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Existence and continuous dependence for a class

of neutral functional differential equations

by Loris Faina (Perugia)

Abstract. A general result on existence and continuous dependence of the solution
for a quite wide class of N.F.D.E. is given. Further, an abstract equivalence is proved for
three different formulations of N.F.D.E.

1. Introduction. By a neutral functional differential equation we mean
an equation which expresses ẋ(t) as a function of present and past values
of x and ẋ. One of the problems linked with such equations is the proper
choice of a topological space for solutions. The selection is usually motivated
by a desire to give the solutions as much structure as possible, especially
continuity of solutions with respect to initial conditions. This problem was
investigated by [6, Driver], [11, Hale–Meyer], and [14, 15, Melvin].

It turns out that the space of absolutely continuous functions is a nat-
ural choice. The reason is quite simply that the number and location of
discontinuities of ẋ are not important in determining convergence.

Let C(R) and L1(R) be the spaces of continuous, respectively Lebesgue
integrable functions mapping R into R

n endowed with the compact-open,
respectively norm topology.

In the present paper we deal with a Cauchy problem of the following
type:

(0)
ẋ(t) = f(t, x, ẋ) a.e. in [t0, t0 + p0],

x(t) = φ0(t) in (−∞, t0],

where f : R × C(R) × L1(R) → R
n satisfies a sort of Carathéodory type

conditions and φ0 : (−∞, t0] → R
n is an absolutely continuous function.

Under very mild conditions, I prove an existence and continuous depen-
dence result for problem (0).
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Similar kinds of problems (0) were considered by [5, Das–Parhi], [13,
Kisielewicz], and [15, Melvin]; however, only [5] handled infinite delays, and
our assumptions are less restrictive than those of [5, 13, 15].

Let us observe that the differential equation in (0) contains, as a partic-
ular case, a neutral functional differential equation of the form

(1) ẋ(t) = f(t, xt, ẋt) for a.e. t ∈ [t0, t0 + p0],

where, for z : (−∞, t0 + p0] → R
n, we put zt(s) = z(t + s) for every

t ∈ [t0, t0 + p0] and s ∈ (−∞, 0].

In Section 4, we study problem (0) in a much more sophisticated hered-
itary structure which was introduced in [2, Brandi–Ceppitelli] for studying
systems which tend to forget the distant past as it becomes more remote,
or systems with sudden memory voids.

I prove here that this general hereditary structure is actually equiva-
lent, in a sense that will be clear in Section 5, to those of problems (0)
and (1). This unifying result permits us to study only the most convenient
formulation for obtaining results related to the other two. Such an equiv-
alence result was already obtained by [7, Faina] for nonneutral functional
differential equations.

Unfortunately, the equation in (0) is not the most general form for a
neutral functional differential equation; in fact, in [16, Wang–Wu], [8, Hale],
and [9, Hale–Cruz], we can find equations of the form

(2)
d

dt
(D(t, xt)) = f(t, xt),

where D is a continuous operator.

Although the hereditary structure of (2) is less general than that of (0),
the presence of a delay in the differentiated term makes the Cauchy problem
related to (2) much more difficult than (0).

I am still not able to handle neutral functional differential equations of
type (2); I am now working to overcome this difficulty.

2. Notations and statement of the problem. Given a set E ⊂ R,
let AC(E) be the set of all absolutely continuous functions mapping E into
R

n. Let W be an open subset of R × C(R) × L1(R). A pair (t0, φ0) ∈
R × AC((−∞, t0]) is called W-admissible if (t0, Ψφ0, 0) ∈ W (1).

(1) Given a function z : (−∞, a] → R
n and τ ≤ a, we denote by Ψτ z, Λτ z the

functions defined by

Ψ
τ
z(t) =

{

z(t) if t ∈ (−∞, τ ],
z(τ ) if t ≥ τ ,

Λ
τ
z(t) =

{

z(t) if t ∈ [−∞, τ ],
0 if t ≥ τ .

For the sake of brevity, we write Ψz, Λz instead of Ψaz, Λaz.
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Given a function f : W → R
n, consider the following Cauchy problem:

(θ)
(θ.1) ẋ(t) = f(t, x, ẋ) a.e. in [t0, t0 + p0],

(θ.2) x(t) = φ0(t) in (−∞, t0].

