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Growth properties of entire functions
depending on a parameter

by Stefan Halvarsson (Uppsala)

Abstract. We study the growth of parameter-dependent entire functions. We are
mainly interested in the case where the functions depend holomorphically on the param-
eter.

1. Introduction. Let (z, w) 7→ H(z, w) be an entire function in z ∈ Cn
which depends on a parameter w. We can then study the growth of H(·, w)
as a function of w. In this paper we measure the growth with the use of
relative order as introduced by C. O. Kiselman in [8], a slight modification
of his definition in [7]. Relative order generalizes the classical order and
with this notion we can study functions of arbitrarily fast growth. If %(w)
denotes the relative order of H(·, w) and H is holomorphic in w we know
from [7] that (−1/%)∗ is plurisubharmonic. We see in our Theorem 5.2,
using a classical result of Bremermann [2], that on a pseudoconvex domain
(−1/%)∗ can be any negative plurisubharmonic function, while this is not
true in general. Sufficient conditions for (−1/%)∗ to be pluriharmonic are
given in Theorem 5.3 and Corollaries 5.4, 5.5.

In Section 6 we study the continuity properties of the relative order.
It is easy to see that the growth can drop suddenly, just take H(z, w) =
F (z)u(w), where F is entire and u is a holomorphic function with some
zeros. The order will then be constant away from the zeros and will vanish
on them. We see in Theorem 6.1 that the opposite can happen, i.e. if Ω is
the domain where H is holomorphic in w then the relative order can make a
jump up when going from Ω up to any point of the boundary ∂Ω of Ω even
if H extends continuously to the closure Cn × Ω. On the other hand, we
prove in Theorem 6.4 that the relative order is continuous inside Ω if each
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Taylor coefficient of H regarded as a function of w ∈ Ω is either non-zero
or identically zero. Under the same assumptions on the Taylor coefficients
we see in Corollary 6.6 that relative order and supremum commute over
relatively compact sets. This is not true for sets which intersect the boundary
even if H extends continuously, as seen in Theorem 6.3. We also get a
counterexample to Corollary 6.6 if the Taylor coefficients do have zeros.
As is seen in Section 7 it is essential in this example that the zeros of
the Taylor coefficients accumulate at an infinite number of points. If the
relatively compact set is thick enough then we need no conditions at all on
the zeros (Theorem 6.7).

Acknowledgements. I want to thank Christer Kiselman for his helpful
suggestions and comments, and also the referee for his comments.

2. Relative order and type. We define relative order and type as in
Kiselman [8]. The statements following the definitions are shown there.

Definition 2.1. Let f, g : E → [−∞,+∞] be two functions defined on
a real vector space E. We define the order of f relative to g as

(2.1) order(f : g) = inf[a > 0 : ∃ca ∈ R, ∀x ∈ E, f(x) ≤ a−1g(ax) + ca].

If g is convex and g(0) < +∞ then the set above is an interval ]%,+∞[
or [%,+∞[, where 0 ≤ % ≤ +∞.

Definition 2.2. Let f, g be two functions as above. We then define the
type of f relative to g as

(2.2) type(f : g) = inf[b > 0 : ∃cb ∈ R, ∀x ∈ E, f(x) ≤ bg(x) + cb].

The set above is an interval ]σ,+∞[ or [σ,+∞[, where 0 ≤ σ ≤ +∞, if
g is bounded from below.

3. Growth and coefficient functions. Let F be an entire function
in Cn. We then define its growth function as

(3.1) f(t) = sup[log |F (z)| : z ∈ Cn, |z| ≤ et], t ∈ R.
In view of Hadamard’s three-circle theorem, f is a convex increasing func-
tion.

If F and G are two entire functions, we define the order of F relative to
G as order(F : G) = order(f : g), where f and g are the growth functions
defined by (3.1). The order so defined is independent of the norm; see Hal-
varsson [3]. If G has a zero of a higher degree than F at the origin the order
will be infinite. This is not the case in the original definition of Kiselman [7].
Naturally, g need not be a growth function. The interesting choices of “order
functions” are those which are convex, bounded from below, increasing and
have faster growth than any linear function. As we have seen it is natural to
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use functions which are bounded from below. If g grows linearly the order is
zero for polynomials up to a certain degree and +∞ for other functions. If
g is not convex we can replace it with its largest convex minorant. Since a
growth function is convex the inequality in (2.1) will still hold then. We will
also see in Proposition 4.7 that for each function g′ satisfying the conditions
discussed there is a growth function g for which order(F : g) = order(F : g′)
for all entire functions F .

We can also define what we will call the refined growth function of F , as

(3.2) fr(t) = sup[log |F (z)| : z ∈ Cn, |zi| ≤ eti ], t ∈ Rn.

Also this function is convex by Hadamard’s theorem.
If F and G are two entire functions in Cn, then order(fr : gr), with fr, gr

the refined growth functions defined by (3.2), is in general larger than or
equal to order(f : g), with f and g the growth functions defined by (3.1),
since we can always take all ti = t ∈ R. However, order(fr : gr) is not
invariant under linear coordinate changes so it is more natural to define
the relative order of two entire functions from order(f : g). If we take G =
n−1

∑n
i=1 e

zi we get order(f : g) = order(fr : gr) equal to the classical order
of F . By taking g(t) = exp[p−1](t) (where exp[p−1](t) = exp(exp[p−2](t)),
exp[0](t) = t), we get the (p, 1)-order of F considered in Sato [15], which has
then been generalized to the (p, q)-order introduced in Juneja, Kapoor &
Bajpai [5, 6]. We cannot, however, use the methods of the present paper for
q 6= 1. Note also that if the convex hull C(F ) of those multi-indices k ∈ Nn
for which the Taylor coefficients of F are non-zero is not contained in the
likewise defined C(G) then order(fr :gr) equals +∞. See [3], Proposition 7.9.

We can expand F in homogeneous polynomials

(3.3) F (z) =
∞∑
j=0

Pj(z),

where Pj is homogeneous of degree j. We define the norm of the polynomials
Pj as

(3.4) ‖Pj‖ = sup
|z|≤1

|Pj(z)|.

With this norm we define the coefficient function of F as

(3.5) p(j) =
{
− log ‖Pj‖, j ∈ N,
+∞, j ∈ R \ N.

If we instead expand F ∈ O(Cn) in a Taylor series

(3.6) F (z) =
∑
k

Akz
k, z ∈ Cn, k ∈ Nn,
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where k is a multi-index, we define the refined coefficient function of F as

(3.7) a(k) =
{
− log |Ak|, k ∈ Nn,
+∞, k ∈ Rn \ Nn.

4. Duality. Let E∗ be the algebraic dual of the real vector space E,
and E′ a fixed linear subspace of E∗. We define the spaces F(E,E′) and
F(E′, E) in the following way: F(E,E′) is the space of all functions from
E to [−∞,+∞] which are convex, lower semicontinuous for the weak topol-
ogy σ(E,E′) and take the value −∞ only for the constant function −∞.
F(E′, E) is defined similarly for functions from E′ to [−∞,+∞] but with
the weak star topology σ(E′, E) instead.

Let f : E → [−∞,+∞] be a function on the real vector space E. We
define the Fenchel transform of f by

(4.1) f̃(ξ) = sup
x∈E

(ξ · x− f(x)), ξ ∈ E′.

We can apply the transformation twice getting

(4.2) ˜̃
f(x) = sup

ξ∈E′
(ξ · x− f̃(ξ)), x ∈ E.

