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On the first secondary invariant
of Molino’s central sheaf

by Jesús A. Álvarez López (Lugo)

Abstract. For a Riemannian foliation on a closed manifold, the first secondary invari-
ant of Molino’s central sheaf is an obstruction to tautness. Another obstruction is the class
defined by the basic component of the mean curvature with respect to some metric. Both
obstructions are proved to be the same up to a constant, and other geometric properties
are also proved to be equivalent to tautness.

1. Introduction and main results. Let F be a Riemannian foliation
on a closed manifold M [19], Ω·(M/F) its basic complex, and H ·(M/F)
its basic cohomology [6, 7, 13]. There is a locally trivial sheaf C = C(F)
of Lie algebras of germs of transverse Killing fields whose “transverse or-
bits’” are the leaf closures [16, 17]. It is called the central sheaf of F .
The typical fiber of C is the opposite of the structural Lie algebra g of
F . The sheaf C canonically defines a vector bundle C = C(F) over M
with a flat connection. The corresponding multiplicative homomorphism
∆∗ : H ·(gl(q),O(q))→ H ·(M) [12], q = codimF , can be given as the com-
posite of a homomorphism ∆∗ = ∆(F)∗ : H ·(gl(q),O(q)) → H ·(M/F) and
the canonical homomorphism H ·(M/F)→ H ·(M). We get basic secondary
invariants ∆∗(yi) = ∆(F)∗(yi) ∈ H2i−1(M/F), i = 1, . . . , 2[(m+ 1)/2]− 1,
m=dim g. The basic class ∆∗(y1) will be studied in this paper. It would also
be interesting to study the geometric information contained in the ∆∗(yi)
for i > 1.

It was pointed out in [18] that, for Riemannian flows, ∆∗(y1) is the
obstruction to tautness; i.e. the obstruction to the existence of a metric
on M such that the leaves are minimal submanifolds. This property also
holds for F of arbitrary dimension: Suppose F is transversely orientable for
simplicity; then F is taut if and only if Hq(M/F) 6= 0 , which is equivalent
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to the triviality of the sheaf
∧m C [22], and this in turn is equivalent to

∆∗(y1) = 0. There is another obstruction to tautness: For any bundle-like
metric, the basic component of the mean curvature form of the leaves is
closed and defines a class ξ = ξ(F) ∈ H1(M/F), which depends only on
F and vanishes if and only if F is taut [2]. We close this circle of ideas by
proving directly that both obstructions are the same up to a constant:

Theorem 1.1. With the above notation, ξ = −2π∆∗(y1).

We also prove other relations between ∆∗(y1) and geometric properties
of F . Consider the filtration of Ω·(M/F) given by the differential ideals
F kΩ·(M/F), where an α ∈ Ωr(M/F) is in F kΩr(M/F) if iXα = 0 for
X=X1∧ . . .∧Xr−k+1 with the vector fields Xj tangent to the leaf closures.
The corresponding spectral sequence (Ei, di) converges to H ·(M/F) (cf. [8,
§2]). If M/F denotes the space of leaf closures of F , there is a canonical iso-
morphism E·,02

∼= H ·(M/F). So there is a canonical injection H1(M/F)→
H1(M/F). Let F kH ·(M/F) be the induced filtration of H ·(M/F). The el-
ement defined by ∆∗(y1) in H1(M/F)/F 1H1(M/F) ≡ E0,1

∞ will be denoted
by ∆∗(y1). Thus ∆∗(y1) = 0 if and only if ∆∗(y1) ∈ F 1H1(M/F) ≡ E1,0

∞
∼=

H1(M/F).

Theorem 1.2. With the above notation, ∆∗(y1) = 0 if and only if g is
unimodular.

Theorem 1.3. With the above notation, suppose F admits a transverse
parallelism. Let H be any representative of the holonomy pseudogroup of F
on some manifold T . Then:

(i) If g is unimodular , then ∆∗(y1)=0 if and only if the H-orbit closures
are minimal submanifolds for some H-invariant metric on T .

