Evolution equations with parameter in the hyperbolic case

by Jan Bochenek and Teresa Winiarska (Kraków)

Abstract

The purpose of this paper is to give theorems on continuity and differentiability with respect to (h, t) of the solution of the initial value problem $d u / d t=$ $A(h, t) u+f(h, t), u(0)=u_{0}(h)$ with parameter $h \in \Omega \subset \mathbb{R}^{m}$ in the "hyperbolic" case.

1. Introduction. We consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=A(h, t) u+f(h, t), \quad t \in[0, T], h \in \Omega \tag{1}\\
u(0)=u_{0}(h)
\end{array}\right.
$$

It is known that under some assumptions on the family of the operators $\{A(h, t)\}$ and on the function f, the problem (1) has the unique solution given by

$$
\begin{equation*}
u(h, t)=U(h, t, 0) u_{0}(h)+\int_{0}^{t} U(h, t, s) f(h, s) d s \tag{2}
\end{equation*}
$$

where, for each $h \in \Omega, U$ is the fundamental solution (or evolution system) for problem (1) (cf. [3, Ch. 5]).

Analogously to the papers [5] and [6], where the "parabolic" case of problem (1) was studied, we investigate the continuity and differentiability of the mapping

$$
\begin{equation*}
\Omega \times[0, T] \ni(h, t) \rightarrow u(h, t) \in X, \tag{3}
\end{equation*}
$$

where the mapping u is given by (2).
2. Stable approximations of the family of operators. This section is based on Krein's monograph [2, Ch. II] and it has the auxiliary character. To simplify notations we assume that the family $\{A(h, t)\}$ considered in the introduction is independent of the parameter h.

[^0]Assuming that X is a Banach space we let $B(X)$ be the Banach space of all linear bounded operators and $\mathcal{C}(X)$ be the vector space of all linear closed operators from X into itself. If $A: X \rightarrow X$ is a linear operator then $D(A), N(A), R(A), \bar{A}, P(A)$ denote the domain, kernel, range, closure and resolvent set of A, respectively.

In this section we consider a family of operators $\{A(t)\}, t \in[0, T]$, where $A(t) \in \mathcal{C}(X), D(A(t))=D, \bar{D}=X$ and $0 \in P(A(t))$ for every $t \in[0, T]$.

We investigate the Cauchy problem

$$
\begin{equation*}
\frac{d u}{d t}=A(t) u, \quad u(s)=x, \quad 0 \leq s \leq t \leq T \tag{4}
\end{equation*}
$$

where $x \in D$.
Definition 1 ([2, p. 193]). The Cauchy problem (4) is said to be uniformly correct if:
(i) for each $s \in[0, T]$ and any $x \in D$ there exists a unique solution $u=u(t, s)$ of (4) on the interval $[s, T]$,
(ii) the function $u=u(t, s)$ and its derivative u_{t}^{\prime} are continuous in the triangle $\Delta_{T}:=\{(t, s): 0 \leq s \leq t \leq T\}$,
(iii) the solution depends continuously on the initial data.

If the Cauchy problem is uniformly correct, then it is possible to introduce a linear operator $U(t, s)$ for $(t, s) \in \Delta_{T}$ by the formula

$$
\begin{equation*}
U(t, s) x:=u(t, s), \quad(t, s) \in \Delta_{T}, x \in D \tag{5}
\end{equation*}
$$

where $u(s, s)=x$. The formula (5) defines the operator $U(t, s)$ on the set D dense in X. Since for fixed $(t, s) \in \Delta_{T}$ it is a bounded operator, it admits a continuous extension to the entire space X.

It is known (cf. [2, pp. 193-194]) that if for each $x \in D$ the mapping $[0, T] \ni t \rightarrow A(t) x$ is continuous (i.e. the mapping $t \rightarrow A(t)$ is strongly continuous on D) and the Cauchy problem (4) is uniformly correct, then the fundamental solution U has the following properties:
(a) the mapping $\Delta_{T} \ni(t, s) \rightarrow U(t, s) \in B(X)$ is strongly continuous and $\|U(t, s)\| \leq M$ for $(t, s) \in \Delta_{T}$,
(b) $U(t, t)=I$ and $U(t, s)=U(t, r) U(r, s)$ for $0 \leq s \leq r \leq t \leq T$,
(c) $\frac{\partial}{\partial t} U(t, s) x=A(t) U(t, s) x, \frac{\partial}{\partial s} U(t, s) x=-U(t, s) A(s) x$ for $(t, s) \in$ $\Delta_{T}, x \in D$,
(d) the mappings $\Delta_{T} \ni(t, s) \rightarrow \frac{\partial}{\partial t} U(t, s)$ and $\Delta_{T} \ni(t, s) \rightarrow \frac{\partial}{\partial s} U(t, s)$ are strongly continuous on D.

Definition 2 ([4, p. 89]). An operator-valued function $U: \Delta_{T} \ni$ $(t, s) \rightarrow U(t, s) \in B(X)$ satisfying the above conditions (a)-(d) is called the fundamental solution of problem (4).