A direct consequence of the definition is that we have f̃ ∈ F(E′, E) and˜̃
f ∈ F(E,E′). Obviously the transform is dependent on the subspace E′

chosen. Some general properties of the Fenchel transform are ˜̃f ≤ f ,
˜̃̃
f = f̃

and

(4.3) ˜̃
f = sup[v ∈ F(E,E′) : v ≤ f ].

Thus ˜̃f = f if and only if f ∈ F(E,E′).
Let f, g : E → [−∞,+∞] be two functions on a real vector space E. We

then define the infimal convolution of f and g by

f � g(x) = inf
y

[f(y) +̇ g(x− y)], x ∈ E,

where +̇ is upper addition extending the usual addition to act from
[−∞,+∞]2 to [−∞,+∞], so that (+∞) +̇ (−∞) = +∞. As a general ref-
erence on convexity theory we mention Rockafellar [12].

There is a duality theorem connecting the relative order and type via
the Fenchel transform.

Theorem 4.1 (Kiselman [8], Theorem 4.3). Let E be a real vector space
and E′ a linear subspace of E∗. Assume that f, g ∈ F(E,E′). Then

(4.4) order(g̃ : f̃) = type(f : g) and type(g̃ : f̃) = order(f : g).
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R e m a r k. In view of (4.3) and a simple calculation the assumption that
g ∈ F(E,E′) is superfluous. That is, if f ∈ F(E,E′), then

(4.5) order(f : ˜̃g) = order(f : g) and type(f : ˜̃g) = type(f : g).

The shortest formulation of Theorem 4.1 is order(f̃ : g) = type(g̃ : f), for
all functions f , g.

We will use this theorem to derive a duality between the growth and
coefficient functions. We begin by defining the function K as

(4.6) K(t) =
{
− log(1− et), t < 0,
+∞, t ≥ 0,

and the function Kn as

(4.7) Kn(ξ) = K(ξ1) + . . .+K(ξn), ξ ∈ Rn,
with K defined by (4.6). Then we have the following theorems.

Theorem 4.2 ([8], Theorem 6.1). Let F ∈ O(Cn) be an entire function.
Define f , p by (3.1) and (3.5) respectively and K by (4.6). Then

(4.8) p̃ ≤ f ≤ p̃�K on R.

The first inequality is derived from Cauchy’s inequalities and the second
from the usual upper bound for a series by taking the sum of the modulus
of the terms.

Corollary 4.3 ([8], Corollary 6.5). Let F,G be two entire functions
in Cn. Let f, g be their growth functions defined by (3.1) and p, q be their
coefficient functions defined by (3.5). Then

(4.9) order(f : g) = order(p̃ : q̃) = type(˜̃q : p).

Theorem 4.4 ([8], Theorem 6.6). Let F be an entire function in Cn.
Define a, fr by (3.7), (3.2) respectively and Kn by (4.7). Then

(4.10) ã ≤ fr ≤ ã�Kn on Rn.

Corollary 4.5 (Halvarsson [3], Corollary 7.2). Let F,G be two entire
functions in Cn. Let fr, gr be defined by (3.2) and a, b by (3.7), with F,G
respectively. Let E′ = Rn in the definition of the Fenchel transform. Then

(4.11) order(fr : gr) = order(ã : b̃) = type(˜̃b : a).

Corollary 4.6. Let F,G be two entire functions in Cn. Let f, g be
defined by (3.1) and a, b by (3.7), with F,G respectively. Let L be the linear
hull of (1, 1, . . . , 1). Then

(4.12) order(f : g) = order(â : b̂) = type(̂̂b : a),

where â indicates the Fenchel transform using E′ = L.
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P r o o f. We note that fr(t, t, . . . , t) = f(t) if we use the maximum norm
in (3.1). Also, â(t, t, . . . , t) = ã(t, t, . . . , t). The proof is now similar to that
of Corollaries 4.3 and 4.5. See also the proof of Theorem 6.2 below.

We see that ̂̂a is constant on hyperplanes orthogonal to (1, 1, . . . , 1) and

(4.13) ̂̂a(s, s, . . . , s) = ˜̃m(ns), s ∈ R,
where we define m(j) = min|k|=j a(k) for j ∈ N and m(j) = +∞ otherwise.
Moreover, ̂̂a ≤ ˜̃a.

We will frequently and sometimes tacitly use the easily derived conditions
p(j)
j
→ +∞, j → +∞⇔ F ∈ O(Cn)(4.14)

⇔ a(k)
|k|
→ +∞, |k| =

n∑
i=1

ki → +∞,

for the coefficient and refined coefficient function of F . As a consequence
p(j) = ˜̃p(j) in a sequence of points tending to infinity and if we redefine p
to +∞ at all points where we have inequality then ˜̃p is unchanged. Similar
statements hold for a and ˜̃a, ̂̂a. (See for instance Halvarsson [3], Lemma 5.3,
Lemma 5.4 and Lemma 7.3.) Also, if q(j) = βjp(j) for all j and some non-
zero βj tending to β as j → +∞ (or b(k) = βka(k) for non-zero βk → β as

|k| → +∞) we get type(˜̃q : ˜̃p) = β (or type(˜̃b : ˜̃a) = type(̂̂b : ̂̂a) = β). This is
by the way a special case of Theorem 5.3 below, using uk = exp((1−βk)a(k)).

If g is an arbitrary function in F(R,R) (i.e. g = ˜̃g), then it follows from
Theorem 4.2 that for f a growth function,

(4.15) order(f : g) = order(p̃ : g) = type(g̃ : p).

This is [8], Corollary 6.4. As a corollary to Theorem 4.4 we similarly get,
by defining gn(t, . . . , t) = g(t),

(4.16) order(f : g) = order(â : gn) = type(ĝn : a).

We have ĝn(k) = g̃(
∑
ki). For order(g : f) we just switch the arguments

in (4.15) and (4.16). It is natural to assume that g is real-valued. From the
definition of the Fenchel transformation it follows that if g is also increasing
faster than any linear function and is bounded from below then g̃ is +∞
for negative arguments (since g is increasing), real-valued for non-negative
arguments (since g grows faster than any linear function and is bounded
from below) and has faster growth than any linear function (since g is real-
valued). Therefore we can find for such g by (4.14) an entire function F

such that p(j) = ˜̃p(j) = g̃(j), j ∈ N (or a(k) = ̂̂a(k) = g̃(
∑
ki), k ∈ Nn).

For each growth function h we will then have order(h : f) = order(h : g).
This follows since if r is the coefficient function that goes with h then we
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have order(h : f) = type(˜̃p : r) and order(h : g) = type(g̃ : r), but ˜̃p and
g̃ coincide on the set where r is finite, so the two types are the same. If
gr : Rn → R is convex, grows faster than any linear function and is bounded
from below then by a similar discussion if we define an entire function F

such that its refined coefficient function a satisfies ˜̃a(k) = g̃r(k), k ∈ Nn,
then order(hr : fr) = order(hr : gr) for all entire functions H.

Proposition 4.7. Let g : R → R and g′ : Rn → R be two convex
functions which are bounded from below and increasing faster than any linear
function. Then there exists an entire function F ∈ O(Cn) such that for all
entire H, order(H : F ) = order(H : g), and an entire function F ′ such
that for all entire H its refined growth function hr satisfies order(hr : f ′r) =
order(hr : g′), where f ′r is the refined growth function of F ′. The function
F can be constructed by putting p(j) = g̃(j), j ∈ N, or a(k) = g̃(

∑
ki),

k ∈ Nn, and the function F ′ by putting a′(k) = g̃′(k), k ∈ Nn, with p
the growth function of F and a, a′ the refined growth functions of F , F ′

respectively.

P r o o f. Already done.

