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On the C0-closing lemma

by Anna A. Kwiecińska (Kraków)

Abstract. A proof of the C0-closing lemma for noninvertible discrete dynamical
systems and its extension to the noncompact case are presented.

1. Introduction. One of the most significant theorems in the the-
ory of smooth dynamical systems is the C1-closing lemma established by
C. C. Pugh in [4], and its proof is fairly advanced. The Cr-closing lemma,
r > 1, still remains an unsolved problem. A C0-closing lemma for compact
manifolds is stated without proof in [5]. The aim of this paper is to provide
a proof of this lemma, as well as to extend it to the noncompact case.

We study the behaviour of the sequence (fn(x))∞n=0, where f is a contin-
uous function from a finite-dimensional manifold into itself. Using a method
by H. Lehning [2] and the Tietze extension theorem, we prove Theorem
2 which is the standard C0-closing lemma for a compact manifold, quoted
(without proof) in [5]. Theorem 1 is a modification of the C0-closing lemma,
obtained without the assumption that the point x0 is nonwandering. The
main result of the present paper is Theorem 3, which is a generalization
of the C0-closing lemma to the case of a not necessarily compact manifold.
Moreover, under suitable assumptions, in Theorem 4 we prove the C0-closing
lemma in the invertible case, using a lemma by Z. Nitecki and M. Shub [3].

Let M denote a compact topological manifold with boundary, N its
dimension and d a metric on M compatible with the topology of M . C(M)
will denote the space of continuous functions from M into itself and d∞ the
metric of uniform convergence on C(M): d∞(f, g) = maxx∈M d(f(x), g(x)).
If B is a subset of M , we denote its interior by IntB, its closure by B, its
boundary by ∂B and its diameter by d(B). B(x0, r) will stand for the open
ball with center x0 and radius r, and B(x0, r) for the closed ball with center
x0 and radius r. Fix once and for all a continuous function f : M →M .
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2. Results

Definition 1. We call a point x ∈M eventually periodic if there exists
n such that fn(x) is periodic.

Theorem 1. Let f : M → M be a continuous function and x0 ∈ M
a point. Then for every ε > 0 there exists a continuous function g : M →
M and δ > 0 such that d∞(f, g) < ε and for every x ∈ M satisfying
d(x, x0) < δ, x is an eventually periodic point of g.

P r o o f. C a s e I: x0 is an eventually periodic point of f . There exists an
open neighbourhood U of f(x0) such that U is homeomorphic to IN , where
I is the closed unit interval, and d(U)< ε. We define K = f−1(U). Then K
is a neighbourhood of x0 and IntK 6= ∅. We reduce K if necessary so that
it does not contain any point of the sequence (fn(x0)). This is possible as
the set (fn(x0)) is finite. We choose a compact subset k with k ⊂ IntK and
x0 ∈ Int k. We now define the required function g:

•We put g = f(x0) on k and g = f on ∂K. This gives a continuous map
from k ∪ ∂K to U , which is homeomorphic to IN . Since k ∪ ∂K is a closed
subset of K, by the Tietze extension theorem (see [1]), g extends to a contin-
uous map (still denoted by g) from K to U . As d(U) < ε, d(f(x), g(x)) < ε
for each x ∈ K.
• We put g = f outside K.

As g agrees with f on the boundary of K, it follows that g is con-
tinuous on M . As d(f(x), g(x)) < ε for each x ∈ M and the function
x→ d(f(x), g(x)) is continuous on the compact setM , we have d∞(f, g) < ε.

We choose δ > 0 with B(x0, δ) ⊂ Int k. For x such that d(x, x0) < δ we
have g(x) = f(x0) and hence x is an eventually periodic point of g.

C a s e II: x0 is not eventually periodic for f . Then the set S = {x0,
f(x0), f2(x0), . . .} is infinite.