It is known (see [2, Ch. II, §2]) that if the operator $A(t)$ is bounded for each $t \in[0, T]$ and the mapping $[0, T] \ni t \rightarrow A(t)$ is strongly continuous, then problem (4) is uniformly correct and so the fundamental solution U for this problem exists.

Definition 3 ([2, p. 199]). If there exists a sequence of bounded and strongly continuous operators $A_{n}(t), t \in[0, T]$, for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left\|\left[A(t)-A_{n}(t)\right] A(t)^{-1} x\right\|=0, \quad x \in X \tag{6}
\end{equation*}
$$

and the fundamental solutions of the problems

$$
\frac{d u}{d t}=A_{n}(t) u, \quad u(s)=x
$$

are uniformly bounded, i.e.,

$$
\begin{equation*}
\left\|U_{n}(t, s)\right\| \leq M \tag{7}
\end{equation*}
$$

where M does not depend on $n \in \mathbb{N}$ and $(t, s) \in \Delta_{T}$, then we say that the family $\{A(t)\}, t \in[0, T]$, is stably approximated by the sequence $\left\{A_{n}(t)\right\}$.

In $[2, \mathrm{Ch} . \mathrm{II}]$ the following sufficient conditions are given for the family $\{A(t)\}, t \in[0, T]$, to be stably approximated:
(8) the mapping $[0, T] \ni t \rightarrow A(t)$ is strongly continuous in D,

$$
\|R(\lambda ; A(t))\|:=\left\|(A(t)-\lambda I)^{-1}\right\| \leq \frac{1}{\lambda+1} \quad \text { for } \lambda \geq 0
$$

The sequence $\left\{A_{n}(t)\right\}$ approximating the family $\{A(t)\}, t \in[0, T]$, has the form

$$
\begin{equation*}
A_{n}(t):=-n A(t) R(n ; A(t)) \tag{10}
\end{equation*}
$$

(cf. [2, p. 204]).
Our nearest purpose is to give other sufficient conditions for the family $\{A(t)\}, t \in[0, T]$, to be stably approximated (see Theorems 1 and 2).

Definition $4([3$, p. 130]). A family $\{A(t)\}, t \in[0, T]$, is called stable if there are constants $M \geq 1$ and ω (called the stability constants) such that

$$
\begin{equation*}
(\omega, \infty) \subset P(A(t)) \quad \text { for } t \in[0, T] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\prod_{j=1}^{k} R\left(\lambda ; A\left(t_{j}\right)\right)\right\| \leq M(\lambda-\omega)^{-k} \quad \text { for } \lambda>\omega \tag{12}
\end{equation*}
$$

and for every finite sequence $0 \leq t_{1} \leq \ldots \leq t_{k} \leq T, k \in \mathbb{N}$.
Lemma 1. Let $\{A(t)\}, t \in[0, T]$, be a stable family in the sense of Definition 4. Then the sequence $\left\{A_{n}(t)\right\}$, where $A_{n}(t)$ is defined by (10), is
uniformly stable, i.e., the stability constants for the operators $A_{n}(t)$ do not depend on $n \in \mathbb{N}$.

Proof. From the identity

$$
R\left(\lambda ; A_{n}(t)\right)=\frac{n^{2}}{(n+\lambda)^{2}} R\left(\frac{n \lambda}{n+\lambda} ; A(t)\right)-\frac{1}{n+\lambda} I
$$

we have

$$
\begin{aligned}
\| & \prod_{j=1}^{k} R\left(\lambda ; A_{n}\left(t_{j}\right)\right) \| \\
\leq & \left\|\prod_{j=1}^{k}\left[\frac{n^{2}}{(n+\lambda)^{2}} R\left(\frac{n \lambda}{n+\lambda} ; A\left(t_{j}\right)\right)-\frac{1}{n+\lambda} I\right]\right\| \\
\leq & \left\lvert\,\left[\frac{n^{2}}{(n+\lambda)^{2}}\right]^{k} M\left(\frac{\lambda n}{n+\lambda}-\omega\right)^{-k}\right. \\
& +\binom{k}{1}\left(\frac{n^{2}}{(n+\lambda)^{2}}\right)^{k-1} \frac{1}{n+\lambda} M\left(\frac{\lambda n}{n+\lambda}-\omega\right)^{-k+1} \\
& +\binom{k}{2}\left(\frac{n^{2}}{(n+\lambda)^{2}}\right)^{k-2} \frac{1}{(n+\lambda)^{2}} M\left(\frac{\lambda n}{n+\lambda}-\omega\right)^{-k+2}+\ldots+\frac{1}{(n+\lambda)^{k}} \\
\leq & M\left(\frac{n}{n+\lambda}\right)^{k}\left(\lambda-\frac{n+\lambda}{n} \omega\right)^{-k} \\
& \times\left[1+\left(\frac{n^{2}}{(n+\lambda)^{2}}\right)^{-1} \frac{1}{n+\lambda}\left(\frac{\lambda n}{n+\lambda}-\omega\right)\right]^{k} \\
= & M\left(\lambda-\frac{n+\lambda}{n} \omega\right)^{-k}\left(1-\frac{\omega}{n}\right)^{k}=M\left(\lambda-\frac{n}{n-\omega} \omega\right)^{-k} .
\end{aligned}
$$

It follows that for $n \geq 2 \omega$, the family $\left\{A_{n}(t)\right\}, t \in[0, T]$, is stable with stability constants M and 2ω ($n \geq 2 \omega$ is fixed).