(ii) If g is not unimodular , then the H-orbit closures are minimal sub-
manifolds for some H-invariant metric on T .

Thus F is taut if and only if g is unimodular and the H-orbit closures
are minimal submanifolds for some H-invariant metric.

If F does not admit any transverse parallelism, a similar result can be
stated by considering the horizontal lifting F̂ to the principal bundle of
transverse orthonormal frames for some fixed transverse Riemannian struc-
ture [16, 17]. In particular, we have the following.

Corollary 1.4. With the above notation, let Ĥ be the holonomy pseu-
dogroup of F̂ . Then F is taut if and only if g is unimodular and the Ĥ-orbit
closures are minimal submanifolds for some Ĥ-invariant metric.

For a bundle-like metric on M , let κ be the mean curvature form of the
leaves, and κb its basic component.
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Theorem 1.5. With the above notation, the following holds:

(i) If g is unimodular then, for any bundle-like metric, κb vanishes on
vectors tangent to the leaf closures.

(ii) If g is not unimodular , then there is a bundle-like metric such that
κb vanishes on vectors orthogonal to the leaf closures.

This theorem can be sharpened by the recent result of D. Domı́nguez
[5], showing the existence of a bundle-like metric on M with basic mean
curvature of the leaves. Indeed any representative of ξ can be realized as the
mean curvature for some bundle-like metric. For Lie foliations with dense
leaves, the result is very explicit:

Corollary 1.6. If F is a Lie g-foliation with dense leaves then, for any
bundle-like metric, the basic component of the mean curvature corresponds to
the trace of the adjoint representation by the canonical identity Ω·(M/F) ≡∧·

g∗. Moreover , such a form can always be realized as the mean curvature
for some bundle-like metric.

These results depend only on the holonomy pseudogroup of F . Thus,
with slightly more generality, we shall consider a complete pseudogroup H
of local isometries of a Riemannian manifold T [10, 11].

2. A remark on the first secondary characteristic class of a
flat vector bundle. Let (M, g) be a Riemannian manifold, % : V → M
a rank m vector bundle with a flat connection ∇, P the Gl(m)-principal
bundle of frames of V , and ω the connection form defined by∇. The induced
connection on

∧
V will also be denoted by ∇. For any given O(m)-reduction

of P defined by a section s : M → P/O(m), we have the multiplicative
homomorphism∆∗ : H(gl(m),O(m))→ H ·(M) [12, Theorem 4.43], yielding
secondary characteristic invariants ∆∗(yi) ∈ H2i−1(M) for i = 1, . . . , 2[(m+
1)/2]−1 [12, Theorem 6.33]. A representative of ∆∗(y1) is the form ∆(y1) =
1
2π s

∗(traceω) ∈ Ω1(M) [12, Proof of Proposition 6.34].
Recall that any smooth section X of

∧
V canonically defines a smooth

section X̂ of %∗
∧
V ≡

∧
%∗V . Identifying %∗V with the vertical bundle of

% in the canonical way, we can consider such an X̂ as a smooth section of∧
TV over V . Moreover, if Z̃ is the horizontal lifting of any vector field Z

on M , we get

(1) ∇̂ZX = θZ̃X̂,

where θZ̃ denotes the Lie derivative with respect to Z̃. This can be seen
as follows. The parallel transport along the integral curves of Z is given
by the integral curves of Z̃. In particular, the restriction of the flow of Z̃
between two fibers of % is linear, and thus can be canonically identified with
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its derivative at each point. Therefore (1) follows from the usual expres-
sion of the covariant derivative in terms of parallel transport and the usual
expression of the Lie derivative in terms of the flow of vector fields.