A solution of problem (θ) is a function x ∈ AC((−∞, t0 + p]), with p ≤ p0,
which satisfies equation (θ.2) and such that Ψx satisfies equation (θ.1) in
[t0, t0 + p].

We study problem (θ) for functions f satisfying the following Carathéo-
dory condition (c):

(c1) f(·, x, z) is measurable for each fixed (x, z);
(c2) f(t, ·, ·) is jointly continuous in (x, z), for almost all t, with respect

to the compact-open topology in C(R) and the sequential weak con-
vergence in L1(R);

(c3) for any fixed (t0, x0, z0) ∈ W, there is a neighborhood V of (t0, x0, z0)
and a Lebesgue integrable function m(·) such that |f(t, x, z)| ≤ m(t)
for every (t, x, z) ∈ V.

A set of functions F is said to have property (c) if each function f ∈ F
has property (c) and (c3) holds uniformly with respect to f .

It is immediately verified that, if f has property (c), then problem (θ) is
equivalent to the following integral equation:

x(t) = φ0(t0) +

t\
t0

f(s, x, ẋ) ds in [t0, t0 + p0],

x(t) = φ0(t) in (−∞, t0].

3. Main results

3.1. Existence result . Whenever we deal with the space AC([a, b]), with
[a, b] a finite interval, we consider the norm

‖x‖AC([a,b]) = |x(a)| +

b\
a

|ẋ(t)| dt for every x ∈ AC([a, b]).

It is well known that the space AC([a, b]), endowed with the topology in-
duced by this norm, is a complete normed space.

Given a subset Y of a metric space (Z, d), we define BZ(Y ; q) = {z ∈
Z : d(z, Y ) ≤ q}.

Theorem 1. If f : W → R
n has property (c), then for every U-admissible

pair (t0, φ0) there is at least one solution of the Cauchy problem (θ).

P r o o f. By property (c3), relative to the point (t0, Ψφ0, 0), there is a
positive constant not greater than p0, which we again denote by p0, and a
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Lebesgue integrable function m(·) such that BR×C(R)×L1(R)((t0, Ψφ0, 0); p0)
⊂ W and

(3) |f(t, x, z)| ≤ m(t) for every (t, x, z) ∈ BR×C(R)×L1(R)((t0, Ψφ0, 0); p0).

Let δ : R
+ → R

+ satisfy

(4) inf
ε>0

δ(ε) = 0,

(5)
\
I

m(s) ds ≤ ε for every interval I ⊂ BR(t0; p0) with |I| < δ(ε).

Let p > 0, p ≤ p0, be such that

(6)

t0+p\
t0

m(s) ds < p0.

Let H = H(t0, φ0,m(·), p) be the closed, convex set defined by

H = {y ∈ AC([t0, t0 + p]) : y(t0) = φ0(t0),

|ẏ(t)| ≤ m(t) a.e. in [t0, t0 + p],

y([τ, τ + δ(ε)]) ⊂ BRn(y(τ); ε)

for every t0 ≤ τ ≤ t0 + p and ε > 0}.

Now, we consider the map T : H → AC([t0, t0 + p]) defined by

Ty(t) = φ0(t0) +

t\
t0

f(s, ỹ, ˙̃y) ds, t ∈ [t0, t0 + p],

where

ỹ(t) =





φ0(t) if t ∈ (−∞, t0],
y(t) if t ∈ [t0, t0 + p],
y(t0 + p) if t ∈ [t0 + p,∞).

By (6), the map T is well defined, that is, H ⊂ W. By (3)–(5), the range of
T is contained in H.

We are going to prove that T is a continuous map with relatively compact
range. Let (yn)n≥0 ⊂ H with ‖yn − y0‖AC([t0,t0+p]) → 0 as n → ∞. From
property (c2), we have

f(t, ỹn, ˙̃yn)
n→∞
−→ f(t, ỹ0, ˙̃y0) for almost all t ∈ [t0, t0 + p].

By (3) and the Lebesgue dominated convergence theorem, f(·, ỹn, ˙̃yn) →

f(·, ỹ0, ˙̃y0) in L1([t0, t0 + p]) as n → ∞. This shows that (Tyn)n converges
to Ty0 in AC([t0, t0 + p]).