Lemma 2. Let $\{A(t)\}, t \in[0, T]$, be a stable family with stability constants M and ω. If the mapping $[0, T] \ni t \rightarrow A(t) \in B(X)$ is strongly continuous, then the fundamental solution U corresponding to $A(t)$ is strongly continuous in the triangle Δ_{T} and

$$
\begin{equation*}
\|U(t, s)\| \leq M e^{\omega T} \quad \text { for }(t, s) \in \Delta_{T} \tag{13}
\end{equation*}
$$

where M and ω are the stability constants.
Proof. Existence and strong continuity of U follow from boundedness and strong continuity of the mapping $[0, T] \ni t \rightarrow A(t)$.

In order to prove (13), we start by approximating the family $\{A(t)\}$, $t \in[0, T]$, by piecewise constant families $\left\{A_{\nu}(t)\right\}, t \in[0, T]$, defined as follows. Let $t_{k}^{\nu}:=(k / \nu) T, k=0,1, \ldots, \nu, \nu \in \mathbb{N}$, and let (cf. [3, p. 135])

$$
A_{\nu}(t):= \begin{cases}A\left(t_{k}^{\nu}\right) & \text { for } t_{k}^{\nu} \leq t<t_{k+1}^{\nu}, k=0,1, \ldots, \nu-1, \tag{14}\\ A(T) & \text { for } t=T\end{cases}
$$

From the strong continuity of $t \rightarrow A(t)$ it follows that

$$
\begin{equation*}
\left\|\left[A(t)-A_{\nu}(t)\right] x\right\| \rightarrow 0 \quad \text { as } \nu \rightarrow \infty \tag{15}
\end{equation*}
$$

uniformly with respect to $t \in[0, T]$ for each $x \in X$.
Denote by $S_{t}(s), s \geq 0$, the C_{0}-semigroup generated by $A(t)$ for $t \in[0, T]$ and let

$$
U_{\nu}(t, s):=\left\{\begin{array}{l}
S_{t_{j}^{\nu}}(t-s) \quad \text { for } t_{j}^{\nu} \leq s \leq t \leq t_{j+1}^{\nu}, \tag{16}\\
S_{t_{k}^{\nu}}\left(t-t_{k}^{\nu}\right)\left[\prod_{j=l+1}^{k-1} S_{t_{j}^{\nu}}(T / \nu)\right] S_{t_{l}^{\nu}}\left(t_{l+1}^{\nu}-s\right) \\
\quad \text { for } k>l, t_{k}^{\nu} \leq t \leq t_{k+1}^{\nu}, t_{l}^{\nu} \leq s \leq t_{l+1}^{\nu}
\end{array}\right.
$$

From (16) and Theorem 3.1 of [3, p. 135] it follows that $U_{\nu}(t, s)$ is the fundamental solution corresponding to $A_{\nu}(t)$, the mapping

$$
\begin{equation*}
\Delta_{T} \ni(t, s) \rightarrow U_{\nu}(t, s) \tag{17}
\end{equation*}
$$

is strongly continuous and

$$
\begin{equation*}
\left\|U_{\nu}(t, s)\right\| \leq M e^{\omega(t-s)} \quad \text { for }(t, s) \in \Delta_{T}, \tag{18}
\end{equation*}
$$

where M and ω are the constants from (12).
From the equality

$$
\frac{\partial}{\partial t} U(t, s) x=A(t) U(t, s) x, \quad x \in X
$$

we obtain

$$
\frac{\partial}{\partial t} U(t, s) x=A_{\nu}(t) U(t, s) x+\left[A(t)-A_{\nu}(t)\right] U(t, s) x
$$

Hence

$$
\begin{equation*}
U(t, s) x=U_{\nu}(t, s) x+\int_{s}^{t} U_{\nu}(t, \tau)\left[A(\tau)-A_{\nu}(\tau)\right] U(\tau, s) x d \tau \tag{19}
\end{equation*}
$$

(cf. [2, p. 195, Th. 3.1]) and so we have

$$
\left\|\left[U(t, s)-U_{\nu}(t, s)\right] x\right\| \leq M e^{\omega T} \int_{0}^{T}\left\|\left[A(\tau)-A_{\nu}(\tau)\right] U(\tau, s) x\right\| d \tau
$$

From (15) and from Lemma 3.7 of [1, p. 151] it follows that $\|[U(t, s)-$ $\left.U_{\nu}(t, s)\right] x \| \rightarrow 0$ as $\nu \rightarrow \infty$ uniformly in $(t, s) \in \Delta_{T}$. By (18), this implies (13), i.e. the conclusion of Lemma 2.

Theorem 1. Suppose that
(i) $\{A(t)\}, t \in[0, T]$, is a stable family in the sense of Definition 4,
(ii) $D(A(t))=D$ does not depend on $t \in[0, T]$,
(iii) the mapping $[0, T] \ni t \rightarrow A(t)$ is strongly continuous,
(iv) $0 \in P(A(t))$ for $t \in[0, T]$.

