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Abstract. A class of nonlinear neutral differential equations with variable coefficients
and delays is considered. Conditions for the existence of eventually positive solutions are
obtained which extend some of the criteria existing in the literature. In particular, a
linearized comparison theorem is obtained which establishes a connection between our
nonlinear equations and a class of linear neutral equations with constant coefficients.

1. Introduction. As is well known, it is desirable to find relatively
simple equations which may serve as minorant or majorant equations to
yield qualitative properties of a given functional differential equation. In
this paper, we are concerned with a functional differential equation of the
form

(1) (x(t) − P (t)x(t − τ(t)))′ +

m
∑

j=1

Qj(t)fj(x(t − σj(t))) = 0, t ≥ t0,

where

(H1) P, Q1, . . . , Qm are positive continuous functions defined on [t0,∞)
such that 0 ≤ P (t) ≤ 1 on [t0,∞),

(H2) τ, σ1, . . . , σm are continuous functions defined on [t0,∞) such that

0 < τ∗ ≤ τ(t) ≤ τ∗, 0 < σ∗ ≤ σj(t) ≤ σ∗ for j = 1, . . . ,m,

and
(H3) f1, . . . , fm are continuous functions on R such that xfj(x) > 0 for

x > 0 and 1 ≤ j ≤ m.

More specifically, we are concerned with the question of when this equa-
tion has no eventually positive solutions. As a candidate for comparison
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purposes, we will seek a linear equation of the form

(2) (x(t) − px(t − τ))′ +
m

∑

j=1

qjx(t − σj) = 0, t ≥ t0,

where p ∈ [0, 1), and q1, . . . , qm, τ, σ1, . . . , σm are positive constants. Equa-
tions of the form (2) have been studied quite extensively (see e.g. [1–7, 10,
11, 14], while there are only a few studies [8, 9, 12, 13, 15] dealing with
the existence of eventually positive solutions of (1). Once we can establish
a connection between these two equations, information on (1) can be drawn
from that concerning (2). Similar investigations have been carried out under
the name of linearized oscillation theory (see e.g. [6, Chapter 4]).

As usual (see e.g. [6, p. 5]), a solution of equation (1) is a continuous
function defined on an appropriate superset of [t0,∞), such that x(t) −
P (t)x(t− τ(t)) is continuously differentiable for t ∈ [t0,∞) and x(t) satisfies
(1) for t ∈ [t0,∞). A solution of equation (2) is similarly defined. Existence
and uniqueness theorems for solutions of either (1) or (2) can be found in [6].

In the next section, we first establish a necessary condition for the ex-
istence of an eventually positive solution of (1). This condition turns out
to be a necessary and sufficient condition for the existence of an eventually
positive solution of a linear equation of the form (2). The desired linearized
comparison theorem is then established in section three.

2. Necessary conditions. We first establish a preparatory result
relating to the function y = y(t) defined by

(3) y(t) = x(t) − P (t)x(t − τ(t)),

where x = x(t) is an eventually positive solution of (1).

Lemma 2.1. Suppose x = x(t) is an eventually positive solution of (1).
Then the function y = y(t) defined by (3) satisfies y(t) > 0 and y′(t) < 0
for all large t.

P r o o f. In view of (1), we see that

y′(t) = −
m

∑

j=1

Qj(t)fj(x(t − σj(t))) < 0

for all large t. Thus y is eventually positive or eventually negative. Assume to
the contrary that y(t) < 0 and y′(t) < 0 for all large t. Then y(t) ≤ −α < 0
for t greater than or equal to some number T, so that

x(t) ≤ −α + P (t)x(t − τ(t)), t ≥ T.

We have two cases to consider. First, assume that x is unbounded. Then
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there is a real sequence {sn} which tends to infinity and

(4) x(sn) = max
T≤t≤sn

x(t).