Using the compactness of M , we construct a finite cover of M by open
sets of diameters less than ε and with closures homeomorphic to IN . Let p
be the smallest positive integer such that there are an integer n < p and an
element V of the cover containing fp(x0) and fn(x0) (such an integer exists
because the set S is infinite). This property implies in particular that the
points x0, f(x0), . . . , fp−1(x0) are distinct.

Let A be a closed subset of M , B and C two open subsets and y 6∈ A
be such that f(y) ∈ B and y ∈ C. Using the continuity of f at y, we can
construct a compact subset K homeomorphic to IN such that K ∩ A = ∅,
K ⊂ C, y ∈ IntK, d(K) < ε and f(K) ⊂ B.

Using this property for A = {x0, f(x0), . . . , fp−2(x0)}, y = fp−1(x0),
B = V and C = M , we obtain a compact set Kp−1. We choose a compact
set kp−1 ⊂ IntKp−1 such that fp−1(x0) ∈ Int kp−1.
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We define the desired function g in the following way:

• We put g = fn(x0) on kp−1 and g = f on ∂Kp−1; g takes its values
in V , which is homeomorphic to IN . Again, g extends to a continuous map
from Kp−1 to V . As d(V ) < ε, d(f(x), g(x)) < ε for each x ∈ Kp−1.
• We put g = f outside Kp−1.

The function g is continuous and d∞(f, g)<ε. We choose δ>0 such that
B(x0, δ) ⊂ (gp−1)−1(kp−1) (this is possible because gp−1(x0) ∈ Int kp−1).
For x ∈ B(x0, δ) we have gp(x) = fn(x0) = gn(x0). Hence the point gp(x)
is periodic of period p− n. The result follows.

Definition 2. We call a point x ∈ M wandering if there is a neigh-
bourhoood U of x such that⋃

n>0

fn(U) ∩ U = ∅,

and nonwandering otherwise.

Theorem 2 (The C0-closing lemma). Let f : M → M be a continuous
function and x0 ∈ M a nonwandering point. Then for every ε > 0 there
exists a continuous function g : M → M such that d∞(f, g) < ε and x0 is
a periodic point of g.

P r o o f. Clearly we can assume that x0 is not periodic for f .
Since x0 is nonwandering, for every neighbourhood U of x0 there exist

x ∈ U and N such that fN (x) ∈ U .
Let ε > 0; there exists δ1 > 0 such that d(f(x), f(x0)) < ε/8 if d(x, x0)

< δ1.
Let n be such that 1/n < δ1. There exists a neighbourhood U0 of x0 such

that U0 ⊂ B(x0, 1/n), U0 is homeomorphic to IN and d(U0) < ε/8. Let
xn ∈ U0 be such that there exists N satisfying fN (xn) ∈ U0 and f(xn) 6= xn.
Such a point exists, because otherwise, as x0 is nonwandering, we would find
a sequence {xn} with d(xn, x0) → 0 (n → ∞) and f(xn) = xn; since f is
continuous, we would have f(x0) = x0, which is impossible, as x0 is not
periodic. Let n0 be the smallest integer, n0 ≥ 1, such that fn0(xn) ∈ U0

and xn 6= fn0(xn). Then the points xn, f(xn), . . . , fn0−1(xn) are distinct.
Indeed, if any two of them were equal, then xn would be eventually periodic,
which is impossible because fn0(xn) ∈ U0.

We construct a cover of the manifold M by open sets of diameters less
than ε/8 and with closures homeomorphic to IN in the following way:

• We take U0 as above; notice that except for xn and fn0(xn), U0 does
not contain any points of A = {xn, f(xn), . . . , fn0(xn)}.
•We take U1 which contains f(xn) and does not contain any other points

of A.
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•We continue in the same way till Un0−1 which contains fn0−1(xn) and
does not contain any other points of A.
• Other sets Ui of the cover do not contain any points of A.

Since M is compact, {Ui} has a finite subcover and exactly as in the
proof of Theorem 1, we construct a function gn satisfying d(f, gn) < ε/8.
The important thing to notice here is that from the construction of {Ui} we
have n = 0, p = n0 and therefore gn(x) = xn on kn0−1, where gn0−1

n (xn) ∈
Int kn0−1 (see the proof of Theorem 1), hence xn is a periodic point of gn.