Then the family $\{A(t)\}, t \in[0, T]$, is stably approximated (cf. Def. 3).
Proof. Define $A_{n}(t)$ by (10) for $n \in \mathbb{N}$. For each fixed $n \in \mathbb{N}$ and $t \in[0, T]$ the operator $A_{n}(t)$ commutes with $A(t)$ on D and $A_{n}(t)$ is a bounded operator on X.

Let $x \in D$ be fixed. We have

$$
\begin{aligned}
\|[A(t) & \left.-A_{n}(t)\right] A(t)^{-1} x \| \\
& =\left\|\left[A(t)+n A(t)(A(t)-n)^{-1}\right] A(t)^{-1} x\right\| \\
& =\left\|x+n(A(t)-n)^{-1} x\right\|=\left\|(A(t)-n)^{-1} A(t) x\right\| \\
& \leq\left\|(A(t)-n)^{-1}\right\| \cdot\|A(t) x\| \\
& \leq \frac{M}{n-\omega}\|A(t) x\| \leq \frac{M}{n-\omega} K, \quad \text { where } K=\sup \{\|A(t) x\|: t \in[0, T]\}
\end{aligned}
$$

This shows that

$$
\left\|\left[A(t)-A_{n}(t)\right] A(t)^{-1} x\right\| \leq M_{1}
$$

where M_{1} does not depend on $n>\omega$ or $t \in[0, T]$. From this estimate we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left\|\left[A(t)-A_{n}(t)\right] A(t)^{-1} x\right\|=0 \tag{20}
\end{equation*}
$$

for each $x \in D$, where $\bar{D}=X$. By (19) and (20) in view of the BanachSteinhaus theorem (cf. [2, p. 9]), the condition (6) of Definition 3 is satisfied.

From Lemma 2 it follows that the sequence $\left\{A_{n}(t)\right\}$ is uniformly stable with stability constants M and 2ω for $n \geq 2 \omega$. Using Lemma 2 for each fixed $n \geq 2 \omega$, we obtain

$$
\begin{equation*}
\left\|U_{n}(t, s)\right\| \leq M e^{2 \omega(t-s)} \leq M e^{2 \omega T} \tag{21}
\end{equation*}
$$

Theorem 1 is proved.
Lemma 3. Suppose that
(i) the mapping $[0, T] \ni t \rightarrow A(t) x \in X$ is of class C^{1} for $x \in D$,
(ii) $A(t)^{-1} \in B(X)$ exists for $t \in[0, T]$,
(iii) the family $\{A(t)\}, t \in[0, T]$, is stably approximated by the sequence $\left\{A_{n}(t)\right\}$, where $A_{n}(t)$ is defined by (10).

Then there exists a constant K independent of $n \in \mathbb{N}$ and $(t, s) \in \Delta_{T}$ such that

$$
\begin{equation*}
\left\|A(t) U_{n}(t, s) A(s)^{-1}\right\| \leq K \tag{22}
\end{equation*}
$$

where $U_{n}(t, s)$ is the fundamental solution corresponding to $A_{n}(t)$.
Proof. According to Definition 3,

$$
\begin{equation*}
\left\|U_{n}(t, s)\right\| \leq M \tag{23}
\end{equation*}
$$

where M does not depend on $n \in \mathbb{N}$ and $(t, s) \in \Delta_{T}$.
Consider the equation (cf. [2, p. 200])

$$
\begin{equation*}
\frac{d y}{d t}=A_{n}(t) y+A^{\prime}(t) A(t)^{-1} y \tag{24}
\end{equation*}
$$

By (i) and (ii), the mapping $[0, T] \ni t \rightarrow A^{\prime}(t) A(t)^{-1} \in B(X)$ is strongly continuous. In view of the Banach-Steinhaus theorem we get

$$
\begin{equation*}
\left\|A^{\prime}(t) A(t)^{-1}\right\| \leq C, \tag{25}
\end{equation*}
$$

where C does not depend on $t \in[0, T]$.
Let $V_{n}(t, s)$ be the fundamental solution of (24). We have

$$
\begin{equation*}
V_{n}(t, s)=A(t) U_{n}(t, s) A(s)^{-1}, \quad(t, s) \in \Delta_{T} \tag{26}
\end{equation*}
$$

(cf. [2, p. 201]). From (23), (25) and (26) it follows that

$$
\begin{equation*}
\left\|V_{n}(t, s)\right\|=\left\|A(t) U_{n}(t, s) A(s)^{-1}\right\| \leq M e^{C M T}=K \tag{27}
\end{equation*}
$$

(see [2, p. 191]).
Theorem 2. Suppose that
(i) $\{A(t)\}, t \in[0, T]$, is a stable family in the sense of Definition 4,
(ii) $D(A(t))=D$ does not depend on $t \in[0, T]$,
(iii) the mapping $[0, T] \ni t \rightarrow A(t) x \in X$ is of class C^{1} for $x \in D$,
(iv) $A(t)^{-1} \in B(X)$ exists for $t \in[0, T]$.