Consider the Riemannian structure on V defined by the O(m)-reduction
of P . We get an induced Riemannian structure on the vertical bundle of % by
identifying it with %∗V . Let ĝ be the Riemannian metric on V defined as the
orthogonal sum of the lift of g to the horizontal bundle and the Riemannian
structure on the vertical bundle. The ĝ-mean curvature form of the fibers
of % will denoted by κV . The induced metric on

∧
TV will also be denoted

by ĝ.

Proposition 2.1. κV = 2π%∗∆(y1).

P r o o f. We can clearly assume V is an oriented vector bundle. So P has
a Gl+(m)-reduction P+. Consider the homomorphism det : Gl+(m)→ R+,
and the corresponding bundle map P+ → P = P+ ×Gl+(m) R+. Then ∇
defines a flat connection on P , and let ω be its connection form.

The section s defines a section s of P →M because the composite

SO(m) ↪→ Gl+(m) det→ R+

is trivial. By functoriality of the construction of the characteristic homomor-
phism under homomorphisms of structural groups [12, Theorem 4.43(iii)],
we have

(2) s∗ω = 2π∆(y1).

(See the proof of Proposition 6.34 in [12].)
Since V is an oriented bundle, there is a non-vanishing section X ∈

C∞(
∧m

V ), with a corresponding section X̂∈C∞(%∗
∧m

V ) ≡ C∞(
∧m

%∗V ).
By identifying %∗V with the vertical bundle, if X is unitary, then χ = ĝ(X̂, ·)
is the characteristic form of the fibers of % [20]; i.e. χ(U) = ĝ(X̂, U) for any
U ∈ C∞(

∧
TV ). Thus

(3) θY X̂ = κV (Y )X̂

for any horizontal %-projectable vector field Y on V . Indeed, θY X̂ = fX̂ for
some function f on V because the flow of Y maps fibers of % to fibers of %,
and Rummler’s mean curvature formula implies [20]

0 = θY (χ(X̂)) = (θY χ)(X̂) + χ(θY (X̂)) = −κV (Y ) + f.

On the other hand, P can be canonically identified with the principal
bundle of oriented frames of the line bundle

∧m
V . Thus

(4) ∇ZX = (s∗ω)(Z)X

for any vector field Z on M , where Z̃ is its horizontal lifting.
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Therefore
κV (Z̃)X̂ = θZ̃X̂ by (3)

= ∇̂ZX by (1)

= (s∗ω)(Z)X̂ by (4)

= 2π%∗∆(y1)(Z̃)X̂ by (2).
The result now follows because κV and %∗∆(y1) vanish on vertical vect-
ors.

3. Preliminaries on complete pseudogroups of local isometries.
Let H be a complete pseudogroup of local isometries of a Riemannian man-
ifold (T, g), T/H the space of H-orbits, and H the closure of H [10]. Thus
T/H is the space of H-orbit closures.

If H preserves a parallelism on T , then we have the following description
due to E. Salem [21]. The space T/H is a manifold and the canonical
projection πb : T → T/H is a submersion. Moreover, for some Lie group G
and some dense subgroup Λ ⊂ G, every point in T/H has a neighborhood
U so that the restriction of H to π−1

b (U) is equivalent to the pseudogroup
generated by the action of Λ on G × U , acting by left multiplication on G
and trivially on U . Furthermore, πb corresponds to the canonical second
projection of G × U onto U by this equivalence. The Lie algebra g of G is
called the structural Lie algebra of H, and πb its basic projection.

For arbitrary H, it is standard to consider the O(n)-principal bundle π :
T̂ → T of orthonormal frames on T with the Levi-Civita connection, where
n = dimT , and the complete pseudogroup Ĥ canonically defined by H on T̂ .
The canonical parallelisms on T̂ are Ĥ-invariant, thus Salem’s description
holds for Ĥ. The structural Lie algebra of Ĥ is also called the structural Lie
algebra of H. (There is no ambiguity when H preserves a parallelism.) The
O(n)-action on T̂ preserves Ĥ, and thus there is an induced O(n)-action
on the manifold W of Ĥ-orbit closures so that the basic projection πb is
O(n)-equivariant, yielding a canonical identity

(5) T/H ≡W/O(n).