We will see later (in Theorem 6.2, or more directly in its proof), as
the reader might believe anyway, that the proposition is true also for a
supremum of growth functions supx hx, but we do not need this fact yet.

Now if we have found an entire function F as in the proposition, is
it true that also order(f : h) = order(g : h) for all growth functions h?
This holds if there exists a coefficient function p such that type(˜̃p : g̃) =
type(g̃ : ˜̃p) = 1, but not if we have type(˜̃p : g̃) > 1. If for example g(t) =
Cαt

α
+, Cα > 0, α > 1, then g̃(τ) = Dατ

α/(α−1) for τ ≥ 0 and g̃(τ) = +∞
for τ < 0, and we can find a coefficient function p such that both of the
types equal one, but this is not the case for g(t) = t(log t − 1) for t > 1
and g(t) = −1 for t ≤ 1 when g̃(τ) = eτ for τ ≥ 0 and g̃(τ) = +∞ for
τ < 0. It is enough to check this for the function p in the proposition. See
also Kiselman [8], Theorem 9.3.

We can characterize those functions G for which for all F , order(f : g) =
order(fr : gr). For any set A we define its indicator function iA as

(4.17) iA(x) =
{

0, x ∈ A,
+∞, x 6∈ A.

We denote by domφ the effective domain of a function φ with values in
[−∞,+∞], that is, the set of all points x such that φ(x) < +∞.

Proposition 4.8. Let G ∈ O(Cn) and define g by (3.1), gr by (3.2) and
b by (3.7). Let A be the convex hull of a set in Nn and let iA be the indicator
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function of A. If type(˜̃b : ̂̂b+ iA) = 1 then order(f : g) = order(fr : gr) for
every entire function F with Taylor coefficients Ak which are non-zero only

for k ∈ A. If type(˜̃b : ̂̂b + iA) > 1 then there exists a function H ∈ O(Cn)
with Taylor coefficients Ck which are non-zero only for k ∈ A such that
order(h : g) < order(hr : gr).

P r o o f. First assume that type(˜̃b : ̂̂b + iA) = 1 and let F have non-
zero Taylor coefficients only in A. We already know that order(f : g) ≤
order(fr : gr). To see the opposite inequality we use Corollary 4.5 and the
submultiplicativity of the type:

(4.18) order(fr : gr) = type(˜̃b : ˜̃a)

≤ type(˜̃b : ̂̂b+ iA) type(̂̂b+ iA : ̂̂a+ iA) type(̂̂a+ iA : ˜̃a);

we will see that the right-hand side of (4.18) equals order(f : g). By assump-

tion type(˜̃b : ̂̂b+ iA) = 1. This also implies that A is unbounded. Otherwise

we would have type(˜̃b : ̂̂b + iA) = 0. Since ̂̂a, ̂̂b are constant on hyperplanes
orthogonal to (1, 1, . . . , 1) and A is unbounded we have, by Corollary 4.6,

type(̂̂b+ iA : ̂̂a+ iA) = order(f : g). It follows from the fact that ̂̂a ≤ ˜̃a and
from our relations in (4.14) that type(̂̂a : ˜̃a) = 1, unless F is a polynomial,
but in this case we anyway have order(fr : gr) = order(f : g) = 0, so if
iA is finite (zero) in the set where ˜̃a is finite, i.e. dom ˜̃a ⊂ A, then we are
done. But this is the case since F was assumed to have non-zero Taylor co-
efficients only in A. (Actually, dom ˜̃a equals the convex hull of those points
in Nn for which the Taylor coefficients of F are non-zero; see the proof of

Halvarsson [3], Proposition 7.9.) Now assume that type(˜̃b : ̂̂b + iA) > 1. If

we define a function H such that H(z) =
∑
k Ckz

k, with c(k) = ̂̂
b(k) on

A ∩ Nn and c(k) = +∞ otherwise, it will certainly be entire and we will

get type(˜̃b : ˜̃c) > 1 by construction. Moreover, we get type(̂̂b : ̂̂c) = 1. By
Corollaries 4.5 and 4.6 we then get 1 = order(h : g) < order(hr : gr).

Note that in view of Corollary 4.5 we must have dom ˜̃a ⊂ dom ˜̃b if

order(fr : gr) < +∞. The condition type(˜̃b : ̂̂b+ iRn+) = 1 is always satisfied
for instance by functions G =

∑n
i=1Gi(zi) if order(Gi : Gj) = 1 for all i, j.

If F =
∑n−1
i=1 Gi(zi) we get order(F : G) = order(G : F ) = order(fr : gr) = 1

but order(gr : fr) = +∞, which can be seen by fixing the last variable or
the first n−1 variables respectively. Thus order(gr : fr) 6= order(G : F ) even

though type(˜̃b : ̂̂b+ iRn+) = 1.
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5. Plurisubharmonicity. In the following f will always denote the
growth function of the entire function F and hw, w ∈ Ω, will denote the
partial growth function of H ∈ O(Cn ×Ω), unless otherwise stated.

As an introduction we will make a simple construction.

Theorem 5.1. Let F ∈ O(Cn) be a transcendental entire function and
u ∈ O(Ω) be a holomorphic function on some analytic manifold Ω such that
|u(w)| < 1. Then there exists a holomorphic function H ∈ O(Cn ×Ω) such
that

(5.1) − order(hw : f)−1 = − order(f : hw) = log |u(w)|
and H(z, w) = F (z) at all points where u(w) = e−1.

P r o o f. Put
H(z, w) =

∑
j

Pj(z)(eu(w))mj ,

where mj is equal to the integer part of max(p(j), 1) for p(j) < +∞ and
zero otherwise. If we denote the partial coefficient function of H by rw we
have

(5.2) rw(j) = p(j)−mj log |eu(w)| = −p(j) log |u(w)|+ θj log |eu(w)|,
for j so large that p(j) > 1, where 0 ≤ θj < 1. To see that H is holomorphic
we must show that |Pj(z)(eu(w))mj | → 0 as j → +∞ on compact subsets
of Cn×Ω. Using the homogeneity of the polynomials {Pj} we see that this
will happen if and only if rw(j)/j → +∞ as j → +∞ locally uniformly in
Ω. Since F is entire p(j)/j → +∞ and since |u(w)| < 1 the series defining H
will converge locally uniformly. When u 6= 0, we also get, by the discussion
preceding Proposition 4.7,

(5.3) type(˜̃p : ˜̃rw) = − log |u(w)|−1, type(˜̃rw : ˜̃p) = − log |u(w)|.
Using Corollary 4.3 we get the desired orders, since if u(w) = 0 then
H(z, w) = 0 and order(f : hw) = +∞, order(hw : f) = 0.

Although in this construction we have order(f : hw) = order(hw : f)−1

this is not true in general. With f the exponential function, 1/order(f : hw)
corresponds to the classical lower order of Hw. See Kiselman [8] for a dis-
cussion also involving Whittaker’s decomposition theorem.

We see that −1/order(hw : f) = − order(f : hw) is a negative plurisub-
harmonic function of w, pluriharmonic for w such that u(w) 6= 0. In general
we know that the upper regularization

(5.4)
(
w 7→ −1

order(hw : g)

)∗
is plurisubharmonic for an arbitrary increasing convex function g which has
faster growth than any linear function (Kiselman [7], Theorem 4.1). (This
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is also true for another kind of relative order; see Lelong [10], Theorem
6.6.2.) Can it be any negative plurisubharmonic function? This is true if we
allow h to be not just a partial growth function but any plurisubharmonic
function on Ω×C with hw(t) = hw(Re t), t ∈ C (Kiselman [7], Theorem 4.2).
Now let H(z, w) =

∑
j Pj(z)uj(w) be a function such that F =

∑
j Pj is

a transcendental entire function. We may assume that p(j) = ˜̃p(j) for all
j ∈ N. By Corollary 4.3 this will have no effect on the relative order. The
partial coefficient function of H will then be

rw = p(j)− log |uj(w)| = p(j)
(

1− 1
p(j)

log |uj(w)|
)
.