Then the family $\{A(t)\}, t \in[0, T]$, is stably approximated by the sequence $\left\{A_{n}(t)\right\}$ defined by (10), and the sequence $\left\{U_{n}(t, s)\right\}$ of the fundamental solutions corresponding to $\left\{A_{n}(t)\right\}$ is strongly and uniformly convergent to $U(t, s)$ in Δ_{T}.

Proof. Upon using Theorem 1 and Lemmas 2-4, the proof is analogous to the proof of Theorem 3.11 of [2, p. 208]. We omit the details and refer the reader to [2, Ch. II].

From Theorem 2 and [2, Th. 3.6, p. 200] it follows that if the family $\{A(t)\}, t \in[0, T]$, satisfies the assumptions of Theorem 2, then the Cauchy problem

$$
\begin{equation*}
\frac{d u}{d t}=A(t) u, \quad u(s)=x, \quad x \in D, \quad 0 \leq s \leq t \leq T, \tag{28}
\end{equation*}
$$

has the unique solution given by

$$
\begin{equation*}
u(t)=U(t, s) x \tag{29}
\end{equation*}
$$

where $U(t, s)$ is the fundamental solution for (28) defined in Theorem 2.
Remark 1. The set of assumptions (i)-(iii) of Theorem 2 is usually referred to as the "hyperbolic" case in contrast to the "parabolic" case where each $A(t), t \geq 0$, is assumed to be the infinitesimal generator of an analytic semigroup. This terminology is justified by applications of the abstract results to partial differential equations (cf. [3, p. 134]).
3. Dependence of the fundamental solution on parameters. Let Ω be a compact subset of \mathbb{R}^{m}. We shall consider the following initial value problem with a parameter $h \in \Omega$:

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=A(h, t) u, \quad t \in[0, T], h \in \Omega \tag{30}\\
u(s)=x, \quad 0 \leq s \leq t \leq T
\end{array}\right.
$$

where $A: \Omega \times[0, T] \ni(h, t) \rightarrow A(h, t) \in \mathcal{C}(X), D(A(h, t))=D, \bar{D}=X$, $0 \in P(A(h, t))$ for $(h, t) \in \Omega \times[0, T]$ and $x \in D$.

Theorem 3. If, for any $(h, t) \in \Omega \times[0, T], A(h, t)$ is bounded and, for each $x \in X$, the mapping

$$
\begin{equation*}
\Omega \times[0, T] \ni(h, t) \rightarrow A(h, t) x \in X \text { is continuous } \tag{31}
\end{equation*}
$$

then the mapping

$$
\begin{equation*}
\Omega \times \Delta_{T} \ni(h, t, s) \rightarrow U(h, t, s) x \in X \text { is continuous } \tag{32}
\end{equation*}
$$

Proof. It follows from [2, p. 189] that the mapping $\Delta_{T} \ni(t, s) \rightarrow$ $U(h, t, s) x \in X$ is continuous for any fixed $h \in \Omega$ and $x \in X$. Hence, by the Banach-Steinhaus theorem there exists $M_{1}=M_{1}(h) \geq 0$ such that

$$
\|U(h, t, s)\| \leq M_{1} \quad \text { for }(t, s) \in \Delta_{T}
$$

To prove the theorem it is enough to show that

$$
U(h, t, s) x \rightarrow U\left(h_{0}, t, s\right) x \quad \text { as } h \rightarrow h_{0}
$$

uniformly in $(t, s) \in \Delta_{T}$, for any $x \in X$. Since

$$
\frac{\partial}{\partial t} U(h, t, s) x=A(h, t) U(h, t, s) x \quad \text { for } h \in \Omega,(t, s) \in \Delta_{T}, x \in X
$$

and $U(h, t, t) x=x$ for $h \in \Omega, t \in[0, T], x \in X$, we have

$$
\begin{aligned}
& \left\|\left[U(h, t, s)-U\left(h_{0}, t, s\right)\right] x\right\| \\
& \leq \int_{s}^{t}\left\|\left[A(h, \tau) U(h, \tau, s)-A\left(h_{0}, \tau\right) U\left(h_{0}, \tau, s\right)\right] x\right\| d \tau \\
& \leq \int_{s}^{t}\|A(h, \tau)\| \cdot\left\|\left[U(h, \tau, s)-U\left(h_{0}, \tau, s\right)\right] x\right\| d \tau \\
& \quad \quad+\int_{s}^{t}\left\|\left[A(h, \tau)-A\left(h_{0}, \tau\right)\right] U\left(h_{0}, \tau, s\right) x\right\| d \tau .
\end{aligned}
$$

By (31) and the Banach-Steinhaus theorem there exists $M>0$ such that $\|A(h, t)\| \leq M$. Thus,

$$
\begin{aligned}
\left\|\left[U(h, t, s)-U\left(h_{0}, t, s\right)\right] x\right\| \leq & M \int_{0}^{T}\left\|\left[U(h, \tau, s)-U\left(h_{0}, \tau, s\right)\right] x\right\| d \tau \\
& +\int_{0}^{T}\left\|\left[A(h, \tau)-A\left(h_{0}, \tau\right)\right] U\left(h_{0}, \tau, s\right) x\right\| d \tau .
\end{aligned}
$$