The complex of H-invariant differential forms will be denoted by Ω·H =
Ω·(T )H, and its cohomology by H ·(T )H. We shall also use the notation
Ω·H,i=0 for the space of H-invariant forms which vanish on vector fields tan-
gent to the H-orbit closures. Similarly, let Ω(W )O(n),i=0 be the complex of
O(n)-invariant differential forms on W which vanish on vector fields tangent
to the O(n)-orbits.

Define a filtration of Ω·H by differential ideals F kΩ·H, where an H-
invariant r-form α is in F kΩrH if iXα = 0 for X = X1 ∧ . . . ∧ Xr−k+1
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with the vector fields Xj tangent to the orbit closures. The correspond-
ing spectral sequence (Ei, di) = (Ei(H), di) converges to H ·(T )H. We have
Eu,·0 = FuΩ·H/F

u+1Ω·H with the differential map induced by the de Rham
derivative, and thus

Eu,v1 =
FuΩvH ∩ d−1(Fu+1Ωv+1

H )
Fu+1ΩvH + d(FuΩv−1

H )
.

Since clearly FuΩuH = ΩuH,i=0, we get E·,00 ≡ Ω·H,i=0. Moreover,

(6) θX(Ω·H,i=0) = 0

if the vector field X is tangent to the H-orbit closures. Indeed, it is easy
to check that (6) follows if it is proved for Ĥ. But since Ĥ preserves a
parallelism, it is enough to prove (6) for Ĥ-invariant functions, and it is
obvious in this case since such functions are constant on the Ĥ-orbit closures.

From (6) we get iXd(Ω·H,i=0) = 0 for such X; i.e. d(Ω·H,i=0) ⊂ Ω·H,i=0,
yielding

(7) E·,01 ≡ ΩH,i=0
∼= Ω(W )O(n),i=0,

where the isomorphism is given by α 7→ α if π∗α = π∗bα. Therefore, from
(5) and the result of [23] we get

(8) E·,02
∼= H ·(T/H).

Now, from the general theory of spectral sequences, there is a canonical
injection E1,0

2 → H1(T )H. So (8) yields an injection H1(T/H)→ H1(T )H.
If F kH ·(T )H denotes the filtration of H ·(T )H induced by the filtration of

Ω·H, then E0,1
∞ ≡ H1(T )H/F 1H1(T )H and E1,0

∞ ≡ F 1H1(T )H ∼= H1(T/H)
by (8). Moreover, π∗∞ : E0,1

∞ (H)→ E0,1
∞ (Ĥ) is injective since π∗ : H1(T )H →

H1(T̂ )Ĥ is easily checked to be injective with usual arguments involving the
standard spectral sequence defined by π.

A vector bundle % : V → T will be called an H-vector bundle if, for any
diffeomorphism h : U1 → U2 in H, there is a vector bundle homomorphism
h̃ : %−1(U1) → %−1(U2) over h satisfying ĩdT = idV , h̃1h2 = h̃1h̃2, and
h̃|%−1(U) = h̃|U for every open subset U ⊂ domh. A connection on V will be
called an H-connection if it is invariant by the h̃. The following is a natural
example of anH-vector bundle with anH-flat connection. The locally trivial
sheaf of infinitesimal transformations of H will be denoted by C = C(H) [21].
Such a C is a sheaf of Lie algebras, whose typical fiber is the opposite Lie
algebra g− of g. The corresponding H-vector bundle will be denoted by
C = C(H), and the corresponding H-flat connection by ∇. By naturality,
the multiplicative homomorphism ∆∗ : H ·(gl(n),O(n)) → H ·(T ) defined
by ∇ is the composite of a multiplicative homomorphism ∆∗ = ∆(H)∗ :
H ·(gl(n),O(n)) → H ·(T )H and the canonical homomorphism H ·(T )H →
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H ·(T ). This yields secondary characteristic invariants ∆∗(yi)=∆(H)∗(yi)∈
H2i−1(T )H. Indeed, the representatives defined in [12] are H-invariant; in
particular, ∆(y1) ∈ Ω1