Now let (yn)n ⊂ H. Since the functions (yn)n are equibounded and
equiuniformly continuous, by the Ascoli compactness theorem, there is a
subsequence of (yn)n, which we again call (yn)n, and a continuous function
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y0 with yn → y0 in C([t0, t0 + p]) as n → ∞. Since the (ẏn)n are equiab-
solutely integrable, from the Dunford–Pettis compactness theorem, there is
a function w ∈ L1([t0, t0 + p]) and a subsequence of (ẏn)n, which we again
call (ẏn)n, with ẏn → w weakly in L1([t0, t0 + p]) as n → ∞. It is easy to
verify that y0 ∈ AC([t0, t0 + p]) and ẏ0 = w a.e. in [t0, t0 + p].

As we proved before, it results that

‖Tyn − Ty0‖AC([t0,t0+p])
n→∞
−→ 0.

As a consequence of the Schauder fixed point theorem, the map T has a
fixed point x in H. Clearly, the function

x(t) =

{
φ0(t) if t ∈ (−∞, t0],
x(t) if t ∈ [t0, t0 + p],

is a solution of problem (θ).

3.2. A further existence theorem. Let S be a compact subset of R. For
every t ∈ S choose a function φt ∈ AC((−∞, t]).

Theorem 2. Let t → Ψφt be a continuous function from S into C(R),
and assume that Q =

⋃
t∈S(t, Ψφt, 0). Let F = {f : W → R

n} be a function

set with property (c). Then there is a positive number p such that , for every

(t, f) ∈ S ×F , there is a solution x = x(t, φt, f) of (θ) in (−∞, t + p].

P r o o f. Following Lemma 2 of [4, Ceppitelli–Faina] and Lemma 3 of [2],
it is easy to verify that there is a positive number q and a function m(·) ∈
L1(R) such that BR×C(R)×L1(R)(Q; q) ⊂ W and

|f(s, x, z)| ≤ m(s) for every (s, x, z) ∈ BR×C(R)×L1(R)(Q; q) and f ∈ F .

Let δ : R
+ → R

+ be a function with the property (4) and\
I

m(s) ds ≤ ε for every interval I ⊂ BR(S; q) with |I| < δ(ε).

Let p > 0, p ≤ q, be such that

t+p\
t

m(s) ds < q for every t ∈ S.

For fixed (t, f) ∈ S ×F , let Ht = H(t, φt,m(·), p). Similarly to Theorem 1,
we prove that the map Tt : Ht → Ht given by

Tty(τ) = φt(t) +

τ\
t

f(s, ỹ, ˙̃y) ds, τ ∈ [t, t + p],
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where

ỹ(v) =





φt(v) if v ∈ (−∞, t],
y(v) if v ∈ [t, t + p],
y(t + p) if v ≥ t + p,

is well defined and satisfies the Schauder theorem’s hypotheses. Therefore
Tt admits a fixed point xt ∈ Ht, and the function

xt(τ) =

{
φt(τ) if τ ∈ (−∞, t],
xt(τ) if τ ∈ [t, t + p],

is a solution of the Cauchy problem (θ) in (−∞, t + p].

3.3. Continuous dependence

Theorem 3. Let F = {fk : W → R
n : k ∈ N} be a function set with

property (c) and

(7) lim
(k,y,w)→(+∞,x,z)

fk(s, y, w) = f0(s, x, z)

for almost all s and for every (x, z). Let S = (tk)k ⊂ R be a sequence

converging to t0 and (Ψφtk)k be a sequence converging to Ψφt0 in C(R) and

in AC(K) for every compact K ⊂ R. For fixed p0 ∈ R
+ with [t0, t0 + p0] ⊂

ΠR(W) (2), if the Cauchy problem

(θk)
(θk.1) ẋ(t) = fk(t, x, ẋ) a.e. in [tk, tk + p0],

(θk.2) x(t) = φtk(t) in (−∞, tk],

has, for k = 0, a unique solution x0 in [t0, t0 + p0], then there is an integer

k0 such that for k ≥ k0 there is a solution xk = xk(tk, φtk , fk) of problem

(θk), defined in (−∞, tk + p0], such that the sequence (Ψxk)k converges to

Ψx0 in C(R) and in AC(K) for every compact K ⊂ R.