If there is a k ∈ {0, 1, . . . , n0 − 1} such that gk
n(xn) = x0, then x0 is

periodic.
So we assume that xn 6= x0, . . . , g

n0−1
n (xn) 6= x0. We construct a function

h in the following way:

• We put h = x0 on gn0−1
n (xn) and h = gn = xn on ∂kn0−1, and extend

it to a continuous map from kn0−1 to U0. Therefore d(gn(x), h(x)) < ε/8
for each x ∈ kn0−1.
• We put h = gn outside kn0−1.

The function h is continuous, d∞(f, h) ≤ d∞(f, gn) + d∞(gn, h) < ε/4 and
hn0(xn) = x0.

For x such that d(x, x0) < δ1 we have

d(h(x), h(xn)) ≤ d(h(x), f(x)) + d(f(x), f(x0))
+ d(f(x0), f(xn)) + d(f(xn), h(xn))

< 3ε/4,

and hence h(B(x0, δ1)) ⊂ B(h(xn), 3ε/4). There exists a cover {Zi} of
B(h(xn), 3ε/4) such that B(h(xn), 3ε/4) ⊂

⋃
i∈I IntZi, where Zi are homeo-

morphic to IN and d(Zi) < ε/4 for i ∈ I. There exists an i0 such that
x0 ∈ h−1(IntZi0). Since h−1(IntZi0) is open, there exists δ2 > 0 such
that B(x0, δ2) ⊂ h−1(IntZi0) ∩ B(x0, δ1) and B(x0, δ2) does not meet the
set {xn, h(xn), . . . , hn0−1(xn)} (this last statement holds because xn 6= x0,
h(xn) 6= x0, . . . , h

n0−1(xn) 6= x0, as gk
n(xn) 6= x0 for k = 0, 1, . . . , n0 − 1,

h = gn outside kn0−1, xn 6∈ kn0−1 ⊂ Kn0−1 (see the construction in the proof
of Theorem 1), therefore h(xn) = gn(xn) and hence hk(xn) = gk

n(xn)).
We define a function g in the following way:

• We put g = h(xn) on x0 and g = h on ∂B(x0, δ2), and extend it
to a continuous map from B(x0, δ2) to Zi0 . As d(Zi0) < ε/4, we have
d(h(x), g(x)) < ε/4 for each x ∈ B(x0, δ2).
• We put g = h outside B(x0, δ2).

The function g is continuous, x0 is a periodic point of g and d∞(g, f) ≤
d∞(g, h) + d∞(h, f) < 1

4ε+ 3
4ε = ε. The result follows.
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In the above proof all the modifications of the function f have been
made locally. Therefore the local compactness of M is sufficient. A theorem
analogous to Theorem 2 can be proved in the following situation:

M is a finite-dimensional manifold with boundary (which is obviously
locally compact), N its dimension, C(M) the space of continuous functions
from M into itself, f |Z the restriction of a function f to a subset Z ⊂ M ,
and τ∞ the topology of uniform convergence on C(M). We set d∞(f, g) =
supx∈M d(f(x), g(x)), which may not be a metric, nevertheless we have:
fn → f (n→∞) in the topology τ∞ if and only if d∞(fn, f)→ 0 (n→∞).

Theorem 3 (A generalization of the C0-closing lemma). Let f : M→M
be a continuous function, where M is a manifold with boundary , and x0∈M
a nonwandering point. Then for every ε > 0 there exists a continuous func-
tion g : M →M such that d∞(f, g) < ε and x0 is a periodic point of g.

P r o o f. Let ε > 0 and V0 be a neighbourhood of x0 such that V 0 is
compact.