H. Now, ∆(y1) and ∆∗(y1) ∈ H1(T )H are the objects
of our study.

The results in [22] have obvious versions for complete pseudogroups of
local isometries. In particular, when T has an H-invariant orientation, the
top-dimensional invariant cohomology Hn(T )H is non-trivial if and only if∧m C is a trivial sheaf, which is equivalent to ∆∗(y1) = 0.

4. The form ∆(y1) ∈ Ω1(T )H when H preserves a parallelism.
With the notation of Sect. 3, suppose H preserves a parallelism on T . Then,
as a particular case of a foliation on a Riemannian manifold, there is a
bigrading of Ω given by the fibers of πb: If V is the vertical bundle of πb

and Q the orthogonal complement of V, then

Ωu,v = C∞(
∧uQ∗ ⊗∧v V∗), u, v ∈ Z.

This bigrading isH-invariant, and thus restricts toΩH. The de Rham deriva-
tive decomposes as d = d0,1 +d1,0 +d2,−1, where each di,j is bihomogeneous
of bidegree (i, j), and the usual formulae are satisfied (see e.g. [1]). Clearly
F kΩH = Ωk,·H ∧ ΩH, yielding canonical identities (E0, d0) ≡ (ΩH, d0,1) and
(E1, d1) ≡ (H(ΩH, d0,1), d0,1∗).

Let χ ∈ Ω0,m
H be the characteristic form of the fibers of πb, where m =

dim g. There is a form τ ∈ Ω0,1
H such that, for any H-invariant vector field

Y tangent to the H-orbit closures,

(9) θY χ ∈ −τ(Y )χ+ F 1ΩmH .

Indeed, if HF is the restriction of H to any H-orbit closure F , then the Lie
algebra XF of HF -invariant vector fields on F is isomorphic to g by Salem’s
description, and the restriction τF of τ to F is the trace of the adjoint
representation of XF . So τ = 0 if and only if g is unimodular. On the other
hand, the mean curvature form κ of the H-orbit closures is in Ω1,0

H = F 1Ω1
H,

and satisfies Rummler’s formula

(10) θZχ ∈ −κ(Z)χ+ F 1ΩmH

for any H-invariant vector field Z orthogonal to the orbit closures. Also,
with the notation of Sect. 3 for V = C, let κC be the ĝ-mean curvature of
the fibers of the projection of C to T .

Proposition 4.1. τ + κ = 2π∆(y1).

P r o o f. For any fixed subset U ⊂ T/H, let CU be the restriction of C to
π−1

b (U). The statement of this result is a local property, thus it is enough to
prove it on π−1

b (U). Then, by Salem’s description, we can assume π−1
b (U) =

U×G, where H is generated by the action of G, acting by left multiplication
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on itself and trivially on U . Thus CU ≡ U ×G×g− ≡ U ×TG ⊂ T(U ×G),
and C∞(CU ) ≡ C∞(U × G, g−), where the ∇-parallel sections of CU are
identified with the constant functions with values in g−.

Let X be a unitary section of
∧m

CU , which can be considered as a
function on U ×G with values in

∧m
g−. By (9) and (10) we have

(11) θYX = (τ + κ)(Y )X

for any H-invariant vector field Y on U ×G.
The vertical bundle of CU can be canonically identified with the trivial

bundle CU × g−. Hence, using the notation of the proof of Proposition 2.1
for V = CU , X̂ can be considered as a function on CU with values in

∧m
g−,

which is clearly equal to the pull-back of X. So, as in (3),

(12) θ̂YX = θ
Ỹ
X̂ = κC(Ỹ )X̂

for any vector field Y on U ×G, where Ỹ is the horizontal lift of Y . Then
the result follows from (11) and (12), and Proposition 2.1.