P r o o f. Since x0 is the unique solution of problem (θ0) in [t0, t0 + p0],
the compact set Q =

⋃
t∈[t0,t0+p0](t, Ψ

tx0, 0) is contained in W.

Following Lemma 2 of [4] and Lemma 3 of [2], it is easy to verify
that there is a positive number q and a summable function m(·) such that
BR×C(R)×L1(R)(Q; q) ⊂ W and

(8) |f(s, x, z)| ≤ m(s)

for every (s, x, z) ∈ BR×C(R)×L1(R)(Q; q) and for all f ∈ F . Moreover, since

(Ψφtk)k converges to Ψφt0 , there is an integer k such that

(9) tk ∈ BR(t0; q/2), Ψφtk ∈ BC(R)(Ψφt0 ; q/2) for every k ≥ k.

(2) Given two topological spaces Y and Z, ΠY : Y × Z → Y denotes the standard
projection onto Y .
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Let δ = δ(ε) : R
+ → R

+ satisfy

(10) inf
ε>0

δ(ε) = 0,

(11)
\
I

m(s) ds for every interval I ⊂ BR([t0, t0 + p0]; q) with |I| < δ(ε).

Let p > 0, p ≤ inf{p0, q/2}, be such that

(12)

t+p\
t

m(s) ds < q for every t ∈ BR([t0, t0 + p0]; q/2).

For fixed k > k, let Hk = H(tk, φtk ,m(·), p).
Similarly to Theorem 2, we can prove the existence of a solution x1

k =
x1

k(tk, φtk , fk) ∈ Hk of problem (θk) defined in (−∞, tk + p]. It is easy to
verify that (Ψx1

k)k is relatively compact in C(R) and (Λẋ1
k)k is locally weakly

compact in L1(R). Therefore, there is a function x ∈ AC(R) such that, upon
passing to subsequences, Ψx1

k → x in C(E) and Λẋ1
k → ẋ locally weakly in

L1(R). By using (8), (7), and (c) we deduce

x(τ) = φt0(t0) +

τ\
t0

f0(s, x, ẋ) ds, τ ∈ [t0, t0 + p],

x(τ) = φt0(τ), τ ∈ (−∞, t0],

that is, x is a solution of the Cauchy problem (θ0) in [t0, t0 + p].
By the uniqueness for problem (θ0), the functions x and x0 must coincide

in [t0, t0 +p] and, actually, the whole sequence (Ψx1
k)k converges to Ψ t0+px0

in C(R) and the whole sequence (Λẋ1
k)k converges locally weakly in L1(R)

to Λt0+pẋ0, i.e. (Ψx1
k)k converges to Ψ t0+px0 in AC(K) for every compact

K ⊂ R.
We proceed by steps of width p. There is an integer k1 > k such that,

for every k > k1, we have

tk + p ∈ [t0, t0 + 2p], Ψx1
k ∈ BC(R)(Ψ

t0+px0; q/2).

Let S = {tk + p}k∈N; for k > k1, let H1
k = H(tk + p, x1

k,m(·), p). As before,
we can prove the existence of a solution x2

k ∈ H1
k of problem (θk) defined in

(−∞, tk + 2p] with initial value x1
k at tk + p, such that (Ψx2

k)k converges to
Ψ t0+2px0 in C(R) and in AC(K) for every K ⊂ R. With a finite number of
steps we complete the proof.

4. The general hereditary structure. Let C and K be the sets of all
closed, respectively compact, nonempty subsets of R.

Let α : R → C be a multifunction, not necessarily continuous, with
α(t) ⊂ (−∞, t] for every t ∈ R. Let f : W → R

n be a function with the
Volterra property (with respect to α):
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(vα) for every x1, x2 ∈ C(R), z1, z2 ∈ L1(R), and t ∈ R, if x1|α(t) =
x2|α(t), z1|α(t) = z2|α(t) a.e. in α(t), then f(t, x1, z1) = f(t, x2, z2).