By Gronwall's inequality

$$
\left\|\left[U(h, t, s)-U\left(h_{0}, t, s\right)\right] x\right\| \leq e^{T M} \int_{0}^{T}\left\|\left[A(h, \tau)-A\left(h_{0}, \tau\right)\right] U\left(h_{0}, \tau, s\right) x\right\| d \tau
$$

By (31) the operators $A(h, \tau)-A\left(h_{0}, \tau\right)$ converge strongly and uniformly in $\tau \in[0, T]$ to zero as $h \rightarrow h_{0}$, on the entire space X. This means that they converge to zero on the compact set of values of the continuous functions $U\left(h_{0}, \tau, s\right) x$. It follows that the functions

$$
\left[A(h, \tau)-A\left(h_{0}, \tau\right)\right] U\left(h_{0}, \tau, s\right) x
$$

converge to zero uniformly in $(\tau, s) \in \Delta_{T}$ (cf. [1, p. 151]). Hence $\lim _{h \rightarrow h_{0}} U(h, t, s) x=U\left(h_{0}, t, s\right) x$ uniformly in $(t, s) \in \Delta_{T}$.

Definition 5. A family $\{A(h, t)\},(h, t) \in \Omega \times[0, T]$, is said to be uniformly stably approximated with respect to $h \in \Omega$ if there exists a sequence $\left\{A_{n}(h, t)\right\}$ of bounded linear operators $A_{n}(h, t): X \rightarrow X, n=1,2, \ldots$, such that
(i) the mapping $\Omega \times[0, T] \ni(h, t) \rightarrow A_{n}(h, t) x \in X$ is continuous for $x \in X, n=1,2, \ldots$,
(ii) $\lim _{n \rightarrow \infty}\left\{\sup \left\|\left[A_{n}(h, t)-A(h, t)\right] A(h, t)^{-1} x\right\|:(h, t) \in \Omega \times[0, T]\right\}=0$ for $x \in X$ and the sequence $\left\{U_{n}(h, t, s)\right\}$ of fundamental solutions of (30) with $A(h, t)=A_{n}(h, t), n=1,2, \ldots$, is uniformly bounded, i.e. there exists
$K>0$ such that

$$
\left\|U_{n}(h, t, s)\right\| \leq K \quad \text { for } h \in \Omega,(t, s) \in \Delta_{T}, n=1,2, \ldots
$$

Definition 6. We say that a family $\{A(h, t)\},(h, t) \in \Omega \times[0, T]$, is uniformly stable in Ω if
(i) $\{A(h, t)\}$ is stable (in the sense of Def. 4) for any $h \in \Omega$,
(ii) the stability constants M, ω are independent of h.

Theorem 4. Suppose that
(i) the family $\{A(h, t)\},(h, t) \in \Omega \times[0, T]$ is uniformly stably approximated by $\left\{A_{n}(h, t)\right\},(h, t) \in \Omega \times[0, T]$,
(ii) the mapping $\Omega \times[0, T] \ni(h, t) \rightarrow A(h, t) x \in X$ is continuous for $x \in D$,
(iii) the mapping $[0, T] \ni t \rightarrow A(h, t) x \in X$ is of class C^{1} for $h \in \Omega$, $x \in D$,
(iv) $A_{n}(h, t)$ commutes with $A(h, t)$ for $n \in \mathbb{N},(h, t) \in \Omega \times[0, T]$,
(v) $\left\{U_{n}(h, t, s)\right\}$ strongly and uniformly converges to $U(h, t, s)$ in $\Omega \times \Delta_{T}$.

Then $U(h, t, s)$ is the fundamental solution of the problem (30) and the mapping $(h, t, s) \rightarrow U(h, t, s) x$ is continuous.

Proof. It follows from Theorem 3.6 of [2, p. 200] that the problem (30) is uniformly correct and, for $h \in \Omega, U(h, t, s)$ is its fundamental solution. By (i), the assumptions of Theorem 3 are satisfied. Thus, for $n \in \mathbb{N}$, the mapping $(h, t, s) \rightarrow U_{n}(h, t, s) x$ is continuous and the assumption (v) ends the proof.

Theorem 5. Suppose that
(i) $\{A(h, t)\},(h, t) \in \Omega \times[0, T]$, is stable uniformly in $h \in \Omega$,
(ii) the mapping $\Omega \times[0, T] \ni(h, t) \rightarrow A(h, t) x \in X$ is continuous for $x \in D$,
(iii) the mapping $[0, T] \ni t \rightarrow A(h, t) x \in X$ is of class C^{1} for $h \in \Omega$, $x \in D$.

Then the problem (30) has, for any $h \in \Omega$, exactly one solution $u(h, \cdot)$ which is given by $u(h, t)=U(h, t, s) x$, where $U(h, t, s)$ is the fundamental solution of (30). Moreover, the mapping $\Omega \times \Delta_{T} \ni(h, t, s) \rightarrow U(h, t, s) x \in X$ for $x \in X$ is continuous.