As in the proof of Theorem 2, we assume that x0 is not periodic for f . We
choose δ1 > 0 such that d(f(x), f(x0)) < ε/8 if d(x, x0) < δ1 and B(x0, δ1) ⊂
V0. Moreover, n fulfils the condition 1/n < δ1, U0 is a neighbourhood of x0

such that U0 ⊂ B(x0, 1/n)∩V0, U0 is homeomorphic to IN and d(U0) < ε/8,
xn is a point for which there exists N such that fN (xn) ∈ U0 and f(xn) 6=
xn, and n0 is the smallest integer ≥ 1 for which xn 6= fn0(xn) ∈ U0.

We define the sets V0, V1, . . . , Vn0−1 in the following way:

• V0 has already been defined above.
• V1 is a neighbourhood of f(x0) with V 1 compact and f(V 0) ⊂ V1.

Such a neighbourhood exists, because for each x ∈ f(V 0) there exists a
neighbourhood V x

1 such that V x
1 is compact. The set f(V 0) is compact,

hence we can choose a finite cover V x1
1 , . . . , V xn

1 . We define V1 =
⋃n

k=1 V
xk
1 .

•We continue in the same way till we get Vn0−1 which is a neighbourhood
of fn0−1(x0) such that V n0−1 is compact and fn0−1(V 0) ⊂ Vn0−1.

We define Z =
⋃n0−1

n=0 V n. The set Z is compact.
We define a cover {Ui} of Z by open sets of diameters less than ε/8 with

closures homeomorphic to IN as in the proof of Theorem 2:

• U0 has been defined above. Except for xn and fn0(xn) it does not
contain any points of A = {xn, f(xn), . . . , fn0(xn)}.
• Ui, for 1 ≤ i ≤ n0 − 1, does not contain any points of A except for

f i(xn).
• Other sets of the cover {Ui} do not contain any points of A.

The set Z is compact, therefore we can choose a finite subcover. Modi-
fying a little the construction from the proof of Theorem 1, we can obtain
a function gn defined on Z such that d∞(f |Z , gn) < ε/8 and gn0

n (xn) =
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xn. We construct a compact set Kn0−1 homeomorphic to IN taking A =
{xn, f(xn), . . . , fn0−2(xn)}, y = fn0−1(xn), B = U0 and C =

⋃n0−1
n=0 Vn.

Then we define gn as in the proof of Theorem 1.
As in the proof of Theorem 2 we define a function h on Z such that

hn0(xn) = x0, and a function g|Z such that g|Z is continuous, x0 is a periodic
point of g|Z and d∞(f |Z , g|Z) < ε (this last construction is possible, because
we have assumed that B(x0, δ1) ⊂ V0 ⊂ Z).

Finally, we define

g =
{
g|Z on Z,
f outside Z.

As all the constructions modify f only in IntZ, we have g = f on ∂Z, hence
g is continuous. Moreover, d∞(f, g) = d∞(f |Z , g|Z) < ε. The result follows.

Let M be a C∞-smooth, compact manifold of dimension ≥ 2 with dis-
tance d coming from a Riemannian metric. Then the C0-closing lemma in the
invertible case can be easily obtained by using a lemma proved by Z. Nitecki
and M. Shub [3].

Z(M) will denote the space of homeomorphisms from M into itself and
d1 the metric of uniform convergence on Z(M): d1(f, g) = maxx∈M (d(f(x),
g(x)), d(f−1(x), g−1(x))). We define a wandering point as in Definition 2
with

⋃
n>0 f

n(U) ∩ U = ∅ replaced by
⋃

n∈Z, n 6=0 f
n(U) ∩ U = ∅. As previ-

ously, a point which is not wandering is called nonwandering.

Theorem 4. Let f : M → M be a homeomorphism, where M is a
C∞ compact manifold of dimension ≥ 2 with distance d coming from a
Riemannian metric, and x0 ∈ M a nonwandering point. Then for every
ε > 0 there exists a homeomorphism g : M →M such that d1(f, g) < ε and
x0 is a periodic point of g.