However, in view of the assumption that 0 ≤ P (t) ≤ 1, we see that

x(sn) ≤ −α + P (sn)x(sn − τ(sn)) ≤ −α + x(sn),

which is a contradiction.

Next, assume that x is bounded. Then there is a real sequence {vn}
which tends to infinity and lim supn→∞ x(vn) = L < ∞. Let {ξn} be the
sequence defined by

x(ξn) = max{x(t) | vn − τ(vn) ≤ t ≤ vn}.

Then ξn → ∞ and lim supn→∞ x(ξn) ≤ L. Furthermore, we have

x(vn) ≤ −α + P (vn)x(ξn) ≤ −α + x(ξn)

for all large n. Taking superior limits on both sides of this inequality, we see
that L ≤ −α + L, which is also a contradiction. The proof is complete.

By means of Lemma 2.1, we now derive one of our main results related
to the existence of an eventually positive solution of (1).

Theorem 2.1. Assume that

fj(x)/x ≥ 1 for x > 0 and j = 1, . . . ,m,

and suppose there is a sufficiently large number T such that

(5) inf
t≥T, λ>0

{

1

λ

m
∑

j=1

Qj(t)e
λσj(t) +

1

λ

m
∑

j=1

Qj(t)P (t−σj(t))e
λτ(t−σj (t))

}

> 1.

Then equation (1) cannot have an eventually positive solution.

P r o o f. Let x = x(t) be an eventually positive solution and let y = y(t)
be the function defined by (3). Then by means of Lemma 2.1, we see that
x(t) > 0, y(t) > 0 and y′(t) < 0 for t greater than or equal to some T .
Furthermore, we have

x(t − σj(t)) ≤ fj(x(t − σj(t))),

and

0 < y(t − τ(t − σj(t))) < y(t − σj(t) − τ(t − σj(t)))

≤ x(t − σj(t) − τ(t − σj(t)))

for 1 ≤ j ≤ m. Define

λ(t) = −y′(t)/y(t), t ≥ T.
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Then λ(t) > 0 for t ≥ T, and

y(s)

y(t)
= exp

{

t\
s

λ(s) ds
}

, s, t ≥ T.

In view of (1), we see further that

(6) λ(t)

=

m
∑

j=1

Qj(t)fj(x(t − σj(t)))

y(t)
≥

m
∑

j=1

Qj(t)x(t − σj(t))

y(t)

=
m

∑

j=1

Qj(t){y(t − σj(t)) + P (t − σj(t))x(t − σj(t) − τ(t − σj(t)))}

y(t)

≥

m
∑

j=1

Qj(t) exp
{

t\
t−σj(t)

λ(s) ds
}

+

m
∑

j=1

Qj(t)P (t − σj(t)) exp
{

t\
t−τ(t−σj(t))

λ(s) ds
}

.

Next, we assert that lim inft→∞ λ(t) > 0. Assume to the contrary that
lim inft→∞ λ(t) = 0. Choose a sequence {sn} which tends to infinity and

λ(sn) = min
T≤t≤sn

λ(t).

Then we see from (6) that

λ(sn) ≥

m
∑

j=1

Qj(sn) exp(λ(sn)σj(sn))

+

m
∑

j=1

Qj(sn)P (sn − σj(sn)) exp(λ(sn)τ(sn − σj(sn))),

so that

1 ≥ inf
n≥1

{

1

λ(sn)

m
∑

j=1

Qj(sn) exp(λ(sn)σj(sn))

+
1

λ(sn)

m
∑

j=1

Qj(sn)P (sn − σj(sn)) exp(λ(sn)τ(sn − σj(sn)))

}

,

contrary to our assumption (5).