5. Unimodularity of the structural Lie algebra

Theorem 5.1. If H is a complete pseudogroup of local isometries and g
its structural Lie algebra, then ∆∗(y1) = 0 if and only if g is unimodular.

P r o o f. Since π∗∞ : E0,1
∞ (H)→ E0,1

∞ (Ĥ) is injective and π∗∞∆(H)∗(y1) =
∆(Ĥ)∗(y1), we can assume H preserves a parallelism.

With the above assumption, if ∆∗(y1) = 0 then ∆∗(y1) ∈ F 1H1(T )H.
So there is some H-invariant function f such that τ + κ+ df ∈ F 1Ω1

H. But
κ+df ∈ F 1Ω1

H because d0,1(Ω0
H) = 0. Therefore τ ∈ Ω0,1

H ∩F 1Ω1
H = 0, and

g is unimodular.
If g is unimodular, then τ = 0 and thus κ ∈ F 1Ω1

H represents 2π∆∗(y1).
So ∆∗(y1) ∈ F 1H1(T )H and ∆∗(y1) = 0.

From Theorem 5.1, any vanishing result for H1(T )H yields the unimod-
ularity of g. Such a result is proved e.g. in [3] by using Morse inequalities
for pseudogroups of local isometries.

6. Minimality of the orbit closures when H preserves a par-
allelism. Assume H preserves a parallelism on T . With the notation of
Sect. 4, let ν denote the normal bundle of the fibers of πb, which is canon-
ically isomorphic to Q, and let C∞(ν∗ ⊗ V)H be the space of H-invariant
sections of the H-vector bundle ν∗ ⊗ V. For σ ∈ C∞(ν∗ ⊗ V)H and x ∈ T ,
let Qσx = {v + σx(v) : v ∈ Qx}, where v is the element in ν defined by v.
Clearly Qσ =

⊔
x∈T Qσx is an H-subbundle of the tangent bundle of T which

is complementary to V. The correspondence σ 7→ Qσ defines a bijection
between C∞(ν∗ ⊗ V)H and the H-bundles of tangent vectors which are
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complementary to V. This correspondence depends on Q, and thus on the
given metric g. For each such σ, there is a unique H-invariant metric gσ on
T such that g and gσ induce the same metric on T/H and define the same
metric on V, and so that the gσ-orthogonal complement of V is Qσ. The
gσ-mean curvature form of the orbit closures will be denoted by κσ.

For any H-invariant function h on T , consider also the orthogonal sum
gh of the restriction of g to Q and the restriction of ehg to V. The gh will
be said to be obtained from g by a scalar change along the orbit closures.

Theorem 6.1. Let H be a complete pseudogroup of local isometries which
preserves a parallelism on a manifold T , and g the structural Lie algebra.
Then:

(i) If g is unimodular , then 2π∆∗(y1) is the class of all possible mean
curvature forms of the orbit closures for all the H-invariant metrics on T .
Thus, in this case, ∆∗(y1) = 0 if and only if the orbit closures are minimal
submanifolds for some H-invariant metric.

(ii) If g is not unimodular , then any element in Ω1,0
H is the mean curva-

ture form of the orbit closures for some H-invariant metric on T . Thus, in
this case, the orbit closures are minimal submanifolds for some H-invariant
metric.

Thus ∆∗(y1) = 0 if and only if g is unimodular and the orbit closures
are minimal submanifolds for some H-invariant metric on T .

P r o o f. Let g be any H-invariant metric. If g is unimodular, then τ = 0
and κ represents 2π∆∗(y1). On the other hand, any element in this class
can be realized as the mean curvature form of the orbit closures for some
metric obtained from g by a scalar change along the orbit closures.