Given x ∈ C(R) and Ω ∈ C, let Γ (x,Ω) = {(t, x(t)) ∈ R
n+1 : t ∈ Ω}

be the graph of the restriction of x to Ω and let G = {Γ (x,Ω) : x ∈ C(R),
Ω ∈ C} be the set of all graphs. Endow G with a natural topology (see
[3, Brandi–Ceppitelli]), and let X : G → C(R) be the continuous function
defined as follows (see also [3]): for every Ω ∈ C, let (a, b) be the smallest
closed interval, bounded or not, containing Ω, and let (ai, bi), i ∈ N, be
the open intervals whose union is the complement of Ω in (a, b). For every
continuous function x : Ω → R

n, we define X (Γ (x,Ω))(t) = x(a) for t ∈
(−∞, a], X (Γ (x,Ω))(t) = x(b) for t ∈ [b,∞) and X linear in (ai, bi), i ∈ N.

Given p0 > 0, put

It0,p0
= cl

( ⋃

t0≤t≤t0+p0

(α(t) ∩ (−∞, t0])
)
∪ {t0}.

A pair (t0, φ0) ∈ R × AC(It0,p0
) is called W-admissible if

(t0,X (Γ (φ0, It0,p0
)), 0) ∈ W.

Consider the following Cauchy problem:

(θα)
(θα.1) ẋ(t) = f(t, x, ẋ) a.e. in [t0, t0 + p0],

(θα.2) x(t) = φ0(t) in It0,p0
.

A solution of problem (θα) is a function x ∈ AC(It0,p0
∪ [t0, t0 + p]),

with 0 < p ≤ p0, which satisfies equation (θα.2) and such that Xx satisfies
equation (θα.1) in [t0, t0 + p], where for the sake of brevity, we put

Xx(t) =

{
X (Γ (φ0, It0,p0

)) if t ∈ (−∞, t0],
X (Γ (x, It0,p0

∪ [t0, t0 + p])) if t ∈ [t0,∞).

The lag function α is not assumed to be continuous nor a compact or con-
nected valued map. Such a lag function was introduced and studied in [2],
where its generality was illustrated by examples and references. In [4] and
[7], the advantage of studying hereditary differential equations by means of
this general lag function was shown.

My aim now is to derive an existence and continuous dependence result
for problem (θα) by means of the results proved in the preceding section for
the apparently less general problem (θ).

First of all, we note that if (t0, φ0) is a W-admissible pair for problem
(θα) then (t0,X (Γ (φ0, It0,p0

))) is also W-admissible for problem (θ).

Theorem 4 (existence). If f : W → R
n has properties (c) and (vα), then

for every admissible pair (t0, φ0) there is at least one solution of the Cauchy

problem (θα).
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P r o o f. By Theorem 1, the problem

(θX )
ẋ(t) = f(t, x, ẋ) a.e. in [t0, t0 + p0],

x(t) = X (Γ (φ0, It0,p0
))(t) in (−∞, t0],

admits a solution. It is trivial to verify that such a function is also a solution
of (θα).

Analogously, we can prove a continuous dependence result for problem
(θα), similar to Theorem 3, by using the argument of Theorem 4.

5.An equivalence result. In [7] there is an extensive discussion about
the equivalence among some general classes of nonneutral functional differ-
ential equations.

I want to adapt that discussion to the classes of neutral functional dif-
ferential equations introduced in this paper.

Throughout this section, we assume that the data f of problem (θ) sat-
isfies the Volterra condition (vα), with α(t) = (−∞, t] for every t ∈ R.

Let H : R × L1(R) → R × L1((−∞, 0]) be the operator defined by
H(t, x) = xt, where xt(θ) = x(t + θ), θ ∈ (−∞, 0]. Let U be an open subset
of R × C((−∞, 0]) × L1((−∞, 0]) and let h : U → R

n be a given function.
Put U0 = ΠR(U). A pair (t0, φ0) ∈ R×AC((−∞, t0]) is called U -admissible

if (t0, φ0t0
, 0) ∈ U .

Given a U -admissible pair (t0, φ0) we consider the following Cauchy prob-
lem:

(P )
(P.1) ẋ(t) = h(t, xt, ẋt) a.e. in [t0, t0 + p0],

(P.2) x(t) = φ0(t) in (−∞, t0].

A solution of problem (P ) is a function x ∈ AC((−∞, t0 + p]), with
0 < p ≤ p0, which satisfies equation (P.1) a.e. in [t0, t0 + p] and equation
(P.2) in (−∞, t0].