Next, we assert that lim inft→∞ λ(t) < ∞. Assume to the contrary that
lim inft→∞ λ(t) = ∞. Pick an arbitrary positive number c. Then in view of
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(5), we see that

1 <

{

1

c

m
∑

j=1

Qj(t) exp(cσj(t)) +
1

c

m
∑

j=1

Qj(t)P (t − σj(t)) exp(cτ(t − σj(t)))

}

,

which implies

{

m
∑

j=1

Qj(t)(1 + P (t − σj(t)))
}

≥ c exp(−cmax{σ∗, τ∗}) > 0,

and thus

lim inf
t→∞

t\
t−min{σ∗,τ∗}

{

m
∑

j=1

Qj(t) (1 + P (t − σj(t)))
}

dt

≥ cmin{σ∗, τ∗} exp(−cmax{σ∗, τ∗}) > 0.

On the other hand, in view of (6), we have

λ(t) ≥
{

m
∑

j=1

Qj(t)(1 + P (t − σj(t)))
}

exp
{

t\
t−min{σ∗,τ∗}

λ(s) ds
}

.

Thus, by invoking Lemma 2.1 in [5], we see that

lim inf
t→∞

t\
t−min{σ∗,τ∗}

λ(s) ds < ∞,

contrary to our assumption that lim inft→∞ λ(t) = ∞.

To complete our proof, let us denote lim inft→∞ λ(t) by λ∗. Also let η>1
be an arbitrary number such that

(7) inf
t≥T, λ>0

{

1

λ

m
∑

j=1

Qj(t)e
λσj(t)+

1

λ

m
∑

j=1

Qj(t)P (t−σj(t))e
λτ(t−σj (t))

}

> η.

For sufficiently large t, since

ηλ(t − τ(t − σj(t))) > λ∗ and ηλ(t − σj(t)) > λ∗

for 1 ≤ j ≤ m, we see from (6) that

λ∗ ≥ inf
s≥T

{ m
∑

j=1

Qj(s) exp

(

λ∗

η
σj(s)

)

+
m

∑

j=1

Qj(s)P (s − σj(s)) exp

(

λ∗

η
τ(s − σj(s))

)}

.
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After rewriting this inequality, we see that

η ≥ inf
s≥T

{

η

λ∗

m
∑

j=1

Qj(s) exp

(

λ∗

η
σj(s)

)

+
η

λ∗

m
∑

j=1

Qj(s)P (s − σj(s)) exp

(

λ∗

η
τ(s − σj(s))

)}

,

contrary to our assumption (7). The proof is complete.

As an immediate corollary, note that

min
λ>0

eλξ/λ = ξe, ξ > 0,

which implies that for λ > 0,

1

λ

m
∑

j=1

Qj(t)e
λσj(t) +

1

λ

m
∑

j=1

Qj(t)P (t − σj(t))e
λτ(t−σj (t))

≥

m
∑

j=1

Qj(t)e{σj(t) + P (t − σj(t))τ(t − σj(t))}.

Thus, if

lim inf
t→∞

m
∑

j=1

Qj(t){σj(t) + P (t − σj(t))τ(t − σj(t))} >
1

e
,

then (1) cannot have an eventually positive solution.

There are two variants of the above theorem. The first one assumes the
additional condition that τ(t) ≡ τ, σj(t) ≡ σj and fj(x) ≤ δjx for x > 0.

Theorem 2.2. Assume that τ(t) ≡ τ , σj(t) ≡ σj for 1 ≤ j ≤ m, that

(8) 1 ≤ fj(x)/x ≤ δj for x > 0 and 1 ≤ j ≤ m,

and that there is a number T such that

(9) inf
t≥T,λ>0

{

1

λ

m
∑

j=1

Qj(t)e
λσj +

Γ (t)

δ
eλτ

}

> 1,

where δ = max1≤j≤m δj and

Γ (t) = min
1≤j≤m

Qj(t)P (t − σj)

Qj(t − τ)
.

