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The existence of solutions

to a Volterra integral equation

by Wojciech Mydlarczyk (Wroc law)

Abstract. We study the equation u = k ∗ g(u) with k such that ln k is convex or
concave and g is monotonic. Some necessary and sufficient conditions for the existence of
nontrivial continuous solutions u of this equation are given.

1. Introduction. We study the integral equation

(1.1) u(x) =

x\
0

k(x − s)g(u(s)) ds (x > 0),

where

(i) g : [0,∞) → [0,∞) is continuous, nondecreasing, g(0) = 0 and
x/g(x) → 0 as x → 0+;

(ii) k : (0,∞) → [0,∞) is continuous,
Tδ
0
k(s) ds < ∞ and ln k is convex

or concave.

In the sequel, we write K(x) =
Tx
0

k(s) ds. We are interested in continu-
ous, nonnegative and nontrivial, i.e. u 6≡ 0, solutions of (1.1). The existence
of such solutions depends only on the behaviour of k and g near the origin.
Therefore the conditions (i)–(ii) could be reformulated to take this fact into
account.

There exists a wide literature (see [1], [4], [5], [6]) devoted to the equation
(1.1). It is known that it always has a maximal solution (see [3]). If this
maximal solution is u ≡ 0, then there are no other solutions. In the other
case we observe the existence of infinitely many solutions, but each of them
is either identically zero or a shifted maximal solution uδ such that uδ(x) = 0
for x ∈ [0, δ) and uδ(x) = u(x − δ) for x ≥ δ (see [6]).

The maximal solution u is a nondecreasing, absolutely continuous func-
tion, for which after integration by parts of the integral in (1.1) we obtain
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a very useful relation

(1.2) u(x) =

x\
0

K(x − s) dg(u(s)), x > 0.

The basic role in the investigation of the existence problem for (1.1) is played
by the following sufficient condition (see [3], [6]):

Theorem 1.1. If

w(x) ≤

x\
0

k(x − s)g(w(s)) ds, x ≥ 0,

for some continuous function w with w(x) > 0 for x > 0, then the equation

(1.1) has a nontrivial maximal solution.

A very useful tool is also provided by the following comparison rule for
(1.1) (see [2]):

Theorem 1.2. Let functions ki and gi, i = 1, 2, satisfy the assumptions

(i)–(ii) and k1 ≤ k2, g1 ≤ g2. If u1 and u2 are the maximal solutions of (1.1)
corresponding to the pairs (ki, gi), i = 1, 2, respectively , then

u1(x) ≤ u2(x) for x > 0.

In view of (ii), the function k is monotonic near the origin. Define c =
limx→0+ k(x).

If 0 < c < ∞, then we take c1 < c < c2 and k1(x) ≡ c1, k2(x) ≡ c2.
Consider the equations

(1.3) u(x) = ci

x\
0

g(u(s)) ds (x > 0, i = 1, 2).

By differentiation of (1.3) we can easily check that the condition

(1.4)

δ\
0

ds

g(s)
< ∞ (δ > 0)

is sufficient and necessary for the existence of nontrivial solutions to (1.3).
Now, using comparison arguments and Theorem 1.1 we can see that (1.4) is
also necessary and sufficient for the existence of nontrivial solutions to (1.1)
in the considered case.

The cases c = 0 and c = ∞ require other arguments. First we observe
that in view of the assumed convexity or concavity of ln k it follows that if
c = 0, then ln k is nondecreasing and if c = ∞, then ln k is nonincreasing.
So, we assume in addition that

(iii) ln k is either concave and nondecreasing, or convex and nonincreas-
ing.
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By differentiation we can easily check

R e m a r k 1.1. The function ln k is convex (concave) if and only if k◦K−1

is convex (concave), where K−1 is the inverse function to K.

In the next section we give some a priori estimates of the maximal so-
lution to (1.1) which play a basic role in the construction of necessary and
sufficient conditions for the existence of nontrivial solutions to (1.1).

The same problems were considered in [5] under an additional assump-
tion that g is absolutely continuous. In this paper we obtain the same nec-
essary and sufficient conditions, but in a simpler way and without that
assumption.

2. Main results. We begin with proving a priori estimates for a non-
trivial maximal solution of (1.1).

Theorem 2.1.Let the conditions (i)–(iii) be satisfied. Then the nontrivial

maximal solution u of (1.1) can be estimated as follows:

(2.1)

x\
0

(K−1)′
(

s

g(s)

)

ds

g(s)

≤ u−1(x) ≤ K−1

(

x

g(x)

)

+

x\
0

K−1

(

s

g(s)

)

ds

g(s)

if ln k is concave and nondecreasing , and

(2.2) K−1

(

x

g(x)

)

+

x\
0

K−1

(

s

g(s)

)

ds

g(s)

≤ u−1(x) ≤

x\
0

(K−1)′
(

s

g(s)

)

ds

g(s)

if ln k is convex and nonincreasing ; u−1 is the inverse function to u.