Thus we get for all ε > 0 the lower bound

˜̃rw(t) ≥ ˜̃p(t) lim inf
j→+∞

(
1− 1

p(j)
log |uj | − ε

)
, ∀t > N,

where N depends on ε. If the lower limit happens to be +∞ we replace it by
a positive number RN , which is increasing and tends to +∞ with N . Since
p(j) = ˜̃p(j) on N, there exists no larger lower bound, hence type(˜̃p : ˜̃rw)=
1/(1− lim supj→+∞(1/p(j)) log |uj(w)|) and therefore

(5.5)
−1

order(hw : f)
= lim sup

j→+∞

1
p(j)

log |uj(w)| − 1.

The conditions on {uj} for H to be entire in each w make (5.5) non-positive.
In the general case H(z, w) =

∑
k∈Nn Akz

kuk(w). This case can be treated
similarly assuming a(k) = ̂̂a(k), which by Corollary 4.6 does not alter the
order. The only difference in the result is an exchange of j to k and p(j) to
a(k). This is hence a new proof of Kiselman’s result. (Recall also Proposi-
tion 4.7.) We state this as a theorem:

Theorem 5.2. Let Cn × Ω 3 (z, w) 7→ H(z, w) be a function which for
each w is an entire function:

(5.6) H(z, w) =
∑
k∈Nn

Ck(w)zk,

and let F be a transcendental entire function satisfying F (0) 6= 0. Then

−1
order(hw : f)

= lim sup
|k|→+∞

1̂̂a(k)
log |uk(w)| − 1(5.7)

= lim sup
|k|→+∞

1̂̂a(k)
log |Ck(w)|,

where uk = Ck/exp(−̂̂a(k)) and ̂̂a is the twofold Fenchel transform of the
refined coefficient function of F as in Corollary 4.6. If H is in addition



Growth properties of entire functions 81

holomorphic then (
w 7→ −1

order(hw : f)

)∗
is plurisubharmonic in Ω and if Ω is pseudoconvex this can be any non-
positive plurisubharmonic function including −∞ identically.

P r o o f. The first part is already done. The conditions on F just prevent
the order from being +∞ trivially. We could also have deduced this part
directly from Corollary 4.6. It is a fact that every plurisubharmonic function
on a pseudoconvex domain can be expressed as the upper regularization of

(5.8) w 7→ lim sup
ν→+∞

1
ν

log |uν(w)|,

for some sequence {uν} of holomorphic functions (Bremermann [2]). If we
use (4.14) we see that this applies to (5.7). On the other hand, in the same
reference it is shown that there exist domains where there are plurisubhar-
monic functions which cannot be expressed by (5.7). This depends on the
fact that the functions in (5.7) can be extended to the envelope of holomor-
phy of the domain, whereas not all plurisubharmonic functions can. For a
nice description of this in non-convex tubular domains see Lelong [11].

A natural way to construct functions H ∈ O(Cn×Ω) with orders relative
to F satisfying some condition is to multiply the homogeneous polynomials
of F by holomorphic functions in such a way that the partial coefficient
function rw(j) equals βj(w)p(j), where βj tends to some limit function β as
j → +∞. As seen by the following theorem the limit function will be very
special.

Theorem 5.3. Assume Ω ⊂ Cm is simply connected , H ∈ O(Cn ×Ω),
H(z, w) =

∑
k∈Nn Akz

kuk(w), where F (z) =
∑
k∈Nn Akz

k is an entire func-
tion and uk ∈ O(Ω), uk 6= 0 everywhere. If

(5.9) m(w) = lim
k→∞

a(k) 6=+∞

|uk(w)|1/a(k)

exists for all w ∈ Ω, then m is the modulus of a holomorphic function
u ∈ O(Ω). Either 0 < |u| < e or u is identically zero or u is a constant of
modulus e and

(5.10) order(hw : f)−1 = order(f : hw) = 1− logm(w).

P r o o f. Since Ω is simply connected and uk 6= 0 everywhere there exist
holomorphic roots

(5.11) u′k = u
1/[a(k)]
k

(if 0 < [a(k)] < +∞), where [·] denotes the integer part. For the partial
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refined coefficient function of H we have

(5.12) rw(j) = a(k)− log |uk(w)| = a(k)− [a(k)] log |u′k(w)|,
if |k| is large and a(k) 6= +∞. We see that H ∈ O(Cn ×Ω) only if

lim
k→∞

log |u′k| ≤ 1

locally uniformly so that {u′k} is a normal family. By the Arzelà–Ascoli
theorem there exists a locally uniformly convergent subsequence of {u′k} so
that the limit function m is the modulus of a holomorphic function u and
since u′k 6= 0 either u 6= 0 or u is identically zero. Also, by the maximum
principle either |u| < e or u is of modulus e identically.

R e m a r k. Equation (5.10) holds also if we take the order between the
refined growth functions of F and H(·, w). The case when H(z, w) =∑
Pj(z)uj(w),

∑
Pj = F , can be treated similarly. (It is the case when

uk = uj , |k| = j.) The conclusion of the theorem also holds true for
H(z, w) =

∑
k exp(−̂̂a(k))zkuk(w), where the sum is taken over all k ∈ Nn

such that Ak 6= 0, if we replace a by ̂̂a in (5.9). For the refined order this is
true if we use ˜̃a instead of ̂̂a in this definition of H and in (5.9).

Corollary 5.4. Let Ω be a connected analytic manifold. Assume H ∈
O(Cn×Ω) can be written as H(z, w) =

∑
k∈Nn Akz

kuk(w), where {Ak} are
coefficients such that

∑
k Akz

k = F (z), F ∈ O(Cn) and uk ∈ O(Ω). Let α
be the set of all points in Ω such that for all neighbourhoods of the point
infinitely many of the functions uk have a zero and let F (0) 6= 0, u0 6= 0. If

(5.13) m(w) = lim
k→∞

a(k)6=+∞

|uk(w)|1/a(k)

exists and 0 < m(w) < e for all w ∈ Ω \ α, then

order(hw : f)−1 = order(f : hw) = 1− logm(w)

is a positive pluriharmonic function on Ω \ α.

P r o o f. Let w be a point in Ω \α. Then there exists a neighbourhood of
w where only a finite number of the functions uk have a zero. We can take
this neighbourhood small enough to be able to work in a coordinate patch.
The result now follows from Theorem 5.3 after the observation that if only
a finite number of the functions {uk} have a zero at a point this will not
affect the order since by assumption A0u0(w) 6= 0 for all w ∈ Ω.

We remark that in the refined case to prevent order(fr : hr,w) from being
+∞ trivially we must make more assumptions than just A0u0 6= 0. See the
discussion just before equation (3.3).

It can of course happen that α = Ω. We also make the following obser-
vation:
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Corollary 5.5. Assume that the hypothesis of Corollary 5.4 holds.
Then also order(hw : hw0)−1 = order(hw0 : hw) for all w,w0 ∈ Ω \
α and this is a pluriharmonic function of w. Consequently , we see that
order(hw : g)−1 = order(hw : hw0)−1 order(hw0 : g)−1 and also that
order(g : hw) = order(g : hw0) order(hw0 : hw) for all w,w0 ∈ Ω \ α and
these are pluriharmonic functions of w for any function g.