Proof. Since for any $h \in \Omega$, the family $\{A(h, t)\}$ satisfies the assumptions of Theorem 2, it is stably approximated and the approximating sequence is given by

$$
\begin{equation*}
A_{n}(h, t)=-n A(h, t) R(n ; A(h, t))=-n I-n^{2} R(n ; A(h, t)) . \tag{33}
\end{equation*}
$$

By (i),

$$
\|R(n ; A(h, t))\| \leq \frac{M}{n-\omega}
$$

and so $R(n ; A(h, t))$ is bounded uniformly in $(h, t) \in \Omega \times[0, T]$, for any fixed $n \in \mathbb{N}$. Hence the mapping $(h, t) \rightarrow A_{n}(h, t) x$ for $x \in X$ is continuous (see [2, p. 176]), where $A_{n}(h, t)$ is given by (33). By Theorem 3 the mapping

$$
(h, t, s) \rightarrow U_{n}(h, t, s) x \quad \text { for } x \in X, n=1,2, \ldots
$$

is continuous, where $U_{n}(h, t, s)$ is the fundamental solution of (30) with $A(h, t)=A_{n}(h, t)$ given by (33). By Theorem 2 the sequence $\left\{U_{n}(h, t, s)\right\}$ is strongly and uniformly convergent to $U(h, t, s)$ in Δ_{T}, for $h \in \Omega$. Since the family $\{A(h, t)\}$ is uniformly stably approximated with respect to $h \in \Omega$, similarly to the proof of Theorem 3.11 in [2] we conclude that $U_{n}(h, t, s) x \rightarrow$ $U(h, t, s) x$ uniformly in $(h, t, s) \in \Omega \times \Delta_{T}$.
4. Dependence on parameter of solutions to problem (1). It is well known that under suitable assumptions the solution of problem (1) is given by

$$
\begin{equation*}
u(h, t)=U(h, t, 0) u_{0}(h)+\int_{0}^{t} U(h, t, s) f(h, s) d s \tag{34}
\end{equation*}
$$

Theorem 6. Suppose that
(i) the family $\{A(h, t)\}$ satisfies the assumptions of Theorem 4,
(ii) the mapping $\Omega \ni h \rightarrow u_{0}(h) \in X$ is continuous,
(iii) the mapping $\Omega \times[0, T] \ni(h, t) \rightarrow f(h, t) \in X$ is continuous.

Then the function u given by (34) is continuous in $\Omega \times[0, T]$.
Proof. By Theorem 4 the mapping $\Omega \times \Delta_{T} \ni(h, t, s) \rightarrow U(h, t, s) x \in X$ for $x \in X$ is continuous and so Theorem 6 is now a simple consequence of Theorem 1 of [5].

Corollary.If the family $\{A(h, t):(h, t) \in \Omega \times[0, T]\}$ satisfies the assumptions of Theorem 5 and the mappings $\Omega \ni h \rightarrow u_{0}(h) \in X$ and $\Omega \times[0, T] \ni(h, t) \rightarrow f(h, t) \in X$ are continuous then the function given by (34) is continuous in $\Omega \times[0, T]$.

Indeed, it is a simple consequence of Theorems 5 and 6.
Theorem 7. Let the assumptions of Theorem 4 be satisfied. Suppose that $\Omega \subset \mathbb{R}, h_{0}$ is an interior point of Ω and
(i) $u(h, \cdot) \in C([0, T] ; X)$ is a solution of the problem (1),
(ii) the mappings $\Omega \ni h \rightarrow A(h, \cdot) x \in C([0, T] ; X), \Omega \ni h \rightarrow f(h, \cdot) \in$ $C([0, T] ; X)$ and $\Omega \ni h \rightarrow u_{0}(h) \in X$ are differentiable at h_{0}.

Then the mapping $\Omega \ni h \rightarrow u(h, \cdot) \in C([0, T] ; X)$ is differentiable at h_{0} and

$$
\begin{align*}
u^{\prime}\left(h_{0}, t\right)= & U\left(h_{0}, t, 0\right) u_{0}^{\prime}\left(h_{0}\right) \tag{35}\\
& +\int_{0}^{t} U\left(h_{0}, t, s\right)\left[f^{\prime}\left(h_{0}, s\right)-A^{\prime}\left(h_{0}, s\right) u\left(h_{0}, s\right)\right] d s
\end{align*}
$$

where " 1 " denotes differentiation with respect to h.
Proof. Since $u(h, \cdot)$ is a solution of the problem (1), the function

$$
\begin{equation*}
\omega(h, t)=\frac{u(h, t)-u\left(h_{0}, t\right)}{h-h_{0}} \quad \text { for } h \neq h_{0} \tag{36}
\end{equation*}
$$

is for $h \neq h_{0}$ a solution of the problem

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=A(h, t) v+F(h, t) \tag{37}\\
v(0)=\omega_{0}(h)
\end{array}\right.
$$

where

$$
\begin{gathered}
F(h, t)= \begin{cases}\frac{f(h, t)-f\left(h_{0}, t\right)}{h-h_{0}}-\frac{A(h, t)-A\left(h_{0}, t\right)}{h-h_{0}} u\left(h_{0}, t\right) & \text { for } h \neq h_{0}, \\
f^{\prime}\left(h_{0}, t\right)-A^{\prime}\left(h_{0}, t\right) u\left(h_{0}, t\right) & \text { for } h=h_{0},\end{cases} \\
\omega_{0}(h)= \begin{cases}\frac{u_{0}(h)-u_{0}\left(h_{0}\right)}{h-h_{0}} & \text { for } h \neq h_{0}, \\
u_{0}^{\prime}\left(h_{0}\right) & \text { for } h=h_{0} .\end{cases}
\end{gathered}
$$