P r o o f. We consider the case where ln k is concave and nondecreasing.
The other case can be considered similarly.

The proof of the left inequality is short and it can be found for example
in [4]. For the reader’s convenience, we present it also below. Since k =
k ◦ K−1 ◦K and k ◦ K−1 is concave, we can apply the Jensen inequality to
the relation

u′(x) =

x\
0

k(x − s) dg(u(s))

obtained from (1.2), which gives the inequality

u′(x) ≤ k ◦ K−1

(

u(x)

g(u(x))

)

g(u(x)),
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and further

(K−1)′
(

u(x)

g(u(x))

)

u′(x)

g(u(x))
≤ 1.

Now, by integration we obtain the left inequality in (2.1).
We begin the proof of the right inequality with the observation that K

is convex. By applying the Jensen inequality to (1.2) we get

(2.3) u(x) ≥ g(u(x))K

(

Tx
0
(x − s) dg(u(s))

g(u(s))

)

.

Note that
Tx
0
(x − s) dg(u(s)) =

Tx
0

g(u(s)) ds and define

V (x) =

Tx
0

g(u(s)) ds

g(u(x))
for x > 0 and V (0) = 0.

From (2.3) we get

(2.4) V (x) ≤ K−1

(

u(x)

g(u(x))

)

.

The function V is continuous and of bounded variation on every interval
away from zero. We can easily see that

dV (x) = dx − V (x)
dg(u(x))

g(u(x))
(x > 0).

Hence and from (2.4) we get

x = lim
δ→0+

( x\
δ

dV (s) +

x\
δ

V (s)
dg(u(s))

g(u(s))

)

≤ K−1

(

u(x)

g(u(x))

)

+

x\
0

K−1

(

u(s)

g(u(s))

)

dg(u(s))

g(u(s))
(x > 0),

from which our assertion follows.

As a consequence of the left inequalities in (2.1) and (2.2) we obtain a
necessary condition for the existence of a nontrivial solution of (1.1). It is
stated in

Theorem 2.2. Let the conditions (i)–(iii) be satisfied. Then the condi-

tions:
δ\
0

(K−1)′
(

s

g(s)

)

ds

g(s)
< ∞ (δ > 0),

if ln k is concave and nondecreasing , and

δ\
0

K−1

(

s

g(s)

)

dg(s)

g(s)
< ∞ (δ > 0),
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if ln k is convex and nonincreasing , are necessary for the existence of non-

trivial solutions of (1.1).

A sufficient condition for the existence of nontrivial solutions of (1.1) can
be established on the basis of the right inequalities in (2.1) and (2.2). It is
stated in

Theorem 2.3. Let the conditions (i)–(iii) be satisfied. Then the condi-

tions:
δ\
0

K−1

(

s

g(s)

)

dg(s)

g(s)
< ∞ (δ > 0),

if ln k is concave and nondecreasing , and

δ\
0

(K−1)′
(

s

g(s)

)

ds

g(s)
< ∞ (δ > 0),

if ln k is convex and nonincreasing , are sufficient for the existence of non-

trivial solutions of (1.1).

P r o o f. In view of Theorem 1.1 it suffices to construct a function w
such that the corresponding inequality is satisfied. If w is increasing, then
the substitution τ = w(s) shows that the inequality can be written in the
equivalent form

(2.6) x ≤

x\
0

K(w−1(x) − w−1(τ)) dg(τ),

where w−1 is the inverse function to w.

We are going to construct a nondecreasing function satisfying (2.6). First
we consider the case where ln k is concave and nondecreasing. In view of
our assumptions the function

F (x) = K−1

(

x

g(x)

)

+

x\
0

K−1

(

s

g(s)

)

dg(s)

g(s)
for x > 0

and F (0) = 0 is well defined. The function Ψ(x) = K−1(x/g(x)) for x > 0
and Ψ(0) = 0 is continuous and since K−1 is sufficiently smooth, it is of
bounded variation on every interval away from zero. Furthermore, we can
easily check that

dΨ(x) = (K−1)′
(

x

g(x)

)

dx

g(x)
−

x

g(x)
(K−1)′

(

x

g(x)

)

dg(x)

g(x)
.

Since K is convex, K−1 is concave, which implies that z(K−1)′(z) ≤
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K−1(z) for z > 0. Hence, we obtain

x\
0

s

g(s)
(K−1)′

(

s

g(s)

)

dg(s)

g(s)
≤

x\
0

K−1

(

s

g(s)

)

dg(s)

g(s)
.