P r o o f. We rewrite H as

H(z, w) =
∑
k

Bkz
kvk(w),

where
∑
k Bkz

k = G ∈ O(Cn) and vk ∈ O(Ω) satisfies vk(w0) = 1. We then
have Bk = Ak exp(−βka(k)− iφk) and vk(w) = uk(w) exp(βka(k) + iφk) for
some real numbers βk, φk. If we consider

|vk(w)|1/b(k) = |uk(w)eβka(k)|1/((1+βk)a(k))(5.14)

= e

(
|uk(w)|1/a(k)

e

)1/(1+βk)

,

we see that since vk(w0) = 1 and since the limit in (5.13) exists and is
strictly between 0 and e, βk will tend to some finite number β > −1. From
this we see that also the limit in (5.14) exists for all w ∈ Ω \ α as k → ∞
and we can apply Corollary 5.4 using G = H(·, w0) and {vk} instead of F
and {uk} to conclude that order(hw : hw0)−1 = order(hw0 : hw) and that
this is a pluriharmonic function. The last statement of the theorem follows
by the submultiplicativity of the order. For instance,

order(hw : g) ≤ order(hw : hw0) order(hw0 : g)
≤ order(hw : hw0) order(hw0 : hw) order(hw : g)
= order(hw : g).

Note that in general order(hw0 : g) order(g : hw0) > 1.

We give some examples of (pluri-)harmonicity which will also be used as
motivation for the next section.

Example 5.6. We take uj(w) = sin(βjp(j)w), for p(j) 6= +∞, where
βj → β ≥ 0 and Ω = {w ∈ C : |Imw| < 1/β}. If H(z, w) =

∑
j Pj(z)uj(w)

we get

order(hw : f)−1 = order(f : hw) = 1− β|Imw|, Imw 6= 0, w ∈ Ω.
In this case α is the whole real axis and we get harmonicity outside. Note

that we cannot extend harmonically to any neighbourhood across α. We get
order(hw : f) ≤ 1 for Imw = 0, with a zero at the origin. If we take for
instance βj = 1 and p(j) = π2j we get zeros on a countable dense subset
of α. On the other hand, without any effort, using the local integrability
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of log |sin s|, s ∈ R, and Fatou’s Lemma on (5.5) we see that order(hw : f)
= 1 almost everywhere [ds]. The reason for this is explained in Section 6.

Example 5.7. We take

uj(w) = w[βjp(j)] ± 1
w[βjp(j)]

, for p(j) 6= +∞,

where βj → β ≥ 0 and

Ω = {w ∈ C : e−1/β < |w| < e1/β}.
If H(z, w) =

∑
j Pj(z)uj(w) we get

order(hw : f)−1 = order(f : hw) =
{

1− β log |w|, |w| > 1,
1 + β log |w|, |w| < 1.

In this case α is the unit circle and we get harmonicity outside. We can
make the same discussion as in Example 5.6.

6. Continuity and commutativity. It is natural to ask what conti-
nuity properties the functions w 7→ order(hw : f) and w 7→ order(f : hw)
can have. We get some information from Theorem 5.2. We can also easily
see that at zeros of the coefficients of H, w 7→ order(hw : f) can suddenly
make a jump down and the other order can jump up. Can it go the other
way? The answer is yes on the boundary of the domain of definition.

Theorem 6.1. For all σ = %−1 > 1, and transcendental entire functions
F ∈ O(Cn), there exists a function

(6.1) H ∈ O(Cn × {w ∈ C : Rew < 1}) ∩ C(Cn × {w ∈ C : Rew ≤ 1})
such that order(hw : f)−1 = order(f : hw) = σ if Rew < 1, but H(z, 1) =
F (z), order(hw : f) = order(f : hw) = 1 if Rew = 1.

P r o o f. Expand F in homogeneous polynomials F (z) =
∑
j Pj(z). Put

(6.2) Rj(z, w) =
{
Pj(z)‖Pj‖σ−1(1 + 2−1eβj(w−δj)), j ≥ j0,
Pj(z), j < j0,

where δj ↗ 1 as j → +∞ and

(6.3) βj =


log(2(‖Pj‖1−σ − 1))

1− δj
, ‖Pj‖ > 0,

0, ‖Pj‖ = 0.

We choose j0 so large that (6.3) makes sense giving βj > 0, j ≥ j0, and
so that Rj(z, w) = Pj(z) for the first non-zero polynomial. Then we have
Rj(z, 1) = Pj(z), ‖Rj(·, w)‖ = ‖Pj‖+O(‖Pj‖σ) for Rew = 1 and

(6.4)
1
2
‖Pj‖σ ≤ ‖Rj(·, w)‖ ≤ 3

2
‖Pj‖σ,
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if j ≥ j0 and Rew < δj . If we now put H(z, w) =
∑
j Rj(z, w) we get the

desired orders. By construction (6.1) holds. That H is not holomorphic for
Rew > 1 can be shown by inspection if we choose some sequence {δj} but
to see that we cannot make a clever choice we will show this by defining the
function

(6.5) h(t, s) = sup
w

(hw(t) : w ∈ Ω, |w| = es), s ∈ R,

which is convex in (t, s). Now h extends continuously to h(t, 0) and since

order(h(·, 0) : h(·,−δ)) = σ,

for all δ > 0, h(·, s) cannot be real-valued for s > 0 by Kiselman [8], Theorem
7.2.

We see that the order makes a jump on the whole line Rew = 1. Compare
also with Example 5.6.

We will now generalize Corollary 4.3:

Theorem 6.2. Let {Fx}x∈X and {Gy}y∈Y be two families of entire func-
tions in Cn. Let fx, px, ax be the partial growth, coefficient and refined co-
efficient functions of Fx and gy, qy, by be the partial growth, coefficient and
refined coefficient functions of Gy respectively. Assume for simplicity only
that none of the families consists of polynomials of bounded degree and that
both supx fx and supy gy are real-valued. Then

(6.6) order(sup
x∈X

fx : sup
y∈Y

gy)

= order(sup
x∈X

p̃x : sup
y∈Y

q̃y) = type(( inf
y∈Y

qy)˜̃ : inf
x∈X

px)

= order(sup
x∈X

âx : sup
y∈Y

b̂y) = type(( inf
y∈Y

by)̂̂ : inf
x∈X

ax).

P r o o f. We will show the first line of (6.6). The other line can be shown in
a similar manner. By Theorem 4.2 we have for all x ∈ X, p̃x ≤ fx ≤ p̃x�K.
This implies p̃x(t) ≤ fx(t) ≤ p̃x(t+ 1) +K(−1), which in turn implies

(6.7) sup
x
p̃x(t) ≤ sup

x
fx(t) ≤ sup

x
p̃x(t+ 1) +K(−1).

Now supx fx is convex and if it is also real-valued then the order is translation
invariant (Kiselman [8], Lemma 3.2). If {Fx} does not consist of polynomials
of bounded degree, supx fx will grow faster than any linear function so that

1 = order(sup
x
fx : sup

x
fx)(6.8)

≤ order(sup
x
fx : sup

x
p̃x) order(sup

x
p̃x : sup

x
fx) ≤ 1,
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where the first inequality is submultiplicativity of the order and the second
inequality comes from (6.7). Hence

order(sup
x
fx : sup

x
p̃x) = order(sup

x
p̃x : sup

x
fx) = 1.

We get a similar equality for the other family. By another submultiplicativity
argument we get

(6.9) order(sup
x
fx : sup

y
gy) = order(sup

x
p̃x : sup

y
q̃y).