By (ii) the mapping

$$
(h, t) \rightarrow \begin{cases}\frac{f(h, t)-f\left(h_{0}, t\right)}{h-h_{0}} & \text { for } h \neq h_{0} \\ f^{\prime}\left(h_{0}, t\right) & \text { for } h=h_{0}\end{cases}
$$

is continuous. We have

$$
\begin{aligned}
& \frac{A(h, t)-A\left(h_{0}, t\right)}{h-h_{0}} u\left(h_{0}, t\right) \\
& \quad=\frac{A(h, t)-A\left(h_{0}, t\right)}{h-h_{0}} A\left(h_{0}, 0\right)^{-1} A\left(h_{0}, 0\right) A\left(h_{0}, t\right)^{-1} A\left(h_{0}, t\right) u\left(h_{0}, t\right) .
\end{aligned}
$$

Since

$$
A\left(h_{0}, t\right) u\left(h_{0}, t\right)=\frac{d u\left(h_{0}, t\right)}{d t}-f\left(h_{0}, t\right)
$$

and by Definition 1 , the mapping

$$
[0, T] \ni t \rightarrow A\left(h_{0}, t\right) u\left(h_{0}, t\right) u
$$

is continuous. Also, the mapping

$$
[0, T] \ni t \rightarrow A\left(h_{0}, t\right) A\left(h_{0}, t\right)^{-1} u
$$

is continuous (cf. [2, Lemma 1.5]). Therefore

$$
(h, t) \rightarrow \begin{cases}\frac{A(h, t)-A\left(h_{0}, t\right)}{h-h_{0}} u\left(h_{0}, t\right) & \text { for } h \neq h_{0} \\ A^{\prime}\left(h_{0}, t\right) u\left(h_{0}, t\right) & \text { for } h=h_{0}\end{cases}
$$

is continuous. By Theorem 6 the mapping

$$
\widetilde{\omega}(h, t):=U(h, t, 0) \omega_{0}(h)+\int_{0}^{t} U(h, t, s) F(h, s) d s
$$

is continuous and

$$
\widetilde{\omega}(h, t)= \begin{cases}\omega(h, t) & \text { for } h \neq h_{0} \\ u^{\prime}\left(h_{0}, t\right) & \text { for } h=h_{0}\end{cases}
$$

Therefore

$$
\begin{aligned}
u^{\prime}\left(h_{0}, t\right)= & U\left(h_{0}, t, 0\right) u_{0}^{\prime}\left(h_{0}\right) \\
& +\int_{0}^{t} U\left(h_{0}, t, s\right)\left[f^{\prime}\left(h_{0}, s\right)-A\left(h_{0}, s\right) u\left(h_{0}, s\right)\right] d s
\end{aligned}
$$

Corollary 2. If for any $h \in \Omega$ the assumptions of Theorem 7 are satisfied, then the mapping

$$
\Omega \ni h \rightarrow u(h, \cdot) \in C([0, T] ; X)
$$

is differentiable and

$$
u^{\prime}(h, t)=U(h, t, 0) u_{0}^{\prime}(h)+\int_{0}^{t} U(h, t, s) F_{1}(h, s) d s
$$

where $F_{1}(h, s)=f^{\prime}(h, s)-A^{\prime}(h, s) u(h, s)$.
Remark 1. Let the assumptions of Theorem 4 be satisfied. If for any $h \in \Omega$ the mapping $[0, T] \ni t \rightarrow f(h, t) \in X$ is of class C^{1}, then the function u given by (34) is the unique solution of the problem (1) (see [4, Th. 4.52]).

Remark 2. Similarly to [6] one can prove theorems on higher regularity of the solution of problem (1).

References

[1] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
[2] S. G. Krein, Linear Differential Equations in Banach Space, Transl. Amer. Math. Soc. 29, Providence, R.I., 1971.
[3] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[4] H. Tanabe, Equations of Evolution, Pitman, 1979.
[5] T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339.
[6] -, Regularity of solutions of parabolic equations with coefficients depending on t and parameters, ibid. 56 (1992), 311-317.

Institute of Mathematics
Technical University of Kraków
Warszawska 24
31-155 Kraków, Poland
E-mail: u-2@institute.pk.edu.pl

Reçu par la Rédaction le 8.12.1994
Révisé le 27.4.1995

[^0]: 1991 Mathematics Subject Classification: 34K30, 35B30.
 Key words and phrases: evolution problem, stable family of operators, stable approximations of the evolution operator, evolution problem with parameter, hyperbolic case.