Then (1) cannot have an eventually positive solution.
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P r o o f. We only need to note that (6) now changes to

λ(t) ≥
m

∑

j=1

Qj(t) exp
{

t\
t−σj

λ(s) ds
}

+
m

∑

j=1

Qj(t)P (t − σj)x(t − σj − τ))

y(t)
,

and the second sum S(t) in the above inequality is equal to

m
∑

j=1

{

Qj(t)P (t − σj)

Qj(t − τ)
·
Qj(t − τ)x(t − σj − τ)

y(t)

}

,

so that

S(t) ≥ Γ (t)

m
∑

j=1

Qj(t − τ)fj(x(t − σj − τ))

y(t)δj

≥
Γ (t)

δy(t)
{−y′(t − τ)} =

Γ (t)

δ
λ(t − τ)

y(t − τ)

y(t)

=
Γ (t)

δ
λ(t − τ) exp

{

t\
t−τ

λ(s) ds
}

.

The rest of the proof is similar to that of Theorem 2.1, and is thus omitted.

We remark that the condition (8) is needed in several inequalities in the
proof. If we make the additional assumption that any eventually positive
solution x = x(t) also converges to zero, then condition (8) can be weakened
to requiring

(10) 1 ≤ lim inf
x→0

fj(x)

x
≤ lim sup

x→0

fj(x)

x
≤ δj , 1 ≤ j ≤ m.

We only need to modify slightly several arguments in the proof of the
above theorem to yield the following variant.

Theorem 2.3. Assume that τ(t) ≡ τ , σj(t) ≡ σj for 1 ≤ j ≤ m, that (10)
holds and that there is a number T such that (9) holds where δ and Γ (t)
are defined in Theorem 2.2. Then (1) cannot have an eventually positive

solution which converges to zero.

It is not difficult to impose conditions such that all eventually positive
solutions of (1) converge to zero. For instance, the following assertion holds:
Assume that

(11) lim
t→∞

P (t) = p ∈ [0, 1),
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and that one of the functions Q1, . . . , Qm, say Qj∗ , satisfies

(12)

∞\
t0

Qj∗(s) ds = ∞.

If x = x(t) is an eventually positive solution of (1), then limt→∞ x(t) exists
and equals 0.

Indeed, let x = x(t) be an eventually positive solution of (1). Then in
view of Lemma 2.1, the function y = y(t) defined by (3) satisfies y(t) > 0
and y′(t) < 0 for all large t. Thus we have

0 < y(t) ≤ y(t − σj∗(t)) ≤ x(t − σj∗(t)) ≤ fj∗(x(t − σj∗(t)))

for t greater than or equal to some number T . Without loss of any generality,
we may assume that P (t) < p′ for t ≥ T , where p′ ∈ (p, 1). Employing these
facts, we then deduce from (1) that

y′(t) + Qj∗(t)y(t) ≤ 0, t ≥ T.

After integrating, we have

y(t) exp

t\
T

Qj∗(s) ds ≤ y(T ), t ≥ T,

which implies

x(t) ≤ P (t)x(t − τ(t)) + y(T ) exp
{

−

t\
T

Qj∗(s) ds
}

< p′x(t − τ(t)) + y(T ) exp
{

−

t\
T

Qj∗(s) ds
}

.

If x is not bounded, then there is a sequence {sn} which tends to infinity
and (4) holds. Thus,

x(sn) < p′x(sn − τ(sn)) + y(T ) exp
{

−

sn\
T

Qj∗(s) ds
}

≤ p′x(sn) + y(T ) exp
{

−

sn\
T

Qj∗(s) ds
}

,

which implies

x(sn) <
y(T )

1 − p′
exp

{

−

sn\
T

Qj∗(s) ds
}

for all large n. This is impossible as can be seen by taking limits on both
sides. We have thus shown that x is bounded.
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Next we show that x has a limit. Indeed, let {vn} be a divergent sequence
such that lim supt→∞ x(t) = limn→∞ x(vn). Then in view of (3), we see that

lim sup
t→∞

x(t) = lim
t→∞

y(t) + p lim
n→∞

x(vn − τ(vn)) ≤ lim
t→∞

y(t) + p lim sup
t→∞

x(t),

which implies

lim sup
t→∞

x(t) ≤
limt→∞ y(t)

1 − p
.