We can easily deduce that supx p̃x = (infx px)˜. If we now apply Theorem
4.1 and the remark following it, we are done.

With the function h defined by (6.5) in mind we state

Theorem 6.3. For all % > 1 and transcendental F ∈ O(Cn) there exists
a function

(6.10) H ∈ O(Cn × {w ∈ C : Rew < 1}),

which can be extended continuously as a non-tangential limit to Cn × {1}
such that order(hw : hw′) = 1, for all w,w′ on the unit circle T = {w ∈ C :
|w| = 1},

order(sup
w∈T

hw : f) = order(f : sup
w∈T

hw) = 1,

but

(6.11) order(sup
w∈T

hw : hw′) = order(hw′ : sup
w∈T

hw)−1 = %, ∀w′ ∈ T.

P r o o f. Expand F in homogeneous polynomials as F =
∑
j Pj . Put

(6.12) Rj(z, w) =
{
Pj(z)‖Pj‖%−1(1 + 2−1eβj(e

iφjw−δj)), j ≥ j0,
Pj(z), j < j0,

where

(6.13) βj =


log(2(‖Pj‖1−% − 1))

1− δj
, ‖Pj‖ > 0,

0, ‖Pj‖ = 0.

We choose j0 so large so that βj is defined and positive for j ≥ j0 and so
that Rj(z, w) = Pj(z) for the first non-zero polynomial. Let φj = 2−j and
δj = cos(φj/4) = cos 2−j−2. Then we have infw∈T rw(j) = p(j) for all j, but

(6.14) − log
3
2

+ %p(j) ≤ rw(j) ≤ log 2 + %p(j), ∀j > N(w), w ∈ T.

We can now use Theorem 6.2 and go on as in the proof of Theorem 6.1.
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We will now give the main continuity theorem. Discontinuities in the
order can only arise if the Taylor coefficients have zeros.

Theorem 6.4. Assume Ω ⊂ Cm to be simply connected. Let H ∈
O(Cn × Ω) be a holomorphic function which is transcendental for fixed w
in Ω and is given by

(6.15) H(z, w) =
∑
k∈Nn

Ck(w)zk,

where Ck ∈ O(Ω) are either non-zero or identically zero. Then

(6.16) lim
w→w0

order(hw : hw0) = lim
w→w0

order(hw0 : hw) = 1, ∀w0 ∈ Ω.

As a direct consequence, for all w0 ∈ Ω and any function g,

lim
w→w0

order(hw : g) = order(hw0 : g), lim
w→w0

order(g : hw) = order(g : hw0).

P r o o f. By assumption, for the non-zero terms we can write

(6.17) Ck(w) = Ck(w0)
Ck(w)
Ck(w0)

= Akuk(w),

where Ak = Ck(w0) and uk(w) = Ck(w)/Ck(w0). Trivially we see that∑
k∈Nn Akz

k defines an entire function and {uk} is a sequence of holomor-
phic functions in Ω. We then have for the refined coefficient function cw of
H for |k| large enough and for Ck 6= 0,

(6.18) cw(k) = a(k)− log |uk(w)| = a(k)− [a(k)] log |u′(w)|,

where [a(k)] denotes the integer part of a(k) and u′k is an [a(k)]th holomor-
phic root of uk. By holomorphy of H we must have

(6.19)
cw(k)
|k|

→ +∞ as |k| → +∞,

uniformly on compact subsets of Ω. This happens only if

(6.20) lim sup
|k|→+∞

log |u′k(w)| ≤ 1,

locally uniformly. That is, {u′k} must be locally uniformly bounded and
hence by the Cauchy integral formula be an equicontinuous family. Note
that we tacitly assume k to avoid values for which Ck = 0. By (6.18) we
have a lower bound for type(̂̂cw : ̂̂a) as well as for type(̂̂a : ̂̂cw)−1 (and
type(˜̃cw : ˜̃a), type(˜̃cw : ˜̃a)−1):

type(̂̂cw : ̂̂a), type(̂̂a : ̂̂cw)−1 ≥ lim inf
|k|→+∞

(1− log |u′k(w)|)(6.21)

= 1− log u(s)(w),



88 S. Halvarsson

where

(6.22) u(s)(w) = lim sup|k|→+∞|u′k(w)|.

We also get an upper bound

type(̂̂cw : ̂̂a), type(̂̂a : ̂̂cw)−1 ≤ lim sup
|k|→+∞

(1− log |u′k(w)|)(6.23)

= 1− log u(i)(w),

where

(6.24) u(i)(w) = lim inf
|k|→+∞

|u′k(w)|.

In general, u(s) and u(i) would be just semicontinuous but since {u′k} is
an equicontinuous family u(s) and u(i) will be locally uniformly continuous
functions. By construction they also satisfy u(s)(w0) = u(i)(w0) = 1. So by
elementary calculus and Corollary 4.6 the theorem now follows.

R e m a r k. We see using similar estimates and Corollary 4.5 that also
the refined order is continuous under the hypotheses of Theorem 6.4.

Under the same conditions on the Taylor coefficients we see that the
operations of taking supremum and relative order commute and as a prepa-
ration we state the following lemma:

Lemma 6.5. Let I be a finite index set and {fi}i∈I , g be functions from
a real vector space E to the extended real line [−∞,+∞]. If g is convex and
g(0) < +∞ then

(6.25) order(max
i∈I

fi : g) = max
i∈I

order(fi : g).

P r o o f. It is obvious that order(maxi fi : g) ≥ maxi order(fi : g) By the
remark following Definition 2.1,

(6.26) fi(x) ≤ 1
a
g(ax) + ca,i,

for all i ∈ I and x ∈ E if a > maxi order(fi : g). It follows that

(6.27) max
i
fi(x) ≤ 1

a
g(ax) + max

i
ca,i.

Since maxi ca,i is finite we are done.

R e m a r k. We also have order(g : maxi fi) ≤ mini order(g : fi), but with
inequality in general. We can for example take g(x) = x2 and f1(x) = x3

+,
f2(x) = (−x3)+. Then max fi(x) = |x|3 and order(g : fi) = +∞ but
order(g : max fi) = 0.
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Corollary 6.6. Let Ω be an analytic manifold of dimension m. Let
H ∈ O(Cn ×Ω) be given by

(6.28) H(z, w) =
∑
k∈Nn

Ck(w)zk,

where except for a finite number of coefficients Ck ∈ O(Ω) are either non-
zero or identically zero. Then for any relatively compact set K ⊂ Ω and
convex function g bounded from below and increasing faster than any linear
function we have

(6.29) sup
w∈K

order(hw : g) = order( sup
w∈K

hw : g).

P r o o f. The corollary is clearly true if H(·, w) is a polynomial for all
w ∈ K. Assume therefore that H(·, w) is transcendental for some w ∈ K.
We can cover K with a finite number of simply connected coordinate charts
{Ωi}i∈I and decompose K in a finite union K =

⋃
i∈I Ki, where Ki ⊂ Ωi.

By Lemma 6.5 it then suffices to treat the case when Ω is a simply connected
subdomain of Cm. By Theorem 5.2 and Proposition 4.7,

(6.30)
−1

supw∈K order(hw : g)
= sup
w∈K

lim sup
|k|→+∞

1
g̃(|k|)

log |Ck(w)|

and by Theorem 6.2, Theorem 5.2 and Proposition 4.7,

(6.31)
−1

order(supw∈K hw : g)
= lim sup
|k|→+∞

supw∈K log |Ck(w)|
g̃(|k|)

.

