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Unbounded solutions of

positively damped Liénard equations

by Changming Ding (Hangzhou)

Abstract. This paper discusses the asymptotic behavior of solutions of the Liénard
equation, especially the global behavior of unbounded solutions, and also gives a class
of sufficient and necessary conditions for the orbit of a solution to intersect the vertical
isocline.

1. Introduction. In this article we are concerned with the global asymp-
totic behavior of solutions of the scalar Liénard equation

(1) x′′ + f(x)x′ + g(x) = 0 (′ = d/dt),

where f, g : R → R are continuous and satisfy f(x) > 0 for all x and
xg(x) > 0 for x 6= 0. We also assume the regularity for f(x) and g(x) which
ensures the existence of a unique solution to the initial value problem.

It is easy to see that the only critical point (0, 0) of the equivalent system

(2) x′ = y, y′ = −f(x)y − g(x)

is uniformly asymptotically stable, and is globally uniformly asymptotically
stable if

Tx
0

g(s) ds → ∞ as x → ∞ and x → −∞, or
Tx
0

f(s) ds → ∞ (−∞)
as x → ∞ (−∞).

Seifert [1] gives a class of systems (2) for which there exist unbounded
solutions which certainly do not approach (0, 0) as t → ∞. If (x(t), y(t))
solves (2) with (x(0), y(0)) = (0, a), Seifert’s main result [1, Theorem 2]
says there exist a0 and a1, 0 < a0 ≤ a1 ≤ ∞, such that:

(i) a ≥ a1 implies y(t) > 0 for t ≥ 0 and limt→∞(x(t), y(t)) = (∞, L(a)).
(ii) a0 ≤ a < a1 implies there exist t1(a) > 0 and L(a) ≤ 0 such that

y(t) > 0 for 0 ≤ t < t1(a), x(t1(a)) > 0, y(t1(a)) = 0, y(t) < 0 for t > t1(a),
and limt→∞(x(t), y(t)) = (−∞, L(a)).
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(iii) 0 ≤ a < a0 implies limt→∞(x(t), y(t)) = (0, 0).

Concerning the function L : R
+ → R, Seifert [1] proposed the following

questions:

(I) Can L(a1) > 0? If so, under what conditions will L(a1) = 0?

(II) Is L(a) strictly increasing for a ≥ a1? Again, if not, are there condi-
tions under which it is?

We note that (1) or (2) has another equivalent system

(3) x′ = y − F (x), y′ = −g(x),

where F (x) =
Tx
0

f(s) ds. It is also easy to see that the existence of a1 < ∞

is closely related to the intersection of orbits of (3) and the vertical isocline
y = F (x).

In Section 2, we give a simple discussion concerning the relation of sys-
tems (2) and (3).

In Section 3 we present a counterexample to a conclusion of Villari [2,
Theorem 1], which is also valid for [3, Theorem 2.1]. We give corrections to
these theorems and improve the result of [1, Theorem 1].

In Section 4, we answer Seifert’s questions completely, i.e., we show that
L(a1) = 0 and L(a) is strictly increasing for a ≥ a1.

2. Conjugacy. Put x = u, y = v − F (u) into (2). We have

(4) u′ = v − F (u), v′ = −g(u).

Define H : R
2 → R

2 by H(x, y) = (x, y + F (x)). Obviously, H is an
isometric homeomorphism and takes orbits of (2) to orbits of (4) (or (3))
preserving their orientation and the parameter t, that is, systems (2) and (3)
are conjugate. We note that the y-axis of the phase plane of system (2) stays
invariant under H, but the x-axis turns to be the vertical isocline y = F (x)
of (3), which we denote by α.

If (x(t), y(t)) solves (3) with (x(0), y(0)) = (0, a), let P = (0, a) and
denote by γ+ the positive semi-orbit of (x(t), y(t)). The basic condition
f(x) > 0 for all x implies F (x) =

Tx
0
f(s) ds > 0 for x > 0. The monotonicity

of solutions of (3) in the variant regions of the phase plane easily leads to
the conclusion that F (∞) =

T
∞

0
f(s) ds < ∞ is a necessary condition for

γ+(P ) (P = (0, a), a > 0) not to intersect the vertical isocline α.