Similarly, we have
limt→∞ y(t)

1 − p
≤ lim inf

t→∞
x(t).

Finally, if limt→∞ x(t) = α > 0, then 0 < α/2 ≤ x(t) for t greater than
or equal to some number t1. Since f(t) ≥ t for t > 0, we see that

fj∗(x(t − σj(t)) ≥ x(t − σj(t)) ≥ α/2

for t greater than or equal to some number t2 ≥ t1. Thus by means of (1),
we have

y′(t) = −
m

∑

j=1

Qj(t)fj(x(t − σj(t))) ≤ −Qj∗(t)α/2, t ≥ t2.

By integrating the above inequality from t2 to ∞, we conclude from (12)
that limt→∞ y(t) = −∞. This contradicts the conclusion of Lemma 2.1.

3. Linearized comparison theorem. In this section, we will exhibit
a connection between equation (1) and an appropriate linear equation of
the form (2). Recall first that the assumptions that p ∈ [0, 1), and q1, . . .
. . . , qm, τ, σ1, . . . , σm > 0 have been made. Next, we establish two properties
of (2) which are needed for our linearized comparison theorem.

Theorem 3.1. If the condition

(13) F (λ) ≡ −λ + λpeλτ +

m
∑

j=1

qje
λσj > 0

holds for all λ > 0, then (2) cannot have an eventually positive solution.

The converse also holds.

P r o o f. The first statement follows from Theorem 2.2 by taking fj(x) =
x and δj = 1 for 1 ≤ j ≤ m. To see that the converse holds, suppose there is
a positive number λ∗ such that F (λ∗) ≤ 0. Note that F (+∞) = +∞, thus
there is a number ξ ∈ [λ∗,∞) such that F (ξ) = 0. It is then easily verified
that the function x = x(t) defined by x(t) = exp(−ξt) is an eventually
positive solution of (13).

Next, we establish a theorem on continuous dependence on parameters
for linear equations of the form (2).
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Theorem 3.2. Suppose p > 0 and that (2) does not have any eventually

positive solutions. Then there is a positive number µ < min{p, q1, . . . , qm}
such that for every ε ∈ [0, µ], the equation

(14) (x(t) − (p − ε)x(t − τ))′ +

m
∑

j=1

(qj − ε)x(t − σj) = 0

cannot have any eventually positive solutions either.

P r o o f. By means of Theorem 3.1, we see that the function F = F (λ)
defined by (13) satisfies F (λ) > 0 for λ > 0. Furthermore, it is easily verified
that limλ→0 F (λ) > 0, F (+∞) = +∞ and F ′′(λ) > 0 for λ > 0. Thus
F (λ) ≥ c > 0 for λ > 0.

Define

(15) F (λ, θ) = −λ+λ(p−θ)eλτ +

m
∑

j=1

(qj−θ)eλσj , λ > 0, −∞ < θ < ∞.

Note that F (λ, 0) = F (λ) ≥ c > 0 for λ > 0, that Fθ(λ, θ) < 0 and
that F (+∞, θ) = +∞ for 0 < θ < min{p, q1, . . . , qm}. Therefore, since
F (λ, θ) is continuous in λ and θ, it is not difficult to find a positive number
µ < min{p, q1, . . . , qn} such that F (λ, µ) > 0 for λ > 0. Next, since F (λ, θ)
is decreasing in θ for each fixed λ, we see that F (λ, θ) > 0 for each λ > 0
and θ ∈ [0, µ]. The proof is complete.

