolvent
given by (3.1) with C1 and C2 being the solution of (3.2) were necessary.
On the other hand, however, there was no need for Lemma 4.
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