Proposition 1. If f(x) > 0 for all x, then a1 < ∞ implies

∞\
0

f(s) ds < ∞ and

∞\
0

g(s) ds < ∞.

P r o o f. We only need to prove
T
∞

0
g(s) ds < ∞. Otherwise, it is easy to
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see that the curves defined by

V (x, y) = 1

2
y2 + G(x) = constant

are closed, and since V ′ = −f(x(t))y2(t) along the solution (x(t), y(t)) of
system (2), the orbits of (2) are bounded by these closed curves and guided
to the positive x-axis.

Now by means of H one may thus restate Seifert’s questions as follows:

(I) Can L1(a1) > F (∞) (< ∞)? (L1(a) = L(a) + F (∞)).
(II) Is L1(a) strictly increasing for a ≥ a1?

3. An example. For system (3) Villari [2, Theorem 1] proves:

Theorem A. Let F (x) > −c > −∞ for x > 0. For every (x0, y) with

x0 ≥ 0 and y > F (x0), the orbit of (3) which passes through (x0, y) intersects

the curve y = F (x) at (x, F (x)) with x > x0 if and only if

lim sup
x→∞

[G(x) + F (x)] = ∞.

As a counterexample to the theorem we consider a concrete Liénard
system

(5) x′ = y − (1 − e−x), y′ = e−2x,

so F (x) = 1 − e−x and G(x) =
Tx
0

g(s) ds = (1 − e−2x)/2. Then

lim
x→∞

[G(x) + F (x)] = lim
x→∞

[1 − e−x + (1 − e−2x)/2] = 3/2 < ∞.

But for P = (0, a) with 0 < a < 1, γ+(P ) must intersect the curve y = F (x).
Let

K = sup(F (x) : x ≥ 0), P = lim
x→∞

G(x),

K ′ = inf(F (x) : x < 0), P ′ = lim
x→−∞

G(x),

where K, P and P ′ may be ∞ and K ′ may be −∞. We derive the following
result as a remedy for Theorem A.

Theorem 1. Suppose F (x) > −c > −∞ for x > 0 and F (x) < c < ∞

for x < 0. For every (x0, y) with x0 ≥ 0 and y > K + (2P )1/2 the orbit of

system (3) passing through (x0, y) intersects the curve y = F (x) at (x, F (x))
with x > x0 if and only if lim supx→∞

[G(x) + F (x)] = ∞.

For every (x0, y) with x0 < 0 and y < K ′ − (2P ′)1/2 the orbit of system

(3) passing through (x0, y) intersects the curve y = F (x) at (x, F (x)) with

x < x0 if and only if lim supx→−∞
[G(x) − F (x)] = ∞.

P r o o f. Let α be the curve y = F (x). We only consider the case y >
K + (2P )1/2 with x0 ≥ 0.

Assume that lim supx→∞
[G(x) + F (x)] < ∞. This implies that −c <

F (x) ≤ K < ∞ and 0 < G(x) < P < ∞ for x > x0.



118 C. M. Ding

Consider the curves defined by

V (x, y) = 1

2
(y − K)2 + G(x) = constant .

It is easy to see that if G(x) has no upper bound these curves are closed,
but if G(x) < P the curves which intersect the y-axis with y > K + (2P )1/2

do not intersect the line y = K.
The time rate of change of V along a solution orbit is given by

V ′ = g(x)[K − F (x)].

Since F (x) ≤ K, in x > x0 the orbits of system (3) do not cross these
curves from their exteriors to their interiors. Thus, if y > K + (2P )1/2 the
orbit of system (3) which passes through (x0, y) is bounded away from α.

Now assume that lim supx→∞
[G(x) + F (x)] = ∞.

If lim supx→∞
F (x) = ∞, the orbit of system (3) which passes through

(x0, y) with y0 > F (x0) obviously intersects α.
If lim supx→∞

G(x) = ∞, consider the closed nested ovals

W (x, y) = 1

2
(y + c)2 + G(x) = constant .