It follows that

sup
w∈K

−1
order(hw : g)

≤ −1
order(supw∈K hw : g)

(6.32)

≤ sup
w∈K

(
−1

order(hw : g)

)∗
,

where the last inequality follows from Hartogs’ Lemma since the functions
log |Ck(·)|/g̃(|k|) are locally uniformly bounded. But by Theorem 6.4 the
function w 7→ order(hw : g) is continuous so we have equality all the way
in (6.32).

If the conditions on H in the corollary are not satisfied we can get a
counterexample. Let for instanceK = {0}∪

⋃∞
j=1{wj} in C, where wj = 1/j.

Let F =
∑
j Pj be entire and let {uj} ⊂ O(Ω) be a set of uniformly bounded

functions on Ω ⊂ C, K ⊂ Ω, such that u0 = 1 identically and the zero-sets
for the other functions are Z(um) = {0}∪

⋃m−1
j=1 {wj}. Define H ∈ O(Cn×Ω)
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by H(z, w) =
∑
j Pj(z)uj(w). We then have, for m ≥ 0,

(6.33) H(z, wm) =
m∑
j=0

uj(wm)Pj(z),

where uj(wm) 6= 0. For each w ∈ K, hw will then be the growth func-
tion of a polynomial, but supw∈K hw will be like the growth function of a
transcendental function. If we take g = supw∈K hw we will thus get

sup
w∈K

order(hw : g) = 0, but order( sup
w∈K

hw : g) = 1.

We see that in this example K is polar. Also, we see that the zeros accumu-
late at an infinite number of points.

It follows from the plurisubharmonicity and Bedford & Taylor [1], Corol-
lary 7.3, that the set of points where order(hw : g) 6= order(hw : g)∗ is
pluripolar. So if the set K is thick enough then supremum over K and rela-
tive order should commute. This is indeed the case. We recall that a set K
is called thin at a point p ∈ K if there exists a plurisubharmonic function u
such that

(6.34) lim sup
w→p

w∈K\{p}

u(w) < u(p).

If a set is thin at all points of its closure then the set is called thin. A
set is called negligible if it is of the form {supuα < (supuα)∗} for a family
of plurisubharmonic functions uniformly bounded from above. Negligible is
the same as pluripolar and a thin set is always negligible. In one variable
negligible sets are thin but this is not always the case in several variables.

In [3] and [4] we take the supremum over polycircles. These are thick
sets of a type covered by the following theorem. See also Section 8.

Theorem 6.7. Let Ω ⊂ Cm and let H ∈ O(Cn ×Ω) be given by (6.28).
Then for any relatively compact set K ⊂ Ω of the form K = K1× . . .×Km,
where Kj are nowhere thin subsets of C, and for any convex function g
bounded from below and increasing faster than any linear function we have

(6.35) sup
w∈K

order(hw : g) = order( sup
w∈K

hw : g).

P r o o f. We show the case m=2. It is then easy to prove the general case
by induction. So we have K = K1×K2, where the sets K1, K2 are nowhere
thin. Let uk=log |Ck(w)|/g̃(|k|). Then {uk} is a family of plurisubharmonic
functions uniformly bounded from above and this is all that we shall need
to know about them. For fixed w1 ∈ K1 we have, as in (6.32),



Growth properties of entire functions 91

sup
w2∈K2

lim sup
k→∞

uk(w1, w2) ≤ lim sup
k→∞

sup
w2∈K2

uk(w1, w2)(6.36)

≤ sup
w2∈K2

(lim sup
k→∞

uk(w1, w2))∗,

where the star means upper regularization in the second variable. The set
of points w2 where lim supk→∞ uk 6= (lim supk→∞ uk)∗ is negligible, hence
thin. The set which remains if we remove this set from K2 must then be
nowhere thin, because the union of two sets which are thin at a point is
thin at the point. Hence we have equalities in (6.36). Next consider the
inequalities

(6.37) sup
w1∈K1

lim sup
k→∞

sup
w2∈K2

uk(w1, w2)

≤ lim sup
k→∞

sup
w1∈K1

( sup
w2∈K2

uk(w1, w2))∗

≤ sup
w1∈K1

(lim sup
k→∞

( sup
w2∈K2

uk(w1, w2))∗)∗.

We have

(6.38) ( sup
w2∈K2

uk(w1, w2))∗ = sup
w2∈K2

uk(w1, w2),

except on a negligible set, and a countable union of negligible sets is negli-
gible. Since K1 is nowhere thin we get equality all the way in (6.37).

7. Commutativity, one variable. In the case of one variable we can
weaken the hypotheses of Corollary 6.6.

We shall say that a family of uniformly bounded point-sets {αk}k∈I ,
I ⊂ Nn, αk = {αkj}j∈Ik ⊂ C, has p as an accumulating point if there exists
an infinite subset J ⊂ I such that for each k ∈ J there is a point αkj ∈ αk
such that

(7.1) lim
k→∞
k∈J

|αkj − p| = 0.

If {αk} has exactly one accumulating point p we say that {αk} tends to p.
This is then, by the uniform boundedness of the family, the same as

(7.2) lim
k→∞

sup
j∈Ik
|αkj − p| = 0.

If the zero-sets of the Taylor coefficients of the function H in Corollary 6.6
tend to a point, we know that if we remove from the set K everything
within a small circle centred at this point then the operations of taking
supremum and order commute. As the example following the corollary shows
we cannot deduce from this that the same is true if we take all of K. But
again since the zero-sets accumulate at one point and nowhere else we should
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loosely speaking be away from this point if we want large order. This is
the motivation for the theorem to come. By Lemma 6.5 the result can be
extended to the case of finitely many accumulating points.

Theorem 7.1. Let Ω be a domain in C containing the closure of the
unit disk D = {w ∈ C : |w| < 1}. Let H ∈ O(Cn ×Ω) be given by

(7.3) H(z, w) =
∑
k∈Nn

Ck(w)zk,

where the Taylor coefficients Ck ∈ O(Ω) which are not identically zero have
zero-sets tending to the origin. Then for any relatively compact set K ⊂ D
and convex function g bounded from below and increasing faster than any
linear function we have

(7.4) sup
w∈K

order(hw : g) = order( sup
w∈K

hw : g).

P r o o f. If order(supw∈K hw : g) = 0 (which is the case for instance when
H(·, w) is a polynomial for each w) then order(hw : g) = 0 for all w, so the
theorem follows in this case. Assume therefore that order(supw∈K hw : g) >
0. We may also assume that there are points in K which are arbitrarily
close to and distinct from the origin. Otherwise we can use Corollary 6.6
and Lemma 6.5 if 0 ∈ K to obtain the theorem. We will use this assump-
tion in the estimate (7.8). We recall the formula for order(supw∈K hw : g)
in (6.31). To simplify the analysis we choose an index set I ⊂ Nn such
that

(7.5)
−1

order(supw∈K hw : g)
= lim
|k|→+∞
k∈I

sup
w∈K

1
g̃(|k|)

log |Ck(w)|.

Those Ck which are identically zero do not contribute to the order, so they
need not be in I and in the following we shall ignore them. Now factorize Ck
into Ck = Bkvk, where Bk is a Blaschke product of the zeros of Ck in D and
vk ∈ O(D) is non-zero. We denote the zero-set of Ck in D by αk not counting
multiplicities and we shall index the zeros by αkj and call the multiplicity
of each zero Nkj , without specifying the finite index set to which j belongs.
Then we have

(7.6) Bk(w) =
∏
j

Bkj(w)Nkj =
∏
j

(
w − αkj
1− αkjw

)Nkj
.