P r o o f. Clearly we can assume that x0 is not periodic for f .
Let ε be a small positive constant. As f is uniformly continuous, there

exists η with 0 < η < ε such that d(f(x1), f(x2)) < ε if d(x1, x2) < η.
We choose δ, with 0 < δ < η/2, such that d(f−1(x1), f−1(x2)) < η/2 if
d(x1, x2) < δ. This is possible, as f−1 is also uniformly continuous. Let
z0 ∈ B(x0, δ) be such that there exists m ∈ Z, m 6= 0, satisfying fm(z0) =
zm ∈ B(x0, δ), z0 6= x0 and zm 6= x0. Without loss of generality we can
assume that m > 0 (otherwise we take zm instead of z0) and we take the
smallest m satisfying the above conditions.

If m≥2, we set zi = f i(z0) for i ∈ Z and we consider the finite collection
{(pi, qi) ∈ M × M : i = 0, . . . ,m − 1}, where p0 = x0, p1 = z1, p2 =
z2, . . . , pm−2 = zm−2, pm−1 = zm−1 = f−1(zm) and q0 = z0, q1 = z1, q2 =
z2, . . . , qm−2 = zm−2, qm−1 = f−1(x0). The points pi and qi (i = 1, . . . , k)
satisfy:
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(a) pi 6= pj , qi 6= qj for 0 ≤ i < j ≤ m− 1,
(b) d(pi, qi) < η/2 for i = 0, . . . ,m− 1.

According to the lemma of Nitecki and Shub ([3], Lemma 13) there exists a
diffeomorphism h : M →M with the following properties:

(a) d1(h, id) < η,
(b) h(pi) = qi for i = 0, . . . ,m− 1.

We put g = f ◦ h. Obviously g is a homeomorphism, x0 is a periodic point
of g and as d1(h, id) < η < ε,

d1(f, g) = max
x∈M

(d(f(x), (f ◦ h)(x)), d(f−1(x), (h−1 ◦ f−1)(x)))

= max
x∈M

(d(f(x), (f ◦ h)(x)), d(x, h−1(x))) < ε.

If m = 1, we choose %, with 0 < % < η, such that d(f−1(x1), f−1(x2)) < η/2
if d(x1, x2) < %. We choose θ, with 0 < θ < %/2, satisfying d(f(x1), f(x2)) <
%/2 if d(x1, x2) < 2θ. Let y0 ∈ B(x0, θ) be such that there exists n > 0
satisfying fn(y0) = yn ∈ B(x0, θ), y0 6= x0 and yn 6= x0; we take the
smallest n satisfying these conditions. If n ≥ 2 our problem reduces to
the previous case and if n = 1 then we consider the points p0 = x0,
p1 = y1 = f−1(y2), q0 = y0, q1 = f−1(x0). The points p0, p1, q0, q1 sat-
isfy:

(a) p0 6= p1, q0 6= q1,
(b) d(p0, q0) = d(x0, y0) < θ < %/2 < η/2 and d(p1, q1) = d(y1, f−1(x0))

= d(f−1(y2), f−1(x0)) < η/2 as d(x0, y2) ≤ d(x0, y1)+d(y1, y2) = d(x0, y1)+
d(f(y0), f(y1)) < θ + %/2 < %.

Again the lemma of Nitecki and Shub gives a diffeomorphism h : M →M
with the following properties:

(a) d1(h, id) < η,
(b) h(x0) = y0, h(y1) = f−1(x0).

We put g = f ◦ h. Again g is a homeomorphism, x0 is a periodic point of g
and as before d1(f, g) < ε. The result follows.

References

[1] J. Dugundj i, Topology , Allyn and Bacon, Boston, 1966.
[2] H. Lehning, Dynamics of typical continuous functions, preprint, 1993.
[3] Z. Niteck i and M. Shub, Filtrations, decompositions and explosions, Amer. J.

Math. 97 (1975), 1029–1047.
[4] C. C. Pugh, Improved closing lemma, ibid. 89 (1967), 1010–1021.



138 A. A. Kwiecińska
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