Since W ′ = −g(x)[F (x) + c] < 0 if x > x0, the orbit passing through (x0, y)
is bounded by the same ovals and guided to α.

In exactly the same way we can treat the case y < K ′ − (2P ′)1/2 with
x0 < 0.

R e m a r k 1. The condition f(x) > 0 for all x is unnecessary in Theo-
rem 1.

R e m a r k 2. The result of [3, Theorem 2.1] requires a modification as in
our Theorem 1.

By Theorem 1, we easily conclude:

Theorem 2. Suppose f(x) > 0 for all x. Then there exist unbounded

solutions of system (3) if and only if

(6) lim
x→∞

[G(x) + F (x)] < ∞ or lim
x→−∞

[G(x) − F (x)] < ∞.

P r o o f. Sufficiency follows from Theorem 1. We only need to prove the
necessity. Assume limx→∞[G(x) + F (x)] < ∞ and limx→−∞[G(x) + F (x)]
< ∞. We consider the positive semi-orbit γ+ of system (3) which passes
through (x0, y0) with y0 > F (x0) and x0 ≥ 0. If limx→∞ F (x) = ∞,
the monotonicity of solutions in the phase plane implies γ+ intersects the
curve α. If limx→∞ G(x) = ∞, consider the closed nested ovals

V (x, y) = 1

2
y2 + G(x) = constant .

Since V ′ = −g(x)F (x) < 0 for x > x0, γ+ is bounded by these ovals and
guided to α. For (x0, y0) with x0 < 0 and y0 > F (x0), from dy/dx =
−g(x)/(y − F (x)), it is easy to see that γ+ intersects the positive y-axis.
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In exactly the same way we can treat the case y0 < F (x0). Thus, we conclude
that for every P = (x0, y0) ∈ R

2, γ+(P ) encircles the origin (0, 0). More-
over, dV (x(t), y(t))/dt = −g(x(t))F (x(t)) implies that γ+ tends to (0, 0)
as t → ∞, that is, all solutions of (3) are bounded. This completes the
proof.

R e m a r k 3. Theorem 2 improves [1, Theorem 1].

4. The functions L1(a) and L(a). To answer Seifert’s first question,
we use its restatement in Section 2.

Theorem 3. L1(a1) = F (∞) =
T
∞

0
f(s) ds (< ∞).

P r o o f. By Proposition 1 of Section 2 let K = F (∞) and H = G(∞),
and suppose L1(a1) > F (∞). We fix ε = (L1(a1)−K)/2 > 0. Denote by β
the upper component y = ϕ(x) of (y −K)2/2 + G(x) = H. It easily follows
that limx→∞ ϕ(x) = K, which implies that there exists a sufficiently large
x0 satisfying ε2/2 + G(x0) = H. Let P = (x0, ε + K). Because the orbits
of (3) cross β upwards, the negative semi-orbit γ−(P ) passing through P
will intersect the y-axis at Q = (0, k) (k > 0), and γ+(P ) does not intersect
the curve y = K. Thus, we easily obtain k > a1. On the other hand, the
monotonicity of γ+(P ) implies L1(k) < K + ε < L1(a1), which contradicts
the definition of a1.

To answer Seifert’s second question we directly use the system (2).

Theorem 4. L(a) is strictly increasing for a ≥ a1.

P r o o f. Let e > k ≥ a1, and denote by y = y1(x), y = y2(x) respectively
the solutions of system (2) which pass through (0, e) and (0, k), that is,

dy1(x)

dx
= −f(x)−

g(x)

y1(x)
,

dy2(x)

dx
= −f(x) −

g(x)

y2(x)
.

Therefore

d(y1(x) − y2(x))

dx
=

g(x)

y1(x)y2(x)
(y1(x) − y2(x)).

Hence y1(x) − y2(x) is increasing as x increases, which leads to

(7) L(e) − L(k) > e − k > 0.

This completes the proof.
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