We omit here the usual unimodular constants in the Blaschke factors Bkj
and agree that the product over the empty set is one. It is well known that
|Bk(w)| = 1 on the unit circle T = {w ∈ C : |w| = 1}. We have
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1
g̃(|k|)

log |Ck(w)| = 1
g̃(|k|)

log |Bk(w)|+ 1
g̃(|k|)

log |vk(w)|(7.7)

=
∑
j

Nkj
g̃(|k|)

log |Bkj(w)|+ log |v′k(w)|,

where we have defined holomorphic roots v′k(w) = vk(w)1/g̃(|k|). These roots
are well defined when g̃(|k|) 6= 0, i.e. for large |k|. Now intuitively the supre-
mum of log |Ck| should not be attained near the origin. This is not entirely
true but by examining each of the terms in (7.7) we will see what is going
on there.

Since the order is non-negative and |Bk| = 1 on T we see that the roots
v′k are uniformly bounded from above on T and hence also in D. Thus by the
Arzelà–Ascoli Theorem we can find a subset J of I such that v′k → v ∈ O(D)
locally uniformly when |k| → +∞, k ∈ J . Taking J instead of I will of course
not change the limit in (7.5). It is a well-known fact that if a sequence of
non-zero holomorphic functions tends locally uniformly to a holomorphic
limit function, then this function is either non-zero or identically zero. In
the latter case we must have order(supw∈K hw : g) = 0, which we have ruled
out already. Otherwise the family {v′k}k∈J must also be locally uniformly
bounded from below. We know that a uniformly bounded family of holo-
morphic functions is equi-continuous. From this and the bound from below
we can conclude that also the family {log |v′k|}k∈J is equi-continuous and lo-
cally uniformly convergent. So we have good behaviour on the second term.
We now go to the first term.

Let JM denote the subset of J consisting of those k ∈ J for which
|k| ≥M . First we will see that the number of zeros cannot grow too rapidly.
Let ε > 0 and 0 < c < 1−2ε be given, such that K is contained in cD. There
then exists a number δ > 0 such that if |αkj | < δ then |Bkj(w)| < 1− ε on
cT. Since the zero-sets tend to the origin there exists a number M such that
for all k ∈ JM we have |αkj | < δ. This implies that Nk/g̃(|k|) ≤ C < +∞
uniformly for all k ∈ J , where Nk =

∑
j Nkj . If this were not the case the

limit in (7.5) would be −∞ and again we have assumed this not to be the
case. Thus we may assume, perhaps by taking an infinite subset of J (which
we still denote by J), that Nk/g̃(|k|)→ η, 0 ≤ η < +∞, as k →∞, k ∈ J .
We will use this later together with the fact that each Blaschke factor tends
locally uniformly to the identity function w 7→ w. Now we start to estimate
the size of the terms around the origin. We begin with the second term.

By assumption K has points arbitrarily close to the origin. Hence by
equi-continuity we can find δ1 > 0 such that

(7.8) 0 ≤ lim
k→∞
k∈J

sup
w∈K

log |v′k(w)| − lim
k→∞
k∈J

sup
w∈K1

log |v′k(w)| < ε

2
,
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where K1 = K \ {|w| < δ1}. We know that the limits in (7.8) exist because
of the uniform convergence.

We divide the study of the first term into two cases: η = 0 and η > 0. If
η = 0 we can find M so large that

(7.9)
∑
j

Nkj
g̃(|k|)

log |Bkj(w)| > −ε
2
, |w| ≥ δ1, k ∈ JM .

Since log |Bk| ≤ 0 on all of D we can conclude by (7.5), (7.7), (7.8) and (7.9)
that

(7.10)
−1

order(supw∈K hw : g)
− −1

order(supw∈K1
hw : g)

≤ lim
k→∞
k∈J

sup
w∈K

log |v′k(w)| −
(

lim
k→∞
k∈J

sup
w∈K1

log |v′k(w)| − ε

2

)
< ε.

Now we can apply Corollary 6.6 to K1 and a small disk removed from Ω to
get

(7.11)
−1

order(supw∈K hw : g)
− −1

supw∈K1
order(hw : g)

< ε,

and the supremum over K1 is of course less than the supremum over K.
Since always order(supw∈K hw : g) ≥ supw∈K order(hw : g), we are done
with the case when η = 0.

If η > 0 we will find a number δ2 < δ1 such that the supremum of
log |Ck| can never be attained inside the circle of radius δ2 for any k ∈
JM provided M is large. This would imply that order(supw∈K hw : g) =
order(supw∈K2

hw : g), K2 = K \ {|w| < δ2} and we can apply Corollary
6.6 to K2 and Ω \ δ3D, δ3 < δ2 to finish the proof. By the estimate in (7.8)
there exists M so large that

(7.12) 0 ≤ sup
w∈K

log |v′k(w)| − sup
w∈K1

log |v′k(w)| < 3ε
4
, k ∈ JM .

We then take δ2 so small that

(7.13)
Nk
g̃(|k|)

log
δ2
δ1

=
Nk
g̃(|k|)

log
sup|w|≤δ2 |w|
inf |w|≥δ1 |w|

< −2ε, ∀k ∈ JM .

The apparently silly expression in (7.13) will be clear in a moment. By per-
haps choosing a larger M we can make the difference |Bkj(w)−w| uniformly
small in D \ {|w| < δ2} for k ∈ JM so that

(7.14)
∑
j

Nkj
g̃(|k|)

log
sup|w|≤δ2 |Bkj(w)|
inf |w|≥δ1 |Bkj(w)|

< −ε, k ∈ JM .

By the estimate in (7.12) we conclude that the supremum of log |Ck| cannot
be attained inside the disk with radius δ2 and so we are done.



Growth properties of entire functions 95

8. A note on functions of regular growth. The lower order λ of F
relative to g is defined as λ = 1/order(g : F ). A function is said to have
regular growth with respect to g if λ = %, where % = order(F : g). See also
Kiselman [8]. In general, % ≥ λ, provided g is of more than linear growth.
Otherwise we may have % = 0, λ = +∞.

Theorem 8.1. Let {H(·, w)}w∈K ⊂ O(Cn) be a set of entire functions
and let g : R→ R be a function of more than linear growth. Assume that

(8.1) order( sup
w∈K

hw : g) ≤ %

and that there exists some w ∈ K such that order(g : hw) ≤ 1/%. Then we
have equality in (8.1) and

(8.2) inf
w∈K

order(g : hw) = order(g : sup
w∈K

hw) = 1/%.

If there exists a subset K1 of K such that

(8.3) order(g : sup
w∈K1

hw) ≤ 1/%,

then we have equality in (8.1) and

(8.4) order(g : sup
w∈K

hw) = 1/%.

P r o o f. The first statement follows from the inequalities

(8.5) inf
w∈K

order(g : hw) ≥ order(g : sup
w∈K

hw)

and

(8.6) 1 ≤ order( sup
w∈K

hw : g) order(g : sup
w∈K

hw).

The order in (8.3) also majorizes the order in (8.4), so the second statement
follows from (8.6).

Example 8.2. In Theorem 6.3 we assume that order(hw : hw′) = 1 on
all of T. However, we know that T is nowhere thin and if T lies inside the
domain then by Theorem 6.7 supremum and order commute, so that

(8.7) order(sup
w∈T

hw : hw′) = order(hw′ : sup
w∈T

hw) = 1, ∀w′ ∈ T.

We see that Theorem 6.3 is false if T b Ω. In fact, we then only need the as-
sumption order(hw : hw′) ≤ 1, w ∈ T, to conclude that the equalities in (8.7)
hold since trivially order(hw′ : hw′) = 1 (unless H(·, w′) is a polynomial).
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