We shall prove here that the three problems (θ), (θα), and (P ) are equiv-
alent. Since the preceding section states the equivalence between problems
(θ) and (θα), we will show only that a suitable problem (θ), which we denote
by (θ∗), can be associated with every problem (P ) so that (θ∗) and (P ) have
the same solutions; and vice versa.

For this purpose, given a Cauchy problem (P ), consider the continuous
function L : R×C(R)×L1(R) → R×C((−∞, 0])×L1((−∞, 0]) defined by

L(t, x, y) = (t, xt, yt).

Note that the open set W∗ = L−1(U) is associated with the set U and the
function f∗ : W∗ → R

n is associated with the function h by f∗(t, x, y) =
h(t, xt, yt).
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Furthermore, if (t0, φ0) is U -admissible then it is also W∗-admissible.
Therefore the Cauchy problem

(θ∗)
ẋ(t) = f∗(t, x, ẋ) a.e. in [t0, t0 + p0],

x(t) = φ0(t) in (−∞, t0],

is naturally associated with problem (P ).

It is natural to state, for problem (P ), similar results to those of Section 3,
which we can prove through problem (θ∗).

Finally, let us prove that (θ∗) and (P ) have the same solutions. To this
end, it is sufficient to observe that, given x ∈ AC((−∞, t0 + p0]), we have

L(t, Ψx,Λẋ) = (t, xt, ẋt).

Now, let problem (θ) be given and suppose that W is of the form

W0 = BR(t0;β) × BC(R)(Ψφ0;β) × BL1(R)(0;β).

Consider the continuous function ξ : R × C((−∞, 0]) × L1((−∞, 0]) → R ×
C(R) × L1(R) defined by

ξ(t, x, y) = (t, Ψx−t, Λy−t) (3).

The open set U∗ = ξ−1(W0) is associated with W0 and the function h∗ :
U∗ → R

n is associated with f by

h∗(t, x, y) = f(ξ(t, x, y)).

Finally, note that since (t0, φ0) is W0-admissible then it is also U∗-admissible.
In fact, ξ(t0, φ0t0

, 0) = (t0, Ψφ0, 0) ∈ W0. Thus, the Cauchy problem

(P ∗)
(P ∗.1) ẋ(t) = h∗(t, xt, ẋt) a.e. in [t0, t0 + p0],

(P ∗.2) x(t) = φ0(t) in (−∞, t0],

is naturally associated with problem (θ).

Let us prove that problems (θ) and (P ∗) have the same solutions. For
this purpose, let x : (−∞, t0 +p0] → R

n be a solution of (P ∗) on [t0, t0 +p0].
We fix a point t̂ ∈ [t0, t0 + p0] where the equation (P ∗.1) is satisfied; this
means that

ẋ( t̂ ) = h∗(t̂, xt̂, ẋt̂) and ξ(t̂, xt̂, ẋt̂) = (t̂, Ψ t̂x,Λt̂ẋ) ∈ W0.

Because of the particular form of W0, we also have

(t, Ψ t̂x,Λt̂ẋ) ∈ W0 for every t ∈ [t0, t̂ ];

(3) Given a function z : (−∞, 0] → R
n and a t ∈ R, we denote by z

−t the function
defined by z

−t(τ ) = z(τ − t) for every τ ∈ (−∞, t].



Neutral functional differential equations 225

therefore, in light of property (vα), the following expression is well defined:

ẋ(t) = h∗(t, xt, ẋt) = f(ξ(t, xt, ẋt))

= f(t, Ψ tx,Λtẋ) = f(t, Ψ t̂x,Λt̂ẋ) a.e. in [t0, t̂ ].

This proves that x is also a solution of (θ) in [t0, t̂ ].

Now, let x be a solution of (θ) in [t0, t0 + p0]. Then, for almost all t ∈
[t0, t0+p0] we have (t, Ψx,Λẋ) ∈ W0. Moreover, observe that (t, Ψ tx,Λtẋ) ∈
W0 for almost all t ∈ [t0, t0 + p0]. Therefore,

ẋ(t) = f(t, Ψx,Λẋ) = f(t, Ψ tx,Λtẋ)

= f(ξ(t, xt, ẋt)) = h∗(t, xt, ẋt),

and the assertion follows.
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