Suppose g is not unimodular, and thus τ is a non-vanishing form. So
there is an H-invariant πb-vertical vector field Y such that τ(Y ) = 1. (Y
can be chosen to be |τ |−2 times the g-dual vector field of τ .) Take any
α ∈ Ω1,0

H and define σ ∈ C∞(ν∗ ⊗ V)H by σx(v) = (α + κ)x(v)Yx for any
x ∈ T and any tangent vector v at x, and where v is the element defined by
v in νx. Let Pσ denote the gσ-orthogonal projection of the tangent bundle
of T onto V. It is easily verified that

(13) Pσ(v) = (α+ κ)x(v)Yx for v ∈ Qx.

For a local orientation of the fibers of πb, let χ and χσ be the correspond-
ing characteristic forms for g and gσ, respectively. Let Y1, . . . , Ym be a local
orthonormal frame of V such that Y1 = Y/|Y |. By (13), for any X ∈ C∞(Q)
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we have
χσ(X ∧ Y2 ∧ . . . ∧ Ym) = χ(Pσ(X) ∧ Y2 ∧ . . . ∧ Ym)

= χ((α+ κ)(X)Y ∧ Y2 ∧ . . . ∧ Ym)

= (α+ κ)(X)|Y |,
χσ(Y1 ∧ . . . ∧ Yi−1 ∧X ∧ Yi+1 ∧ . . . ∧ Ym) = 0,

χσ(Y1 ∧ . . . ∧ Ym) = 1.

Thus

(14) χσ = χ+ (α+ κ) ∧ iY χ.
Therefore

dχσ = d(χ+ (α+ κ) ∧ iY χ)
= dχ+ d(α+ κ) ∧ iY χ− (α+ κ) ∧ diY χ
∈ −κ ∧ χ+ d(α+ κ) ∧ iY χ− (α+ κ) ∧ (θY − iY d)χ+ F 2ΩmH

= −κ ∧ χ− (α+ κ) ∧ θY χ+ F 2ΩmH .

But θY χ = −χ by the definition of τ and the choice of Y . So

dχσ ∈ −α ∧ χ+ F 2ΩH = −α ∧ χσ + F 2ΩH,

yielding κσ = α by Rummler’s mean curvature formula, and the proof is
finished.

Example 6.2 (Y. Carrière). The affine Lie group A can be identified
with R2 with the group structure given by (t, s)(t′, s′) = (t+ t′, λts′+ s) for
any fixed λ > 1. Consider the pseudogroup generated by the left action of
the closed subgroup K = Z×R ⊂ A on A. Clearly K\A ≡ S1, the structural
Lie algebra is abelian, and we have H2(A)K = 0 [4]. Hence ∆∗(y1) = 0 and
∆∗(y1) 6= 0. Therefore there is no K-invariant metric on A such that the
right translates of K are minimal submanifolds.

E. Maćıas and E. Sanmart́ın have proved the following [14]: If H is a
Lie subgroup of a Lie group G, and H0 the connected component of H which
contains the identity element, then the right translates of H are minimal
submanifolds for some metric on G. Moreover, from the proof in [14] it can
be easily seen that the above metric can be chosen to be invariant by the
left action of H0. So the non-triviality of ∆∗(y1) in Example 6.2 depends on
the disconnectedness of K. From Theorems 5.1 and 6.1, we get the following
generalization of the results of [14], where ∆∗(y1) and ∆∗(y1) are defined
by the pseudogroup generated by the left action of H on G.

Corollary 6.3. With the above notation, we have:

(i) ∆∗(y1) = 0 if and only if H is unimodular.
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(ii) If H is unimodular , then ∆∗(y1) = 0 if and only if the right translates
of H are minimal submanifolds for some metric on G which is invariant by
the left H-action.

(iii) If H is not unimodular , then the right translates of H are minimal
submanifolds for some metric on G which is invariant by the left H-action.

If H is not required to preserve a parallelism on T , then Theorems 5.1
and 6.1 have the following consequence by considering Ĥ.