Now, we observe that

F (x) = lim
δ→0+

( x\
δ

dΨ(s) +

x\
δ

K−1

(

s

g(s)

)

dg(s)

g(s)

)

=

x\
0

(K−1)′
(

s

g(s)

)

ds

g(s)

+

x\
0

(

K−1

(

s

g(s)

)

−
s

g(s)
(K−1)′

(

s

g(s)

))

dg(s)

g(s)
,

from which it follows that F is increasing. We will check that F satisfies
(2.6), so F−1 can be taken as the required w.

Define

Φ(x) =

x\
0

K(F (x) − F (s))) dg(s),

Now applying the Jensen inequality we get

(2.7) Φ(x) ≥ g(x)K

(

Tx
0
(F (x) − F (s)) dg(s)

g(x)

)

.

Noting that
Tx
0
(F (x) − F (s)) dg(s) =

Tx
0
g(s) dF (s) and g(s) dF (s) =

d[g(s)K−1(s/g(s))], from (2.7) we immediately get Φ(x) ≥ x, which ends
the proof in this case.

If ln k is convex and nonincreasing, we define

F (x) =

x\
0

(K−1)′
(

s

g(s)

)

ds

g(s)
, x > 0.

As previously, we will check that F satisfies (2.6).

Define

Φ(x) =

x\
0

K(F (x) − F (s)) dg(s), Φ(0) = 0.

Note that

Φ(x) =

x\
0

[

x\
s

F ′(v)k(F (v) − F (s)) dv
]

dg(s)

=

x\
0

[

F ′(v)

v\
0

k(F (v) − F (s)) dg(s)
]

dv.
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Hence Φ is absolutely continuous and

Φ′(x) = F ′(x)

x\
0

k(F (x) − F (s)) dg(s) a.e.

Since k = k ◦ K−1 ◦ K and k ◦ K−1 is convex, we can apply the Jensen
inequality to obtain

(2.8) Φ′(x) ≥ F ′(x)g(x)k ◦ K−1

(

Φ(x)

g(x)

)

=
k ◦ K−1(Φ(x)/g(x))

k ◦ K−1(x/g(x))
.

Our aim is to prove that Φ(x) ≥ x for x > 0. Assume that Φ(x0) < x0 for
some x0 > 0. Now, let 0 ≤ x1 < x0 be chosen so that

x1 = Φ(x1) and Φ(x) < x for x ∈ (x1, x0).

Since k is nonincreasing and K−1 is nondecreasing, from (2.8) we get

Φ′(x) ≥ 1 for x ∈ (x1, x0).

Hence Φ(x0)−Φ(x1) ≥ x0 − x1, which contradicts Φ(x0) < x0 and ends the
proof.

For some class of functions k, one can replace
Tδ
0
K−1(s/g(s)) dg(s)

g(s) withTδ
0
K−1(s/g(s)) ds

s
, which is usually easier to compute. Namely, we have

R e m a r k 2.1. If
Tδ
0
K−1(s) ds

s < ∞ (δ > 0), then the integrals

δ\
0

K−1

(

s

g(s)

)

dg(s)

g(s)
and

δ\
0

K−1

(

s

g(s)

)

ds

s

are simultaneously convergent or divergent.

P r o o f. Let Φ(x) =
Tx
0

K−1(s) ds
s . Then the function Ψ(x) = Φ(x/g(x))

for x > 0 and Ψ(0) = 0 is continuous and of bounded variation on every
interval away from zero. Furthermore, we have

dΦ

(

x

g(x)

)

= K−1

(

x

g(x)

)

dx

x
− K−1

(

x

g(x)

)

dg(x)

g(x)
(x > 0).

Now, our assertion follows from the equality

Φ(δ/g(δ)) = lim
a→0+

δ\
a

dΦ(s/g(s)).

Example. Consider the equation

(2.9) u(x) =

x\
0

(x − s)α−1g(u(s)) ds (x, α > 0).



182 W. Mydlarczyk

In [3] it was shown that if g satisfies (i) then the condition

(2.10)

δ\
0

[

s

g(s)

]1/α
ds

s
< ∞ (δ > 0)

is necessary and sufficient for the existence of nontrivial solutions of (2.9).
We now show how this result follows from Theorems 2.2 and 2.3.

In the considered case we have k(x) = xα−1, K(x) = 1
αxα and K−1(x) =

α1/αx1/α. For 0 < α ≤ 1, ln k is convex and nonincreasing, and for α >

1, it is concave and nondecreasing. Since
Tδ
0
K−1(s) ds

s < ∞, in view of
Remark 2.1 and Theorems 2.2 and 2.3 we have to consider the integrals

δ\
0

(K−1)′
(

s

g(s)

)

ds

g(s)
and

δ\
0

K−1

(

s

g(s)

)

ds

s
.

But they are of the same form as the integral in (2.10), which gives the
required assertion.
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