The same idea can be employed to show the following variant of Theo-
rem 3.2: Suppose p = 0 and that (2) does not have any eventually positive
solutions. Then there is a positive number µ < min{q1, . . . , qm} such that
for every ε ∈ [0, µ], the equation

(16) x′(t) +

m
∑

j=1

(qj − ε)x(t − σj) = 0

cannot have any eventually positive solutions either.
We now state and prove our final linearized comparison theorem. We

need the assumptions that

lim
t→∞

P (t) = p ∈ [0, 1),(17)

lim
t→∞

Qj(t) = qj, 1 ≤ j ≤ m,(18)

and

lim
x→0

fj(x)

x
= 1, 1 ≤ j ≤ m.(19)

Theorem 3.3. Assume that (17)–(19) hold. Assume further that τ(t) ≡
τ , and σj(t) ≥ σj for 1 ≤ j ≤ m for t ≥ t0. If (2) does not have an

eventually positive solution, then neither has (1).



Linearized comparison criteria 171

P r o o f. We assume that 0 < p < 1. Since (2) does not have any
eventually positive solutions, by Theorem 3.2, there is a positive number
µ < min{p, q1, . . . , qm} such that for every ε ∈ [0, µ], the equation (14)
cannot have any eventually positive solutions either. Thus, by Theorem 3.1,

−λ + λ(p − ε)eλτ +
m

∑

j=1

(qj − ε)eλσj > 0, λ > 0, ε ∈ [0, µ].

Note further that (18) and limt→∞Γ (t) = p imply respectively that Qj(t) ≥
qj − ε and Γ (t) ≥ p − ε for all large t. Thus,

1

λ

m
∑

j=1

Qj(t)e
λσj(t) + Γ (t)eλτ ≥

1

λ

m
∑

j=1

(qj − ε)eλσj + (p − ε)eλτ > 1

for all λ > 0 and all large t. By Theorem 2.2, (1) cannot have any eventually
positive solutions.

The case where p = 0 is similarly proved.

4. Examples and remarks. Consider the equation
(

x(t) −
1

2
x

(

t −
π

2

))′

+
1

4
x

(

t −
π

2

)

+
1

2
x

(

t −
5π

2

)

+
1

4
x

(

t − 4π

)

+
1

2
x

(

t −
9π

2

)

= 0, t > 5π.

It is easy to verify that x(t) = sin t is a solution which is neither eventually
positive nor eventually negative. Actually, we may also verify that the con-
ditions in Theorem 3.1 hold. Thus this equation cannot have any eventually
positive solutions.

As another example, consider the equation
(

x(t) −

(

1

2
+

1

t2

)

x(t − 2 − cos t)

)′

+
1

2
x(t − 2 + sin t) + t2x(t − 2 − sin t) = 0, t > 3.

It is easy to verify that the conditions in Theorem 2.2 hold. Thus this equa-
tion cannot have any eventually positive solutions either.

We remark that in case the hypothesis (H3) in Section 1 is replaced
by requiring each of the functions fj(x) in (1) to satisfy the condition
xfj(x) < 0 for x < 0, then it is not hard to see that a dual statement
of Theorem 2.1 holds for eventually negative solutions. The subsequent re-
sults in the previous sections may also be restated for eventually negative
solutions. Consequently, oscillation criteria can be obtained by replacing
(H3) with xfj(x) > 0 for x 6= 0 for each j. This procedure is quite standard
and can be found in various references.



172 X. P. Guan et al.

The idea behind the proof of Theorem 2.1 is not new. Indeed, similar
ideas can be found in [9, 11, 15] and elsewhere. Our proofs contain various
technical differences, however. It is worth mentioning that Yan [13] has
approached similar problems by alternate means. Later Yan’s idea was used
again in [4]. It seems that Yan’s approach is also applicable to our equation
(1), but the details are far from complete.

Finally, we remark that equation (1) is more general than some of the
equations which are studied in [2, 4, 7, 11]. Thus our results improve, gener-
alize and/or overlap with some of the results contained in these studies (see
e.g. [2, Theorem 3.4], [4, Theorem 1] or [11, Theorem 1]).
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