Corollary 6.4. If H is a complete pseudogroup of local isometries, and
g its structural Lie algebra, then:

(i) If g is unimodular , then ∆∗(y1)=0 if and only if the Ĥ-orbit closures
are minimal submanifolds for some Ĥ-invariant metric.

(ii) If g is not unimodular , then the Ĥ-orbit closures are minimal sub-
manifolds for some Ĥ-invariant metric.

Thus ∆∗(y1) = 0 if and only if g is unimodular and the Ĥ-orbit closures
are minimal submanifolds for some Ĥ-invariant metric.

7. Application to Riemannian foliations. Let F and M be as in
Sect. 1. Let H be the representative of the holonomy pseudogroup of F
canonically defined on a manifold T by some regular covering of M (see
e.g. [9, 10]). Then any fixed transverse Riemannian structure of F canon-
ically corresponds to an H-invariant metric on T so that H is a complete
pseudogroup of local isometries, and there are canonical isomorphisms

Ω·(T )H ∼= Ω·(M/F),(15)
H ·(T )H ∼= H ·(M/F).(16)

More precisely, let {(Ui, fi)} be a regular covering of M . The restriction
of F to each Ui is given by the submersion fi of Ui onto some manifold Ti.
The regularity of this covering means that there are well defined diffeomor-
phisms hij : fi(Ui∩Uj)→ fj(Ui∩Uj) such that hijfi = fj on Ui∩Uj . Then
T =

⊔
i Ti and H is generated by the hij . The metric on T is determined by

requiring the fi to be Riemannian submersions. The isomorphism in (15) is
given by α 7→ α′, where f∗i (α|Ti

) = α′|Ui
. Moreover, each f∗i C(H) is canon-

ically isomorphic to the restriction of C(F) to Ui, so the classes ∆(H)∗(y1)
and ∆(F)∗(y1) correspond to each other by (16).

P r o o f o f T h e o r e m 1.1. We can suppose F is transversely paralleliz-
able by using F̂ in a standard way. Then M/F ≡ T/H is a manifold, and the
canonical map πb : M →M/F a fiber bundle projection whose fibers define
thus a foliation F . We can suppose the metric on M is chosen so that the leaf
closures are minimal submanifolds. On any fixed Ui, the vector bundles TF ,
TF and TF⊥ ∩TF are orientable, and take the unitary sections X, X ′ and
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X ′′ on Ui defining respective positive orientations of
∧p TF ,

∧p+m TF and∧m (TF⊥ ∩ TF
)
, where p = dimF (thus p+m = dimF). The orientations

can be chosen so that X ′ = X ∧X ′′. Let Y be an infinitesimal transforma-
tion of F which is orthogonal to the leaves. Since X ∧

∧+
C∞(TF) = 0, we

get X ∧ θYX ′′ = (2πf∗i ∆(F)(y1))(Y )X ′ by (11) and Proposition 4.1. Hence

θYX
′ = (κF + 2πf∗i ∆(H)(y1)) (Y )X ′

by Rummler’s formula, where κF is the mean curvature form of the leaves.
On the one hand, if Y is orthogonal to F , then θYX ′ = 0 because the leaves
of F are minimal submanifolds, and we get (κF + 2π∆(F)(y1))(Y ) = 0 on
M . On the other hand, if Y is tangent to F , then θYX

′ = − divb(Y )X ′

where divb denotes the divergence on the fibers of πb, and we get

(κF + 2π∆(F)(y1))(Y ) = −divb(Y )

on M . Therefore the function (κF + 2π∆(F)(y1))(Y ) has trivial integral
on the fibers of πb for any infinitesimal transformation Y of F on M . This
implies that κF + 2π∆(F)(y1) has trivial basic component [2]; i.e. the basic
component of κF is equal to −2π∆(F)(y1), and the result follows.

The other results in Sect. 1 now follow directly from Theorem 1.1 and
the results in Sects. 5 and 6.
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